Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection and Measurement
2.3. Data Analysis
2.3.1. Data Acquisition
2.3.2. Data Preprocessing
- Different frame numbers (i.e., video duration)
- Different video visual angles
- Different infant positions in videos (i.e., coordinates)
2.3.3. Data Fuzzifying Learning
2.4. Empirical Evaluation
2.4.1. Experiment Design
2.4.2. Evaluation Metrics
2.5. Implementation Details
- Step 1. Python’s OpenCV package, named cv2, is used to capture all videos into image frames.
- Step 2. The video frame numbers are standardized by removing some or all even image frames, where the standard number is the minimum frame number in all videos.
- Step 3. The Deep-Dual-Consecutive Network (DcPose) [34] is employed to retrieve 2D skeleton key points of infants from image frames.
- Step 4. EvoSkeleton [35] is adopted to infer the 3D skeleton key points of the 2D key points.
- Step 5. The 3D skeleton key points ae rotated into the required visual angles for an assessment using Equation (1).
- Step 6. The rotated 3D skeleton key points are projected onto the XY plane to retrieve new 2D skeleton key points by removing the Z-axis data.
- Step 7. The x and y coordinates of the new 2D skeleton key points are normalized into 0 and 1 using Equation (2).
- Step 8. The training set is separated into three subsets according to the PTS levels 0, 1, and 3.
- Step 9. For each PTS level label, x and y fuzzy MFs are built for thirteen skeleton key points using Equations (3) and (4). This will result in three PTS level models, each of which has 26 MF sets.
- Step 10. For each testing instance, the final possibilities (fps) are computed in the three PTS level models using Equations (5)–(7).
- Step 11. The TPS level labels of the testing instances are determined by their maximum fp.
- Step 12. The accuracy, sensitivity, specificity, and kappa evaluation metrics for the testing result are calculated using Equations (8)–(10) and the “cohen_kappa_score” function in the “sklearn” package.
- Step 13. Steps 8 to 12 are repeated until a five-fold stratified cross-validation is performed.
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDs | developmental disabilities |
CP | cerebral palsy |
GMA | general movement assessment |
HINE | Hammersmith Infant Neurologic Examination |
AIMS | Alberta Infants Motor Scale |
AI | artificial intelligence |
LMICs | low-income and middle-income countries |
HPE | Human-Pose-Estimation |
SDGs | Sustainable Development Goals |
GAN | generative adversarial network |
References
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental potential in the first 5 years for children in developing countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Abuga, J.A.; Kariuki, S.M.; Kinyanjui, S.M.; Boele van Hensbroek, M.; Newton, C.R. Premature Mortality, Risk Factors, and Causes of Death Following Childhood-Onset Neurological Impairments: A Systematic Review. Front. Neurol. 2021, 12, 627824. [Google Scholar] [CrossRef] [PubMed]
- Vitrikas, K.; Savard, D.; Bucaj, M. Developmental Delay: When and How to Screen. Am. Fam. Physician 2017, 96, 36–43. [Google Scholar] [PubMed]
- Chen, H.-J.; Hsin-Ju Ko, M.; Li, S.-T.; Chiu, N.-C.; Hung, K.-L. Prevalence of preschool children developmental disabilities in northeastern Taiwan—Screening with Taipei City Developmental Screening Checklist for Preschoolers, 2nd Version. J. Formos. Med. Assoc. 2020, 119, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, E.W.; Boudreau, J.P. Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Dev. 1993, 64, 1005–1021. [Google Scholar] [CrossRef]
- Gibson, E.J. Exploratory Behavior in the Development of Perceiving, Acting, and the Acquiring of Knowledge. Annu. Rev. Psychol. 1988, 39, 1–42. [Google Scholar] [CrossRef]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [Green Version]
