Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of PDA Assemblies
2.3. Characterization of PDA Assemblies and Steroid Hormones
2.4. Hormone Detection Tests Using Colorimetric Response (CR) and Fluorescence Measurement
2.5. T Hormone Detection Tests in Human Serum (1%)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J.P.; Chawanpaiboon, S.; Watananirun, K.; Lumbiganon, P.; Petzold, M.; Moller, A.-B.; Thinkhamrop, J.; Laopaiboon, M.; Seuc, A.H.; Hogan, D.; et al. Global, regional and national levels and trends of preterm birth rates for 1990 to 2014: Protocol for development of World Health Organization estimates. Reprod. Health 2016, 13, 76. [Google Scholar] [CrossRef] [Green Version]
- Peaceman, A.M.; Andrews, W.W.; Thorp, J.M.; Cliver, S.P.; Lukes, A.; Iams, J.D.; Coultrip, L.; Eriksen, N.; Holbrook, R.H.; Elliott, J.; et al. Fetal fibronectin as a predictor of preterm birth in patients with symptoms: A multicenter trial. Am. J. Obstet. Gynecol. 1997, 177, 13–18. [Google Scholar] [CrossRef]
- Dziadosz, M.; Bennett, T.-A.; Dolin, C.; West Honart, A.; Pham, A.; Lee, S.S.; Pivo, S.; Roman, A.S. Uterocervical angle: A novel ultrasound screening tool to predict spontaneous preterm birth. Am. J. Obstet. Gynecol. 2016, 215, 376.e1–376.e7. [Google Scholar] [CrossRef] [PubMed]
- Çekmez, Y.; Kıran, G.; Haberal, E.T.; Dizdar, M. Use of cervicovaginal PAMG-1 protein as a predictor of delivery within seven days in pregnancies at risk of premature birth. BMC Pregnancy Childbirth 2017, 17, 246. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Park, J.S.; Norwitz, E.R.; Kim, K.W.; Park, H.S.; Jun, J.K. Measurement of Placental Alpha-Microglobulin-1 in Cervicovaginal Discharge to Diagnose Rupture of Membranes. Obstet. Gynecol. 2007, 109, 634–640. [Google Scholar] [CrossRef]
- Honest, H. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: Systematic review. BMJ 2002, 325, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.; Städler, B. Recent Developments in Polydiacetylene-Based Sensors. Chem. Mater. 2019, 31, 1196–1222. [Google Scholar] [CrossRef]
- Kim, D.; Cao, Y.; Mariappan, D.; Bono, M.S.; Hart, A.J.; Marelli, B. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply Chain. Adv. Funct. Mater. 2021, 31, 2005370. [Google Scholar] [CrossRef]
- Son, S.U.; Seo, S.B.; Jang, S.; Choi, J.; Lim, J.; Lee, D.K.; Kim, H.; Seo, S.; Kang, T.; Jung, J.; et al. Naked-eye detection of pandemic influenza a (pH1N1) virus by polydiacetylene (PDA)-based paper sensor as a point-of-care diagnostic platform. Sens. Actuators B Chem. 2019, 291, 257–265. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, S.; Kim, J.-M. Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors. Chem. Soc. Rev. 2009, 38, 1958. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Oveissi, F.; Chandrawati, R.; Dehghani, F.; Naficy, S. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens. 2020, 5, 1921–1928. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, K.; Son, Y.; Chang, P.-S.; Kim, J.; Jung, H.-S. Design of a simple paper-based colorimetric biosensor using polydiacetylene liposomes for neomycin detection. Analyst 2018, 143, 4623–4629. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-Y.; Chen, X.; Yoon, J. Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets. Chem. Commun. 2016, 52, 9178–9196. [Google Scholar] [CrossRef]
- Oh, J.; Jeon, I.; Kim, D.; You, Y.; Baek, D.; Kang, S.J.; Lee, J. Highly Stable Upconverting Nanocrystal–Polydiacetylenes Nanoplates for Orthogonal Dual Signaling-Based Detection of Cyanide. ACS Appl. Mater. Interfaces 2020, 12, 4934–4943. [Google Scholar] [CrossRef]
- Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 2019, 11, 15659–15667. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, Q.; Zeng, Y.; Tang, D. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1. Microchim. Acta 2018, 185, 311. [Google Scholar] [CrossRef]
