Pomological Descriptors, Phenolic Compounds, and Chemical Monitoring in Olive Fruits Irrigated with Dairy Treated Wastewater
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Site and Plant Material
2.2. Experimental Design and Irrigation Schedule
2.3. Water Irrigation Method
2.4. Industrial Treated Wastewater
2.5. Olive Fruit Sampling
2.6. Fruits Pomological Analysis
2.7. HPLC Analysis of Phenolic Composition
2.8. Element Determination by ICP-MS
2.9. Statistical Analysis of Data
3. Results
3.1. Changes in the Pomological Characteristics and in the Phenolic Composition of ‘Chemlali’ Olive Fruits Following TWW Irrigation
3.2. Effect of TWW Irrigation on Olive Fruits Chemicals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Denny, E.; Donnelly, K.; McKay, R.; Ponte, G.; Uetake, T. Sustainable Water Strategies for Jordan, International Economic Development Program; Gerald, R., Ed.; Ford School of Public Policy University of Michigan: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Ali, M.; Choudhury, T.R.; Hossain, B.; Ali, M.P. Determination of Traces of Molybdenum and Lead in Foods by X-ray Fluorescence Spectrometry; SpringerPlus: Berlin/Heidelberg, Germany, 2014; Volume 3, p. 341. [Google Scholar]
- Di Bella, G.; Turco, V.L.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Potortì, A.; Lo Turco, V.; Di Bella, G. Chemometric analysis of elements content in Algerian spices and aromatic herbs. LWT Food Sci. Technol. 2021, 138, 110643. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Zaanouni, N.; Gharssallaoui, M.; Mabrouk, E.M.; Gabsi, S. Heavy metals transfer in the olive tree and assessment of food contamination risk. Environ. Sci. Pollut. Res. 2018, 25, 18320–18331. [Google Scholar] [CrossRef]
- Tekaya, M.; Chehab, H.; Flamini, G.; Gharbi, I.; Mahjoub, Z.; Laamari, S.; Chihaoui, B.; Boujnah, D.; Hammami, M.; Mechri, B. Modification of pomological characteristics and flavour components of fruits and virgin olive oil following wastewater irrigation and soil tillage. J. Sci. Food Agric. 2017, 98, 2942–2952. [Google Scholar] [CrossRef] [PubMed]
- Proietti, P.; Antognozzi, E. Effect of irrigation on fruit quality of table olives (Olea europaea), cultivar ‘Ascolana tenera’. N. Z. J. Crop. Hortic. Sci. 1996, 24, 175–181. [Google Scholar] [CrossRef]
- Chartzoulakis, K. The use of saline water for irrigation of olives: Effects on growth, physiology, yield and oil quality. Acta Hortic. 2011, 888, 97–108. [Google Scholar] [CrossRef]
- Al-Absi, K.M.; Al-Nasir, F.M.; Mahadeen, A.Y. Mineral content of three olive cultivars irrigated with treated industrial wastewater. Agric. Water Manag. 2009, 96, 616–626. [Google Scholar] [CrossRef]
- Bustan, A.; Avni, A.; Yermiyahu, U.; Ben-Gal, A.; Joseph, R.; Erel, R.; Zipori, I.; Dag, A. Interactions between fruit load and macroelement concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hortic. 2013, 152, 44–55. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effects of Irrigation with Treated Wastewater on Root and Fruit Mineral Elements of Chemlali Olive Cultivar. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Sdiri, W.; Dabbou, S.; Chehab, H.; Selvaggini, R.; Servili, M.; Di bella, G.; Ben Mansour, H. Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation. Agric. Water Manag. 2020, 236, 106124. [Google Scholar] [CrossRef]
