Electrochemical Approach to Detection of Chlorophene in Water Catalyzed by a Laccase Modified Gold Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Fabrication of Working Electrode (Lac-Au Electrode)
2.4. Enzymatic Activity
2.5. Electrochemical Measurements: Chlorophene Detection
2.6. Samples and HPLC Reference Method
3. Results and Discussion
3.1. Fabrication of Lac-Au Electrode
3.2. Chlorophene Detection
3.3. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Félix-Cañedo, T.E.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci. Total Environ. 2013, 454–455, 109–118. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van der Ploeg, M.; Van de Zee, S.E.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Rayaroth, M.; Nejumal, K.; Subha, S.; Usha, A.; Charuvila, A. Identification of chlorophene in a backwater stream in Kerala (India) and its sonochemical degradation studies. CLEAN Soil Air Water 2015, 43, 1338–1343. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 2003, 37, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Chlorophene Product-Type 2 (Disinfectants and Algaecides Not Intended for Direct Application to Humans or Animals): Assesment Report; ECHA: Helsinki, Finland, 2017.
- Yamarik, T. Safety assessment of dichlorophene and chlorophene. Int. J. Toxicol. 2004, 23, 1–27. [Google Scholar]
- Bolobajev, J.; Öncü, N.B.; Viisimaa, M.; Trapido, M.; Balcıoğlu, I.; Goi, A. Column experiment on activation aids and biosurfactant application to the persulphate treatment of chlorophene-contaminated soil. Environ. Technol. 2015, 36, 348–357. [Google Scholar] [CrossRef]
- Sirés, I.; Garrido, J.A.; Rodriguez, R.M.; Brillas, E.; Oturan, N.; Oturan, M.A. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B 2007, 72, 382–394. [Google Scholar] [CrossRef]
- Houtman, C.J.; Van Oostveen, A.M.; Brouwer, A.; Lamoree, M.H.; Legler, J. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ. Sci. Technol. 2004, 38, 6415–6423. [Google Scholar] [CrossRef] [Green Version]
- Campanhã-Vicentini, F.; Garcia, L.; Figueiredo-Filho, L.; Janegitz, B.; Fatibello-Filho, O. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzyme Microb. Technol. 2016, 84, 17–23. [Google Scholar] [CrossRef]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors. Actuators B Chem. 2010, 145, 800–806. [Google Scholar] [CrossRef]
- Moss, P. Enzyme Nomenclature; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Thurston, C.F. The structure and function of fungal laccases. Microbiology 1994, 140, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Bollag, J.M. Decontaminating soil with enzymes. Environ. Sci. Technol. 1992, 26, 1876–1881. [Google Scholar] [CrossRef]
- Sondhi, S.; Sharma, P.; George, N.; Chauhan, P.; Puri, N.; Gupta, N. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech 2015, 5, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Peng, J.; Li, J.; Mao, L.; Wang, Z.; Gao, S. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation. J. Hazard. Mater. 2016, 317, 81–89. [Google Scholar] [CrossRef]
- Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Blanco-Gámez, E.A.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Sipa, K.; Brycht, M.; Leniart, A.; Urbaniak, P.; Nosal-Wiercińska, A.; Pałecz, B.; Skrzypek, S. β–Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen. Talanta 2018, 176, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Xie, Y.; Ma, X.; Gao, F.; Gong, L.; Wang, D.; Lu, L.; Liu, G.; Yu, Y.; Huang, X. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen. J. Electroanal. Chem. 2019, 848, 113268. [Google Scholar] [CrossRef]
- Farghaly, O.A.; Hameed, R.A.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci. 2014, 9, 3287–3318. [Google Scholar]
