Reduced Hippocampal Volumes in Children with History of Hypoxic Ischemic Encephalopathy after Therapeutic Hypothermia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment
2.2. Developmental Testing
2.3. MRI Acquisition and Processing
2.4. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Participant Characteristics
3.3. Brain Volumes
3.4. Developmental Testing
3.5. Correlations between Neonatal and 5-Year Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum. Dev. 2010, 86, 329–338. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef]
- Azzopardi, D.; Strohm, B.; Marlow, N.; Brocklehurst, P.; Deierl, A.; Eddama, O.; Goodwin, J.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N. Engl. J. Med. 2014, 371, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Pappas, A.; Shankaran, S.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Ehrenkranz, R.A.; Tyson, J.E.; Yolton, K.; Das, A.; Bara, R.; et al. Cognitive outcomes after neonatal encephalopathy. Pediatrics 2015, 135, e624–e634. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, G.; Pappas, A.; Shankaran, S. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin. Perinatol. 2016, 40, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finder, M.; Boylan, G.B.; Twomey, D.; Ahearne, C.; Murray, D.M.; Hallberg, B. Two-year neurodevelopmental outcomes after mild hypoxic ischemic encephalopathy in the era of therapeutic hypothermia. JAMA Pediatr. 2020, 174, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gadian, D.G.; Aicardi, J.; Watkins, K.E.; Porter, D.A.; Mishkin, M.; Vargha-Khadem, F. Developmental amnesia associated with early hypoxic-ischaemic injury. Brain 2000, 123, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annink, K.V.; de Vries, L.S.; Groenendaal, F.; van den Heuvel, M.P.; van Haren, N.E.M.; Swaab, H.; van Handel, M.; Jongmans, M.J.; Benders, M.J.; van der Aa, N.E. The long-term effect of perinatal asphyxia on hippocampal volumes. Pediatr. Res. 2019, 85, 43–49. [Google Scholar] [CrossRef]
- Lindström, K.; Lagerroos, P.; Gillberg, C.; Fernell, E. Teenage outcome after being born at term with moderate neonatal encephalopathy. Pediatr. Neurol. 2006, 35, 268–274. [Google Scholar] [CrossRef]
- Mañeru, C.; Serra-Grabulosa, J.M.; Junqué, C.; Salgado-Pineda, P.; Bargalló, N.; Olondo, M.; Botet-Mussons, F.; Tallada, M.; Mercader, J.M. Residual hippocampal atrophy in asphyxiated term neonates. J. Neuroimaging 2003, 13, 68–74. [Google Scholar] [CrossRef]
- van Handel, M.; de Sonneville, L.; de Vries, L.S.; Jongmans, M.J.; Swaab, H. Specific memory impairment following neonatal encephalopathy in term-born children. Dev. Neuropsychol. 2012, 37, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Annink, K.V.; de Vries, L.S.; Groenendaal, F.; Eijsermans, R.M.J.C.; Mocking, M.; van Schooneveld, M.M.J.; Dudink, J.; van Straaten, H.L.M.; Benders, M.J.N.L.; Lequin, M.; et al. Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy. Sci. Rep. 2021, 11, 5017–5028. [Google Scholar] [CrossRef] [PubMed]
- Pfister, K.M.; Zhang, L.; Miller, N.C.; Hultgren, S.; Boys, C.J.; Georgieff, M.K. ERP evidence of preserved early memory function in term infants with neonatal encephalopathy following therapeutic hypothermia. Pediatr. Res. 2016, 80, 800–808. [Google Scholar] [CrossRef]