- Sdiri, W.; Chehab, H.; Reyns, T.; Van Loco, J.; Mechri, B.; Boujnah, D.; Bua, G.D.; Ben Mansour, H.; Di Bella, G. Incidence of dairy wastewater on morphological and physiological comportment of Chemlali and Chetoui olive. Water Resour. Ind. 2018, 20, 29–36. [Google Scholar] [CrossRef]
- Chehab, H.; Issaoui, M.; Flamini, G.; Mechri, B.; Attia, F.; Luigi, C.P.; Boujnah, D.; Hammami, M. Oil quality and aroma composition of ‘Chemlali’ olive trees (Olea europaea L.). Afr. J. Agric. Res. 2013, 8, 6291–6299. [Google Scholar]
- Tekaya, M.; Mechri, B.; Chehab, H.; Attia, F.; Chraief, I.; Ayachi, M. Changes in the profiles of mineral elements, phenols, tocopherols and soluble carbohydrates of olive fruit following foliar nutrient fertilization. Food Sci. Technol. 2014, 59, 1047–1053. [Google Scholar] [CrossRef]
- Di Bella, G.; Naccari, C.; Bua, G.D.; Rastrelli, L.; Turco, V.L.; Potortì, A.G.; Dugo, G. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 2016, 67, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Bourazanis, G.; Roussos, P.A.; Argyrokastritis, I.; Kosmas, C.; Kerkides, P. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece. Agric. Water Manag. 2016, 163, 1–8. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M. The effect of waste water irrigation on the extra virgin olive oil quality from the Tunisian cultivar Chemlali. Sci. Hortic. 2010, 125, 556–561. [Google Scholar] [CrossRef]
- Seçmeler, Ö.; Galanakis, C.M. Olive Fruit and Olive Oil. In Innovations in Traditional Foods; Woodhead Publishing: Chania, Greece, 2019; pp. 193–220. [Google Scholar]
- Pedrero, F.; Camposeo, S.; Pace, B.; Cefola, M.; Vivaldi, G.A. Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy. Agric. Water Manag. 2018, 203, 186–192. [Google Scholar] [CrossRef]
- Patumi, M.; D’Andria, R.; Fontanazza, G.; Morelli, G.; Giorio, P.; Sorrentino, G. Yield and oil quality of intensively trained trees of three cultivars of olive (Olea europaea L.) under different irrigation regimes. J. Hortic. Sci. Biotechnol. 1999, 74, 729–737. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero, M.P.; Girona, J. L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv Arbequina) fruit grown under different irrigation regimes. J. Hortic. Sci. Biotechnol. 2002, 82, 892–898. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Patumi, M.; d’Andria, R.; Marsilio, V.; Fontanazza, G.; Morelli, G.; Lanza, B. Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes. Food Chem. 2002, 77, 27–34. [Google Scholar] [CrossRef]
- Ryan, D.; Robards, K. Critical review. Phenolic compounds in olives. Analyst 1998, 123, 31R. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside a review of its occurrence, biosynthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Kartas, A.; Chliyeh, M.; Touati, J.; Ouazzani, T.A.; Gaboun, F.; Benkirane, R.; Douira, A. Evaluation of oil richness or technological characteristics of introduced varieties and local types of olive trees (Olea europaea L.) grown in Ouazzane areas (Northern Morocco). Biolife 2015, 3, 499–507. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Chloride in soils and its uptake and movement within the plant: A review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef] [Green Version]
Parameters | CT | T1 | T2 |
---|---|---|---|
Fruit fresh weight (g) | 0.44 ± 0.02 (b) | 0.70 ± 0.002 (a) | 0.60 ± 0.09 (a) |
Pulp/stone ratio | 1.14 ± 0.20 (b) | 1.92 ± 0.31 (a) | 2.00 ± 0.50 (a) |
Fruit fresh stone weight (g) | 0.208 ± 0.007 (a) | 0.23 ± 0.02 (a) | 0.20 ± 0.01 (a) |
Pulp percentage (%) | 53.22 ± 4.15 (a) | 65.50 ± 4.00(a) | 65.60 ± 5.18 (a) |