- Luna-Moreno, D.; Sánchez-Álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M. Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors 2019, 19, 465. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 2018, 1009, 65–72. [Google Scholar] [CrossRef]
- IUPAC-ISO-AOAC International. Harmonised guidelines for the use of recovery information in analytical measurement. In Proceedings of the Symposium on Harmonisation of Quality Assurance Systems for Analytical Laboratories, Orlando, FL, USA, 4–5 September 1996. [Google Scholar]
- Yang, W.; Wang, J.; Zhao, S.; Sun, Y.; Sun, C. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem. Commun. 2006, 8, 665–672. [Google Scholar] [CrossRef]
- Liley, M.; Keller, T.A.; Duschl, C.; Vogel, H. Direct observation of self-assembled monolayers, ion complexation, and protein conformation at the gold/water interface: An ftir spectroscopic approach. Langmuir 1997, 13, 4190–4192. [Google Scholar] [CrossRef]
- Schartner, J.; Güldenhaupt, J.; Mei, B.; Rögner, M.; Muhler, M.; Gerwert, K.; Kötting, C. Universal method for protein immobilization on chemically functionalized germanium investigated by ATR-FTIR difference spectroscopy. J. Am. Chem. Soc. 2013, 135, 4079–4087. [Google Scholar] [CrossRef] [PubMed]
- Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Liang, W.; Li, Y.; Li, H.; Liu, X. Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb. Cell Fact. 2017, 16, 149. [Google Scholar] [CrossRef]
- Lebik-Elhadi, H.; Frontistis, Z.; Ait-Amar, H.; Amrani, S.; Mantzavinos, D. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect. Process Saf. Environ. Prot. 2018, 116, 535–541. [Google Scholar] [CrossRef]
Electrode | Rel (Ω) | Rct (Ω) | Cdl (F) | W (S * √s) |
---|---|---|---|---|
Bare Au | 20 | 100 | 2.8 × 10−9 | 0.0012 |
Au-Alkanethiols | 30 | 140 | 1.6 × 10−9 | 0.0011 |
Lac- Au | 40 | 160 | 1.4 × 10−9 | 0.0015 |
Strategies | Element of Recognition | Analyte | LOD (µg L−1) | LOQ (µg L−1) | Reference |
---|---|---|---|---|---|
Surface plasmon resonance | Laccase enzyme | chlorophene | 330 | 1100 | [17] |
Cyclic voltammetry | Laccase enzyme | chlorophene | 140 | 480 | This work |
Linear sweep voltammetry | RGO@Ce-MOF composite | dichlorophen | 2 | - | [19] |
Square-wave adsorptive stripping voltammetric | β–CDs/MWCNTs/GCE | dichlorophen | 3 | 12 | [18] |
Fortification Level (mg mL–1) | CV Method | HPLC Method | ||
---|---|---|---|---|
3 | Mean (mg mL–1) | Recovery (%) | Mean (mg L–1) | Recovery (%) |
1.86 ± 0.07 | 62.0 ± 2.4 | 3.04 ± 0.11 | 101.3 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Sánchez-Álvarez, A.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, J.M.; Rodríguez-Delgado, M.M. Electrochemical Approach to Detection of Chlorophene in Water Catalyzed by a Laccase Modified Gold Electrode. Chemosensors 2021, 9, 82. https://doi.org/10.3390/chemosensors9040082
Quintanilla-Villanueva GE, Luna-Moreno D, Sánchez-Álvarez A, Villarreal-Chiu JF, Rodríguez-Delgado JM, Rodríguez-Delgado MM. Electrochemical Approach to Detection of Chlorophene in Water Catalyzed by a Laccase Modified Gold Electrode. Chemosensors. 2021; 9(4):82. https://doi.org/10.3390/chemosensors9040082
Chicago/Turabian StyleQuintanilla-Villanueva, Gabriela Elizabeth, Donato Luna-Moreno, Araceli Sánchez-Álvarez, Juan Francisco Villarreal-Chiu, José Manuel Rodríguez-Delgado, and Melissa Marlene Rodríguez-Delgado. 2021. "Electrochemical Approach to Detection of Chlorophene in Water Catalyzed by a Laccase Modified Gold Electrode" Chemosensors 9, no. 4: 82. https://doi.org/10.3390/chemosensors9040082
APA StyleQuintanilla-Villanueva, G. E., Luna-Moreno, D., Sánchez-Álvarez, A., Villarreal-Chiu, J. F., Rodríguez-Delgado, J. M., & Rodríguez-Delgado, M. M. (2021). Electrochemical Approach to Detection of Chlorophene in Water Catalyzed by a Laccase Modified Gold Electrode. Chemosensors, 9(4), 82. https://doi.org/10.3390/chemosensors9040082