Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing Process
2.2. Characterization
3. Results
3.1. Speed and Resolution
3.2. Thickness and Roughness
3.3. DC Characterization
3.4. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad. Hoc. Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Perera, C.; Liu, C.H.; Jayawardena, S. The emerging internet of things marketplace from an industrial perspective: A survey. IEEE Trans. Emerg. Top. Comput. 2015, 3, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Perelaer, J.; Smith, P.J.; Mager, D.; Soltman, D.; Volkman, S.K.; Subramanian, V.; Korvink, J.G.; Schubert, U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010, 20, 8446–8453. [Google Scholar] [CrossRef]
- Suganuma, K. Introduction to Printed Electronics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; Volume 74. [Google Scholar]
- Cantatore, E. Applications of organic and printed electronics. In A Technology-Enabled Revolution; Springer Science + Business Media: New York, NY, USA, 2013; p. 180. [Google Scholar]
- Li, Z.; Liu, H.; Ouyang, C.; Hong Wee, W.; Cui, X.; Jian Lu, T.; Pingguan-Murphy, B.; Li, F.; Xu, F. Recent Advances in Pen-Based Writing Electronics and their Emerging Applications. Adv. Funct. Mater. 2016, 26, 165–180. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; López-Villanueva, J.A. Recent Advances in Printed Capacitive Sensors. Micromachines 2020, 11, 367. [Google Scholar] [CrossRef] [Green Version]
- Romero, F.J.; Rivadeneyra, A.; Salinas-Castillo, A.; Ohata, A.; Morales, D.P.; Becherer, M.; Rodriguez, N. Design, fabrication and characterization of capacitive humidity sensors based on emerging flexible technologies. Sens. Actuators B Chem. 2019, 287, 459–467. [Google Scholar] [CrossRef]
- Alkin, K.; Stockinger, T.; Zirkl, M.; Stadlober, B.; Bauer-Gogonea, S.; Kaltenbrunner, M.; Bauer, S.; Müller, U.; Schwödiauer, R. Paper-based printed impedance sensors for water sorption and humidity analysis. Flex. Print. Electron. 2017, 2, 014005. [Google Scholar] [CrossRef] [Green Version]
- Colella, R.; Chietera, F.; Catarinucci, L.; Salmeron, J.; Rivadeneyra, A.; Carvajal, M.; Palma, A.; Capitán-Vallvey, L. Fully 3D-Printed RFID Tags based on Printable Metallic Filament: Performance Comparison with other Fabrication Techniques. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 253–257. [Google Scholar]
- Colella, R.; Rivadeneyra, A.; Palma, A.J.; Tarricone, L.; Capitan-Vallvey, L.F.; Catarinucci, L.; Salmeron, J.F. Comparison of Fabrication Techniques for Flexible UHF RFID Tag Antennas [Wireless Corner]. IEEE Antennas Propag. Mag. 2017, 59, 159–168. [Google Scholar] [CrossRef]
- Ishida, K.; Huang, T.-C.; Honda, K.; Shinozuka, Y.; Fuketa, H.; Yokota, T.; Zschieschang, U.; Klauk, H.; Tortissier, G.; Sekitani, T. Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J. Solid-State Circuits 2013, 48, 255–264. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, X.; Ge, T.; Zhou, J. Fully printed electronics on flexible substrates: High gain amplifiers and DAC. Org. Electron. 2014, 15, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Kurra, N.; Dutta, D.; Kulkarni, G.U. Field effect transistors and RC filters from pencil-trace on paper. Phys. Chem. Chem. Phys. 2013, 15, 8367–8372. [Google Scholar] [CrossRef]
- Lin, C.-W.; Zhao, Z.; Kim, J.; Huang, J. Pencil drawn strain gauges and chemiresistors on paper. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Li, H.; Liu, J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 2012, 7, e45485. [Google Scholar] [CrossRef]