Fruit dry pulp weight (g) | 0.13 ± 0.02 (a) | 0.15 ± 0.03 (a) | 0.15 ± 0.02 (a) |
Oil content (%) | 20.40 ± 5.01 (a) | 28.00 ± 2.30 (a) | 24.94 ± 0.90 (a) |
Water content (%) | 32.41 ± 4.53 (b) | 42.53 ± 2.40 (a) | 43.40 ± 3.14 (a) |
Phenol content (mg kg−1) | 19,809.52 ± 400.54 (a) | 10,746.70 ± 158.30 (b) | 16,761.90 ± 337.60 (ab) |
Compound | CT | T1 | T2 |
---|---|---|---|
Catechin-hydrate | 202.80 ± 30.70 (a) | 234.80 ± 20.50 (a) | 213.40 ± 12.15 (a) |
Tyrosol | 293.10 ± 12.90 (b) | 255.05 ± 14.40 (b) | 539.90 ± 5.81 (a) |
4-Hydroxy-Benzoic acid | 126.80 ± 3.60 (a) | 157.90 ± 2.15 (a) | 140 ± 9.80 (a) |
Luteolin-7-rutinoside | 204.70 ± 9.00 (a) | 134.70 ± 13.30 (a) | 145.70 ± 0.80 (a) |
Verbascoside | 341.90 ± 24.40 (a) | 398.80 ± 18.08 (a) | 466.10 ± 14.50 (a) |
Luteolin-7-glucoside | 145.80 ± 2.10 (b) | 203.30 ± 8.08 (b) | 391.30 ± 0.10 (a) |
Apigenin-7-glucoside | 159.50 ± 9.30 (c) | 287.40 ± 1 (a) | 233.90 ± 3.05 (b) |
Oleuropein | 306.80 ± 12.70 (b) | 797.20 ± 8.30 (a) | 741.80 ± 14.90 (a) |
Pinoresinol | 30.10 ± 1.60 (b) | 159.05 ± 6.40 (a) | 207.80 ± 9.70 (a) |
Element | CT | T1 | T2 |
---|---|---|---|
Na | 1164.74 ± 0.001 (c) | 1732.19 ± 0.003 (a) | 1682.04 ± 0.002 (b) |
Mg | 2095.91 ± 0.001 (b) | 1738.12 ± 0.002 (c) | 2102.94 ± 0.001 (a) |
P | 1820.62 ± 0.002 (a) | 1240.60 ± 0.001 (c) | 1424.15 ± 0.002 (b) |
K | 12,827.08 ± 0.01 (b) | 12,309.80 ± 0.002 (c) | 13,026.17 ± 0.002 (a) |
Ca | 1551.51 ± 0.003 (a) | 1025.34 ± 0.002 (c) | 1354.40 ± 0.001 (b) |
Mn | 18.407 ± 0.001 (a) | 12.82 ± 0.003 (c) | 14.80 ± 0.007 (b) |
Fe | 199.70 ± 0.002 (a) | 51.92 ± 0.003 (c) | 74.70 ± 0.60 (b) |
Cu | 43.80 ± 0.003 (b) | 52.30 ± 0.60 (a) | 32.53 ± 1.09 (c) |
Zn | 50.80 ± 0.10 (a) | 42.83 ± 0.15 (c) | 47.01 ± 0.81 (b) |
V | 0.704 ± 0.005 (a) | 0.51 ± 0.002 (c) | 0.60 ± 0.005 (b) |
Cr | 0.70 ± 0.005 (a) | 0.08 ± 0.005 (c) | 0.20 ± 0.002 (b) |
Co | 0.05 ± 0.005 (a) | 0.03 ± 0.01 (b) | 0.03 ± 0.005 (b) |
Ni | 0.30 ± 0.001 (c) | 0.806 ± 0.006 (a) | 0.40 ± 0.001 (b) |
As | 0.05 ± 0.002 (a) | 0.04 ± 0.003 (b) | 0.05 ± 0.001 (a) |
Se | 0.05 ± 0.002 (b) | 0.03 ± 0.001 (c) | 0.08 ± 0.004 (a) |
Cd | tr (a) | tr (a) | tr (a) |
Hg | 0.07 ± 0.001 (a) | 0.05 ± 0.001 (b) | 0.05 ± 0.001 (b) |
Pb | 0.44 ± 0.002 (a) | 0.30 ± 0.001 (c) | 0.402 ± 0.001 (b) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sdiri, W.; Dabbou, S.; Nava, V.; Di Bella, G.; Ben Mansour, H. Pomological Descriptors, Phenolic Compounds, and Chemical Monitoring in Olive Fruits Irrigated with Dairy Treated Wastewater. Chemosensors 2021, 9, 130. https://doi.org/10.3390/chemosensors9060130
Sdiri W, Dabbou S, Nava V, Di Bella G, Ben Mansour H. Pomological Descriptors, Phenolic Compounds, and Chemical Monitoring in Olive Fruits Irrigated with Dairy Treated Wastewater. Chemosensors. 2021; 9(6):130. https://doi.org/10.3390/chemosensors9060130
Chicago/Turabian StyleSdiri, Wiem, Samia Dabbou, Vincenzo Nava, Giuseppa Di Bella, and Hedi Ben Mansour. 2021. "Pomological Descriptors, Phenolic Compounds, and Chemical Monitoring in Olive Fruits Irrigated with Dairy Treated Wastewater" Chemosensors 9, no. 6: 130. https://doi.org/10.3390/chemosensors9060130
APA StyleSdiri, W., Dabbou, S., Nava, V., Di Bella, G., & Ben Mansour, H. (2021). Pomological Descriptors, Phenolic Compounds, and Chemical Monitoring in Olive Fruits Irrigated with Dairy Treated Wastewater. Chemosensors, 9(6), 130. https://doi.org/10.3390/chemosensors9060130