Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication, Integration and Measurements
2.2. Heater Design
3. Results
3.1. Microwave CSRR Heater
3.2. Microwave Dielectric Sensing
3.3. Microwave Heating Experiments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kappe, C.O. My Twenty Years in Microwave Chemistry: From Kitchen Oven to Microwaves That Aren’t Microwaves. Chem. Rec. 2019, 19, 15–39. [Google Scholar] [CrossRef]
- Miralles, V.; Huerre, A.; Malloggi, F.; Jullien, M.-C. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics 2013, 3, 33–67. [Google Scholar] [CrossRef] [Green Version]
- Boybay, M.S.; Jiao, A.; Glawdel, T.; Ren, C.L. Microwave Sensing and Heating of Individual Droplets in Microfluidic Devices. Lab Chip 2013, 13, 3840–3846. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Choi, H.; Barrow, D.A.; Porch, A. Adaptive Coupling of Resonators for Efficient Microwave Heating of Microfluidics Systems. IEEE Trans. Microw. Theory Technol. 2015, 63, 3681–3690. [Google Scholar] [CrossRef]
- Markovic, T.; Bao, J.; Maenhout, G.; Ocket, I.; Nauwelaers, B. An Interdigital Capacitor for Microwave Heating at 25 GHz and Wideband Dielectric Sensing of nL Volumes in Continuous Microfluidics. Sensors 2019, 19, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issadore, D.; Humphry, K.J.; Brown, K.A.; Sandberg, L.; Weitz, D.A.; Westervelt, R.M. Microwave Dielectric Heating of Drops in Microfluidic Devices. Lab Chip 2009, 9, 1701–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaneuf, C.R.; Oh, K.; Pak, N.; Saunders, D.C.; Conrardy, C.; Landers, J.P.; Tong, S.; Forest, C.R. Sensitive, Microliter PCR with Consensus Degenerate Primers for Epstein Barr Virus Amplification. Biomed. Microdevices 2016, 15, 221–231. [Google Scholar] [CrossRef]
- Wang, J.; Chao, P.H.; Hanet, S.; van Dam, R.M. Performing Multi-Step Chemical Reactions in Microliter-Sized Droplets by Leveraging a Simple Passive Transport Mechanism. Lab Chip 2019, 17, 4342–4355. [Google Scholar] [CrossRef] [PubMed]
- Markovic, T.; Ocket, I.; Baric, A.; Nauwelaers, B. Design and Comparison of Resonant and Non-Resonant Single-Layer Microwave Heaters for Continuous Flow Microfluidics in Silicon-Glass Technology. Energies 2020, 13, 2635. [Google Scholar] [CrossRef]
- Markovic, T.; Ocket, I.; Jones, B.; Nauwelaers, B. Characterization of a Novel Microwave Heater for Continuous Flow Microfluidics Fabricated on High-Resistivity Silicon. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar]
- Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Impingement Cooling. Lab Chip 2010, 10, 1725–1728. [Google Scholar] [CrossRef]
- Marchiarullo, D.J.; Sklavounos, A.H.; Oh, K.; Poe, B.L.; Barker, N.S.; Landers, J.P. Low-Power Microwave-Mediated Heating for Microchip-Based PCR. Lab Chip 2013, 13, 3417–3425. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.J.; Naylon, J.; Gooding, S.; John, C.; Squires, O.; Lees, J.; Barrow, D.A.; Porch, A. Efficient Microwave Heating on Microfluidic Systems. Sens. Actuators B Chem. 2013, 181, 904–909. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Fontgalland, G.; Roger, L.L.; Loschi, H. PCB-Integrated Non-Destructive Microwave Sensor for Liquid Dielectric Spectroscopy Based on Planar Metamaterial Resonator. Sens. Actuators A Phys. 2020, 312, 112112. [Google Scholar] [CrossRef]
- Oliveira, J.G.D.; Pinto, E.N.M.G.; Silva Neto, V.P.; Assuncao, A.G.D. CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination. Sensors 2020, 20, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadat-Safa, M.; Nayyeri, V.; Khanjarian, M.; Soleimani, M.; Ramahi, O.M. A CSRR-Based Sensor for Full Characterization of Magneto-Dielectric Materials. IEEE Trans. Microw. Theory Technol. 2019, 67, 806–814. [Google Scholar] [CrossRef]
- Alotaibi, S.A.; Cui, Y.; Tentzeris, M.M. CSRR Based Sensors for Relative Permittivity Measurement with Improved and Uniform Sensitivity Throughout [0.9–10.9] GHz Band. IEEE Sens. J. 2020, 20, 4667–4678. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 2013, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Jha, A.K.; Akhter, Z.; Akhtar, M.J. Multi-Band RF Planar Sensor Using Complementary Split-Ring Resonator for Testing of Dielectric Materials. IEEE Sens. J. 2018, 18, 6596–6606. [Google Scholar] [CrossRef]