- Vargha-Khadem, F.; Salmond, C.H.; Watkins, K.E.; Friston, K.J.; Gadian, D.G.; Mishkin, M. Developmental Amnesia: Effect of age at injury. Proc. Natl. Acad. Sci. USA 2003, 100, 10055–10060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargha-Khadem, F.; Gadian, D.G.; Watkins, K.E.; Connelly, A.; Van Paesschen, W.; Mishkin, M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 1997, 277, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Bregant, T.; Rados, M.; Vasung, L.; Derganc, M.; Evans, A.C.; Neubauer, D.; Kostovic, I. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy. Eur. J. Paediatr. Neurol. 2013, 17, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Aanes, S.; Bjuland, K.J.; Sripada, K.; Sølsnes, A.E.; Grunewaldt, K.H.; Håberg, A.; Løhaugen, G.C.; Skranes, J. Reduced hippocampal subfield volumes and memory function in school-aged children born preterm with very low birthweight (VLBW). Neuroimage Clin. 2019, 23, 101857. [Google Scholar] [CrossRef]
- Zorn, E.P.; Zhang, L.; Sandness, K.; Miller, N.; Riggins, T.; Georgieff, M.K.; Pfister, K.M. Preserved speed of processing and memory in infants with a history of moderate neonatal encephalopathy treated with therapeutic hypothermia. J. Perinatol. 2018, 38, 1666–1673. [Google Scholar] [CrossRef]
- Committee on Fetus and Newborn. Hypothermia and neonatal encephalopathy. Pediatrics 2014, 133, 1146–1150. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.E.; Augustinack, J.C.; Nguyen, K.; Player, C.M.; Player, A.; Wright, M.; Roy, N.; Frosch, M.P.; McKee, A.C.; Wald, L.L.; et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage Clin. 2015, 115, 117–137. [Google Scholar] [CrossRef]
- Piesova, M.; Mach, M. Impact of perinatal hypoxia on the developing brain. Physiol. Res. 2020, 69, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.; Lim, S.; Kang, E.; Furmanski, O.; Song, H.; Ryu, Y.K.; Mintz, C.D. Effects of neonatal hypoxic-ischemic injury and hypothermic neuroprotection on neural progenitor cells in the mouse hippocampus. Dev. Neurosci. 2015, 37, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Chen, L.X.; Ma, S.M.; Yang, Y.; Zhou, W.H. Short-term effects of hypothermia on axonal injury, preoligodendrocyte accumulation and oligodendrocyte myelination after hypoxia-ischemia in the hippocampus of immature rat brain. Dev. Neurosci. 2013, 35, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Goffigan-Holmes, J.; Sanabria, D.; Diaz, J.; Flock, D.; Chavez-Valdez, R. Calbindin-1 expression in the hippocampus following neonatal hypoxia-ischemia and therapeutic hypothermia and deficits in spatial memory. Dev. Neurosci. 2018, 40, 508–522. [Google Scholar] [CrossRef]
- Chavez-Valdez, R.; Emerson, P.; Goffigan-Holmes, J.; Kirkwood, A.; Martin, L.J.; Northington, F.J. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model. Hippocampus 2018, 28, 617–630. [Google Scholar] [CrossRef]
- Kasdorf, E.; Engel, M.; Heier, L.; Perlman, J.M. Therapeutic hypothermia in neonates and selective hippocampal injury on diffusion-weighted magnetic resonance imaging. Pediatr. Neurol. 2014, 51, 104–108. [Google Scholar] [CrossRef]
- Soontornniyomkij, V.; Risbrough, V.B.; Young, J.W.; Soontornniyomkij, B.; Jeste, D.V.; Achim, C.L. Hippocampal calbindin-1 immunoreactivity correlate of recognition memory performance in aged mice. Neurosci. Lett. 2012, 10, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, A.; Howidi, B.; Shi, M.Z.; Tugarinov, N.; Khoja, Z.; Wintermark, P. Sildenafil improves hippocampal brain injuries and restores neuronal development after neonatal hypoxia-ischemia in male rat pups. Sci. Rep. 2021, 11, 22046. [Google Scholar] [CrossRef]