- Pineda, R.G.; Reynolds, L.C.; Seefeldt, K.; Hilton, C.L.; Rogers, C.L.; Inder, T.E. Head Lag in Infancy: What Is It Telling Us? Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 2016, 70, 7001220010p1–7001220010p8. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.N.; Galloway, J.C.; Landa, R.J. Relation between early motor delay and later communication delay in infants at risk for autism. Infant. Behav. Dev. 2012, 35, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Landa, R.J.; Gross, A.L.; Stuart, E.A.; Bauman, M. Latent class analysis of early developmental trajectory in baby siblings of children with autism. J. Child Psychol. Psychiatry Allied Discip. 2012, 53, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.R. Early identification of motor delay: Family-centred screening tool. Can. Fam. Physician Med. Fam. Can. 2016, 62, 629–632. [Google Scholar]
- Michalec, D. Bayley Scales of Infant Development: Third Edition. In Encyclopedia of Child Behavior and Development; Goldstein, S., Naglieri, J.A., Eds.; Springer: Boston, MA, USA, 2011; p. 215. [Google Scholar]
- Haataja, L.; Mercuri, E.; Regev, R.; Cowan, F.; Rutherford, M.; Dubowitz, V.; Dubowitz, L. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 1999, 135, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Cioni, G.; Prechtl, H.F.R. Preterm and early postterm motor behaviour in low-risk premature infants. Early Hum. Dev. 1990, 23, 159–191. [Google Scholar] [CrossRef] [PubMed]
- Martha, P.; Johanna, D. Motor Assessment of the Developing Infant, 1st ed.; Elsevier Saunders: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Washington, P.; Leblanc, E.; Dunlap, K.; Penev, Y.; Kline, A.; Paskov, K.; Sun, M.W.; Chrisman, B.; Stockham, N.; Varma, M.; et al. Precision Telemedicine through Crowdsourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism Feature Recognition. J. Pers. Med. 2020, 10, 86. [Google Scholar] [CrossRef]
- Dobrez, D.; Sasso, A.L.; Holl, J.; Shalowitz, M.; Leon, S.; Budetti, P. Estimating the cost of developmental and behavioral screening of preschool children in general pediatric practice. Pediatrics 2001, 108, 913–922. [Google Scholar] [CrossRef]
- Bartlett, D.; Piper, M. Mothers’ Difficulty in Assessing the Motor Development of Their Infants Born Preterm: Implications for Intervention. Pediatr. Phys. Ther. 1994, 6, 55–60. [Google Scholar] [CrossRef]
- Seifer, R. Who Should Collect our Data: Parents or Trained Observers? In Handbook of Research Methods in Developmental Science; Blackwell Publishing: Hoboken, NJ, USA, 2005; pp. 15–137. [Google Scholar]
- Leo, M.; Bernava, G.M.; Carcagnì, P.; Distante, C. Video-Based Automatic Baby Motion Analysis for Early Neurological Disorder Diagnosis: State of the Art and Future Directions. Sensors 2022, 22, 866. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Raghuram, K.; Orlandi, S.; Church, P.; Chau, T.; Uleryk, E.; Pechlivanoglou, P.; Shah, V. Automated movement recognition to predict motor impairment in high-risk infants: A systematic review of diagnostic test accuracy and meta-analysis. Dev. Med. Child Neurol. 2021, 63, 637–648. [Google Scholar] [CrossRef]
- Adde, L.; Brown, A.; van den Broeck, C.; DeCoen, K.; Eriksen, B.H.; Fjørtoft, T.; Groos, D.; Ihlen, E.A.F.; Osland, S.; Pascal, A.; et al. In-Motion-App for remote General Movement Assessment: A multi-site observational study. BMJ Open 2021, 11, e042147. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCay, K.D.; Ho, E.S.L.; Shum, H.P.H.; Fehringer, G.; Marcroft, C.; Embleton, N.D. Abnormal Infant Movements Classification with Deep Learning on Pose-Based Features. IEEE Access 2020, 8, 51582–51592. [Google Scholar] [CrossRef]