- Russo, A.; Ahn, B.Y.; Adams, J.J.; Duoss, E.B.; Bernhard, J.T.; Lewis, J.A. Pen-on-paper flexible electronics. Adv. Mater. 2011, 23, 3426–3430. [Google Scholar] [CrossRef]
- Han, Y.L.; Hu, J.; Genin, G.M.; Lu, T.J.; Xu, F. BioPen: Direct writing of functional materials at the point of care. Sci. Rep. 2014, 4, 4872. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon nanotube ink for writing on cellulose paper. Mater. Res. Bull. 2014, 50, 249–253. [Google Scholar] [CrossRef]
- Warren, H.; Gately, R.D.; Moffat, H.N. Conducting carbon nanofibre networks: Dispersion optimisation, evaporative casting and direct writing. RSC Adv. 2013, 3, 21936–21942. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Luo, M.; Hu, L.; Zhou, Y.; Jiang, S.; Song, H.; Ye, R.; Chen, J.; Gao, L.; Tang, J. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J. Alloy. Compd. 2014, 596, 73–78. [Google Scholar] [CrossRef]
- Gimenez, A.J.; Yanez-Limon, J.; Seminario, J.M. ZnO− paper based photoconductive UV sensor. J. Phys. Chem. C 2010, 115, 282–287. [Google Scholar] [CrossRef]
- ul Hasan, K.; Nur, O.; Willander, M. Screen printed ZnO ultraviolet photoconductive sensor on pencil drawn circuitry over paper. Appl. Phys. Lett. 2012, 100, 211104. [Google Scholar] [CrossRef] [Green Version]
- Mirica, K.A.; Weis, J.G.; Schnorr, J.M.; Esser, B.; Swager, T.M. Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 2012, 51, 10740–10745. [Google Scholar] [CrossRef] [Green Version]
- Frazier, K.M.; Mirica, K.A.; Walish, J.J.; Swager, T.M. Fully-drawn carbon-based chemical sensors on organic and inorganic surfaces. Lab Chip 2014, 14, 4059–4066. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, H.; Liu, J. Directly writing resistor, inductor and capacitor to composite functional circuits: A super-simple way for alternative electronics. PLoS ONE 2013, 8, e69761. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, M. Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Appl. Surf. Sci. 2014, 290, 240–245. [Google Scholar] [CrossRef]
- Devi, K.C.; Angadi, B.; Mahesh, H. Multiwalled carbon nanotube-based patch antenna for bandwidth enhancement. Mater. Sci. Eng. B 2017, 224, 56–60. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Hu, J.; Wee, W.H.; Han, Y.L.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst 2015, 140, 5526–5535. [Google Scholar] [CrossRef]
- Kano, S.; Fujii, M. All-painting process to produce respiration sensor using humidity-sensitive nanoparticle film and graphite trace. ACS Sustain. Chem. Eng. 2018, 6, 12217–12223. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, J.; Liu, J. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 2013, 8, e58771. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mo, S.; Shang, S.; Wang, P.; Zhao, W.; Li, L. Handwriting flexible electronics: Tools, materials and emerging applications. J. Sci. Adv. Mater. Devices 2020, 5, 451–467. [Google Scholar] [CrossRef]
- Soum, V.; Cheong, H.; Kim, K.; Kim, Y.; Chuong, M.; Ryu, S.R.; Yuen, P.K.; Kwon, O.-S.; Shin, K. Programmable Contact Printing Using Ballpoint Pens with a Digital Plotter for Patterning Electrodes on Paper. Acs Omega 2018, 3, 16866–16873. [Google Scholar] [CrossRef]