- Ansari, M.A.; Jha, A.K.; Akhtar, M.J. Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity. IEEE Sens. J. 2015, 15, 7181–7189. [Google Scholar] [CrossRef]
- Lee, C.S.; Yang, C.L. Thickness and Permittivity Measurement in Multi-Layered Dielectric Structures Using Complementary Split-Ring Resonators. IEEE Sens. J. 2013, 14, 695–700. [Google Scholar] [CrossRef]
- Reimann, C.; Puentes, M.; Maasch, M.; Hübner, F.; Bazrafshan, B.; Vogl, T.J.; Damm, C.; Jakoby, R. Planar Microwave Sensor for Theranostic Therapy of Organic Tissue Based on Oval Split Ring Resonators. Sensors 2016, 16, 1450. [Google Scholar] [CrossRef] [Green Version]
- Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. Complementary Split-Ring Resonator with Improved Dielectric Spatial Resolution. IEEE Sens. J. 2021, 21, 4543–4552. [Google Scholar] [CrossRef]
- Reimann, C.; Puentes, M.; Schußler, M.; Jakoby, R. Design and Realization of a Microwave Applicator for Diagnosis and Thermal Ablation Treatment of Cancerous Tissue. In Proceedings of the 10th German Microwave Conference, Bochum, Germany, 14–16 March 2016. [Google Scholar]
- Puentes, M.; Maasch, M.; Schüssler, M.; Damm, C.; Jakoby, R. Analysis of Resonant Particles in a Coplanar Microwave Sensor Array for Thermal Ablation of Organic Tissue. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS), Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Puentes, M.; Bashir, F.; Schußler, M.; Jakoby, R. Dual Mode Microwave Tool for Dielectric Analysis and Thermal Ablation Treatment of Organic Tissue. Proceeding of the 34th Annual International conference of the IEEE EMBS, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Puentes, M.; Bashir, F.; Maasch, M.; Schüßler, M.; Jakoby, R. Planar Microwave Sensor for Thermal Ablation of Organic Tissue. In Proceedings of the 43rd European Microwave Conference, Nuremberg, Germany, 7–10 October 2013. [Google Scholar]
- Markovic, T.; Bao, J.; Ocket, I.; Kil, D.; Brancato, L.; Puers, R.; Nauwelaers, B. Uniplanar Microwave Heater for Digital Microfluidics. In Proceedings of the 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), Gothenburg, Sweden, 15–17 May 2017. [Google Scholar]
- Shah, J.J.; Gaitan, M.; Geist, J. Generalized Temperature Measurement Equations for Rhodamine B Dye Solution and Its Application to Microfluidics. Anal. Chem. 2009, 81, 8260–8263. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.; Martin, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications; Wiley-InterScience: Hoboken, NJ, USA, 2013. [Google Scholar]
- Baena, J.D.; Bonache, J.; Martín, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F.; et al. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Trans. Microw. Theory Technol. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
University | Topology | f GHz | P W | V µL | ΔT/Δt °C/s | Other |
---|---|---|---|---|---|---|
KU Leuven | TL [9,10] | 25 | 1.58 | 0.465 | 16 | Si manufacturing. |
KU Leuven | TL [9] | 25 | 1.58 | 0.315 | 24 | Si manufacturing. |
University of Hull | Cavity [11] | 8 | 20 | 0.7 | 65 | Bulk cavity. |
University of Virginia | TL [12] | 5.5 | 1.7 | 1.3 | 40 | Matching network and one port device. |
Cardiff University | Cavity [13] | 2.45 | 2 | 20 | 10 | Bulk cavity. Complete chip heating. |
KU Leuven | Planar resonator | 2.5 | 1 | 2.45 | 4 | PCB manufacturing. Optical inspection- and cascading-ready. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovic, T.; Maenhout, G.; Martinic, M.; Nauwelaers, B. Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics. Chemosensors 2021, 9, 184. https://doi.org/10.3390/chemosensors9070184
Markovic T, Maenhout G, Martinic M, Nauwelaers B. Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics. Chemosensors. 2021; 9(7):184. https://doi.org/10.3390/chemosensors9070184
Chicago/Turabian StyleMarkovic, Tomislav, Gertjan Maenhout, Matko Martinic, and Bart Nauwelaers. 2021. "Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics" Chemosensors 9, no. 7: 184. https://doi.org/10.3390/chemosensors9070184
APA StyleMarkovic, T., Maenhout, G., Martinic, M., & Nauwelaers, B. (2021). Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics. Chemosensors, 9(7), 184. https://doi.org/10.3390/chemosensors9070184