- Saw, C.L.; Rakshasbhuvankar, A.; Rao, S.; Bulsara, M.; Patole, S. Current Practice of Therapeutic Hypothermia for Mild Hypoxic Ischemic Encephalopathy. J. Child. Neurol. 2019, 34, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Mietzsch, U.; DiGeronimo, R.; Hamrick, S.E.; Dizon, M.L.V.; Lee, K.S.; Natarajan, G.; Yanowitz, T.D.; Peeples, E.S.; Flibotte, J.; et al. Utilization of Therapeutic Hypothermia and Neurological Injury in Neonates with Mild Hypoxic-Ischemic Encephalopathy: A Report from Children’s Hospital Neonatal Consortium. Am. J. Perinatol. 2022, 39, 319–328. [Google Scholar] [CrossRef]
- Biswal, S.; Sharma, D.; Kumar, K.; Nag, T.C.; Barhwal, K.; Hota, S.K.; Kumar, B. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging. Neurobiol. Learn. Mem. 2016, 133, 157–170. [Google Scholar] [CrossRef] [PubMed]
Participant Characteristics | HIE (n = 10) | Control (n = 8) |
---|---|---|
Age at follow-up MRI, years | 5.08 (5.02–5.42) | 5.13 (4.96–5.58) |
Birth gestational age, weeks | 39.7 (39.0–40.5) | 39.3 (38.9–39.6) |
Birth weight, kg | 3.69 (3.48–4.02) | 3.6 (3.23–3.66) |
Sex, Male | 6 (60) | 4 (50) |
Cesarian section birth a | 3 (30) | 4 (57) |
Mother’s age at birth, years | 31 (25–34) | 33.5 (30.8–36.3) |
Mother’s education, >HS | 9 (90) | 7 (87.5) |
1 min Apgar score | 1.5 (1–2) * | 8 (7.75–8.25) |
5 min Apgar score | 4 (3–5) * | 9 (9–9) |
Sarnat score | 2 (1.25–2) | |
Initial pH b | 6.98 (6.92–7.05) | |
Newborn MRI abnormal | 7 (70) | |
Newborn EEG abnormal | 4 (44) | |
Newborn seizures | 3 (30) |
Test | HIE (n = 10) | Control (n = 8) | ||
---|---|---|---|---|
Median | IQR | Median | IQR | |
WPPSI | ||||
Full scale IQ | 98.5 | (84–106) | 109 | (101–114) |
Visual spatial | 94 * | (91–97) | 109 | (102–110) |
Working memory | 100 | (90–108) | 98.5 | (94–104) |
Processing speed | 103 | (87–106) | 95.5 | (91–97) |
Fluid reasoning | 97 | (94–112) | 111.5 | (96–117) |
Verbal comprehension | 94.5 | (84–109) | 117 | (113–123) |
NEPSY-II | ||||
Sentence recall | 9.5 | (8–11) | 11.5 | (9–15) |
Narrative memory | 11 | (7–13) | 10.5 | (10–13) |
Comprehension of instructions | 11.5 | (9–14) | 14 | (12–14) |
BRIEF-P | ||||
Global executive function | 42 | (35–49) | 48 | (42–52) |
Inhibit | 41 | (37–49) | 52.5 | (44–56) |
Shift | 43 | (42–54) | 40 | (40–44) |
Plan/organize | 43 | (34–49) | 48.5 | (40–54) |
Emotional control | 43 | (36–46) | 46 | (38–51) |
Working memory | 42 | (38–58) | 44 | (41–50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfister, K.M.; Stoyell, S.M.; Miller, Z.R.; Hunt, R.H.; Zorn, E.P.; Thomas, K.M. Reduced Hippocampal Volumes in Children with History of Hypoxic Ischemic Encephalopathy after Therapeutic Hypothermia. Children 2023, 10, 1005. https://doi.org/10.3390/children10061005
Pfister KM, Stoyell SM, Miller ZR, Hunt RH, Zorn EP, Thomas KM. Reduced Hippocampal Volumes in Children with History of Hypoxic Ischemic Encephalopathy after Therapeutic Hypothermia. Children. 2023; 10(6):1005. https://doi.org/10.3390/children10061005
Chicago/Turabian StylePfister, Katie M., Sally M. Stoyell, Zachary R. Miller, Ruskin H. Hunt, Elizabeth P. Zorn, and Kathleen M. Thomas. 2023. "Reduced Hippocampal Volumes in Children with History of Hypoxic Ischemic Encephalopathy after Therapeutic Hypothermia" Children 10, no. 6: 1005. https://doi.org/10.3390/children10061005
APA StylePfister, K. M., Stoyell, S. M., Miller, Z. R., Hunt, R. H., Zorn, E. P., & Thomas, K. M. (2023). Reduced Hippocampal Volumes in Children with History of Hypoxic Ischemic Encephalopathy after Therapeutic Hypothermia. Children, 10(6), 1005. https://doi.org/10.3390/children10061005