- Albrecht, A.; Rivadeneyra, A.; Abdellah, A.; Lugli, P.; Salmerón, J.F. Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns. J. Mater. Chem. C 2016, 4, 3546–3554. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Bobinger, M.; Albrecht, A.; Becherer, M.; Lugli, P.; Falco, A.; Salmerón, J.F. Cost-effective PEDOT: PSS Temperature Sensors Inkjetted on a Bendable Substrate by a Consumer Printer. Polymers 2019, 11, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loghin, F.C.; Falco, A.; Salmeron, J.F.; Lugli, P.; Abdellah, A.; Rivadeneyra, A. Fully transparent gas sensor based on Carbon Nanotubes. Sensors 2019, 19, 4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhalim, A.; Winkler, M.; Loghin, F.; Zeiser, C.; Lugli, P.; Abdellah, A. Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles. Sens. Actuators B Chem. 2015, 220, 1288–1296. [Google Scholar] [CrossRef]
- Moon, Y.J.; Kang, H.; Lee, S.H.; Kang, K.; Cho, Y.J.; Hwang, J.Y.; Moon, S.J. Effect of contact angle and drop spacing on the bulging frequency of inkjet-printed silver lines on FC-coated glass. J. Mech. Sci. Technol. 2014, 28, 1441–1448. [Google Scholar] [CrossRef]
- Loghin, F.C.; Falco, A.; Albrecht, A.; Salmerón, J.F.; Becherer, M.; Lugli, P.; Rivandeneyra, A. A Handwriting Method for Low-Cost Gas Sensors. ACS Appl. Mater. Interfaces 2018, 10, 34683–34689. [Google Scholar] [CrossRef]
- Abdelhalim, A.; Falco, A.; Loghin, F.; Lugli, P.; Salmerón, J.F.; Rivadeneyra, A. Flexible NH3 sensor based on spray deposition and inkjet printing. In Proceedings of the SENSORS, 2016 IEEE, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Falco, A.; Rivadeneyra, A.; Loghin, F.C.; Salmerón, J.F.; Lugli, P.; Abdelhalim, A. Towards Low-Power Electronics: Self-Recovering and Flexible Gas Sensors. J. Mater. Chem. A 2018, 6, 7107–7113. [Google Scholar] [CrossRef]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B Chem. 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Salmerón, J.F.; Molina-Lopez, F.; Briand, D.; Ruan, J.J.; Rivadeneyra, A.; Carvajal, M.A.; Capitán-Vallvey, L.; de Rooij, N.F.; Palma, A.J. Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas. J. Electron. Mater. 2014, 43, 604–617. [Google Scholar] [CrossRef]
Writing Speed | Average Width | Width Std. | Top Edge Std. | Bottom Edge Std. |
---|---|---|---|---|
10 (mm/s) | 293 µm | 5 µm (1.70%) | 6 µm (2.05%) | 7 µm (2.39%) |
25 (mm/s) | 239 µm | 8 µm (3.34%) | 11 µm (4.60%) | 10 µm (4.18%) |
50 (mm/s) | 235 µm | 9 µm (3.83%) | 13 µm (5.53%) | 13 µm (5.53%) |
75 (mm/s) | 237 µm | 7 µm (2.95%) | 13 µm (5.49%) | 15 µm (6.33%) |
100 (mm/s) | 228 µm | 8 µm (3.51%) | 7 µm (3.07%) | 8 µm (3.51%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loghin, F.C.; Salmerón, J.F.; Lugli, P.; Becherer, M.; Falco, A.; Rivadeneyra, A. Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors. Chemosensors 2021, 9, 264. https://doi.org/10.3390/chemosensors9090264
Loghin FC, Salmerón JF, Lugli P, Becherer M, Falco A, Rivadeneyra A. Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors. Chemosensors. 2021; 9(9):264. https://doi.org/10.3390/chemosensors9090264
Chicago/Turabian StyleLoghin, Florin C., José F. Salmerón, Paolo Lugli, Markus Becherer, Aniello Falco, and Almudena Rivadeneyra. 2021. "Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors" Chemosensors 9, no. 9: 264. https://doi.org/10.3390/chemosensors9090264
APA StyleLoghin, F. C., Salmerón, J. F., Lugli, P., Becherer, M., Falco, A., & Rivadeneyra, A. (2021). Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors. Chemosensors, 9(9), 264. https://doi.org/10.3390/chemosensors9090264