- Ren, R.; Cai, G.; Yu, Z.; Tang, D. Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron(II) chelation reaction with phenanthroline. Sens. Actuators B Chem. 2018, 265, 174–181. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB 1 to Enhance Photocurrent of Mn2+-Doped Zn3(OH)2V2O7 Nanobelts. Anal. Chem. 2017, 89, 11803–11810. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Jeong, J.; Park, M.; Lee, J.; An, S.; Cho, W.; Kim, S.; An, B.; Lee, K. Regulation of steroid hormones in the placenta and serum of women with preeclampsia. Mol. Med. Rep. 2018, 17, 2681–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, R.L.; Goepfert, A.R.; Ramsey, P.S. Biochemical markers for the prediction of preterm birth. Am. J. Obstet. Gynecol. 2005, 192, S36–S46. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, E.R.; Caughey, A.B. Progesterone supplementation and the prevention of preterm birth. Rev. Obstet. Gynecol. 2011, 4, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Holditch-Davis, D. Effects of Perinatal Testosterone on Infant Health, Mother–Infant Interactions, and Infant Development. Biol. Res. Nurs. 2014, 16, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Taieb, J.; Mathian, B.; Millot, F.; Patricot, M.-C.; Mathieu, E.; Queyrel, N.; Lacroix, I.; Somma-Delpero, C.; Boudou, P. Testosterone Measured by 10 Immunoassays and by Isotope-Dilution Gas Chromatography–Mass Spectrometry in Sera from 116 Men, Women, and Children. Clin. Chem. 2003, 49, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.; Hu, Y.; Choi, Y.; Jung, S. A dimyristoyl phosphatidylcholine/polydiacetylene biomimetic assembly for the selective screening of progesterone. J. Ind. Eng. Chem. 2018, 63, 288–295. [Google Scholar] [CrossRef]
- Jung, Y.K.; Park, H.G. Colorimetric polydiacetylene (PDA) liposome-based assay for rapid and simple detection of GST-fusion protein. Sens. Actuators B Chem. 2019, 278, 190–195. [Google Scholar] [CrossRef]
- Kim, C.; Lee, K. Polydiacetylene (PDA) Liposome-Based Immunosensor for the Detection of Exosomes. Biomacromolecules 2019, 20, 3392–3398. [Google Scholar] [CrossRef] [Green Version]
- Södergard, R.; Bäckström, T.; Shanbhag, V.; Carstensen, H. Calculation of free and bound fractions of testosterone and estradiol-17β to human plasma proteins at body temperature. J. Steroid Biochem. 1982, 16, 801–810. [Google Scholar] [CrossRef]
- Baker, M.E. Albumin’s role in steroid hormone action and the origins of vertebrates: Is albumin an essential protein? FEBS Lett. 1998, 439, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.-P.; Cho, E.; Lee, S.-C.; Kim, T.; Song, B.; Lee, I.-S.; Jung, S. Detection of Foot-and-Mouth Disease Virus Using a Polydiacetylene Immunosensor on Solid-Liquid Phase. Macromol. Mater. Eng. 2018, 303, 1700640. [Google Scholar] [CrossRef]
- Bae, S.J.; Choi, H.; Choi, J.S. Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application. Polym. Korea 2013, 37, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chang, H.T.; An, H.; Ahn, S.; Shim, J.; Kim, J.-M. A protective layer approach to solvatochromic sensors. Nat. Commun. 2013, 4, 2461. [Google Scholar] [CrossRef] [Green Version]
- Pumtang, S.; Siripornnoppakhun, W.; Sukwattanasinitt, M.; Ajavakom, A. Solvent colorimetric paper-based polydiacetylene sensors from diacetylene lipids. J. Colloid Interface Sci. 2011, 364, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Kim, S.; Ahn, D.J.; Joo, J.; Lee, G.S.; Park, D.H.; Kim, B.-H. Unusual enhancement of fluorescence and Raman scattering of core-shell nanostructure of polydiacetylene and Ag nanoparticle. Synth. Met. 2018, 236, 19–23. [Google Scholar] [CrossRef]
- André, C.; Jacquot, Y.; Truong, T.; Thomassin, M.; Robert, J.; Guillaume, Y. Analysis of the progesterone displacement of its human serum albumin binding site by β-estradiol using biochromatographic approaches: Effect of two salt modifiers. J. Chromatogr. B 2003, 796, 267–281. [Google Scholar] [CrossRef]
- Czub, M.P.; Venkataramany, B.S.; Majorek, K.A.; Handing, K.B.; Porebski, P.J.; Beeram, S.R.; Suh, K.; Woolfork, A.G.; Hage, D.S.; Shabalin, I.G.; et al. Testosterone meets albumin-the molecular mechanism of sex hormone transport by serum albumins. Chem. Sci. 2019, 10, 1607–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; An, S.-M.; Lim, E.-K.; Kim, S.-C.; An, B.-S.; Seo, S. Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes. Chemosensors 2021, 9, 176. https://doi.org/10.3390/chemosensors9070176
Jung J, An S-M, Lim E-K, Kim S-C, An B-S, Seo S. Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes. Chemosensors. 2021; 9(7):176. https://doi.org/10.3390/chemosensors9070176
Chicago/Turabian StyleJung, Jaewon, Sung-Min An, Eun-Kyung Lim, Seung-Chul Kim, Beum-Soo An, and Sungbaek Seo. 2021. "Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes" Chemosensors 9, no. 7: 176. https://doi.org/10.3390/chemosensors9070176
APA StyleJung, J., An, S. -M., Lim, E. -K., Kim, S. -C., An, B. -S., & Seo, S. (2021). Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes. Chemosensors, 9(7), 176. https://doi.org/10.3390/chemosensors9070176