- Albuquerque, P.L.; Guerra, M.Q.F.; Lima, M.C.; Eickmann, S.H. Concurrent validity of the Alberta Infant Motor Scale to detect delayed gross motor development in preterm infants: A comparative study with the Bayley III. Dev. Neurorehabilit. 2018, 21, 408–414. [Google Scholar] [CrossRef]
- Caesar, R.; Colditz, P.B.; Cioni, G.; Boyd, R.N. Clinical tools used in young infants born very preterm to predict motor and cognitive delay (not cerebral palsy): A systematic review. Dev. Med. Child Neurol. 2021, 63, 387–395. [Google Scholar] [CrossRef]
- Dogra, D.P.; Majumdar, A.K.; Sural, S.; Mukherjee, J.; Mukherjee, S.; Singh, A. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 2012, 20, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Valentine, A.Z.; Hall, S.S.; Young, E.; Brown, B.J.; Groom, M.J.; Hollis, C.; Hall, C.L. Implementation of Telehealth Services to Assess, Monitor, and Treat Neurodevelopmental Disorders: Systematic Review. J. Med. Internet Res. 2021, 23, e22619. [Google Scholar] [CrossRef]
- Tomašev, N.; Cornebise, J.; Hutter, F.; Mohamed, S.; Picciariello, A.; Connelly, B.; Belgrave, D.C.M.; Ezer, D.; Haert, F.C.v.d.; Mugisha, F.; et al. AI for social good: Unlocking the opportunity for positive impact. Nat. Commun. 2020, 11, 2468. [Google Scholar] [CrossRef]
- Mayes, J.; White, A.; Byrne, M.; Mogg, J. How smartphone technology is changing healthcare in developing countries. Columbia Univ. J. Glob. Health 2016, 6, 36–38. [Google Scholar]
- Olusanya, B.O.; Boo, N.Y.; Nair, M.K.C.; Samms-Vaughan, M.E.; Hadders-Algra, M.; Wright, S.M.; Breinbauer, C.; Almasri, N.; Moreno-Angarita, M.; Arabloo, J.; et al. Accelerating progress on early childhood development for children under 5 years with disabilities by 2030. Lancet Glob. Health 2022, 10, e438–e444. [Google Scholar] [CrossRef]
- Ansari, A.F.; Roy, P.P.; Dogra, D.P. Exercise classification and event segmentation in Hammersmith Infant Neurological Examination videos. Mach. Vis. Appl. 2018, 29, 233–245. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Feng, R.; Wu, S.; Ji, S.; Yang, B.; Wang, X. Deep Dual Consecutive Network for Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 525–534. [Google Scholar]
- Dash, T.; Chitlangia, S.; Ahuja, A.; Srinivasan, A. A review of some techniques for inclusion of domain-knowledge into deep neural networks. Sci. Rep. 2022, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Reich, S.; Zhang, D.; Kulvicius, T.; Bölte, S.; Nielsen-Saines, K.; Pokorny, F.B.; Peharz, R.; Poustka, L.; Wörgötter, F.; Einspieler, C.; et al. Novel AI driven approach to classify infant motor functions. Sci. Rep. 2021, 11, 9888. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.K.; Eeles, A.L.; Olsen, J.E.; Cheong, J.L.; Doyle, L.W.; Spittle, A.J. The Baby Moves smartphone app for general movements assessment: Engagement amongst extremely preterm and term-born infants in a state-wide geographical study. J. Paediatr. Child Health 2019, 55, 548–554. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, Z.; Yoo, J.H.; Hwang, J.N. Hierarchical Pose Classification for Infant Action Analysis and Mental Development Assessment. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1340–1344. [Google Scholar]
- Suzuki, S.; Amemiya, Y.; Sato, M. Enhancement of gross-motor action recognition for children by CNN with OpenPose. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 5382–5387. [Google Scholar]
- Sasangohar, F.; Davis, E.; Kash, B.A.; Shah, S. Remote patient monitoring and telemedicine in neonatal and pediatric settings: Scoping literature review. J. Med. Internet Res. 2018, 20, e9403. [Google Scholar] [CrossRef] [PubMed]
- Kaelin, V.C.; Valizadeh, M.; Salgado, Z.; Parde, N.; Khetani, M.A. Artificial intelligence in rehabilitation targeting the participation of children and youth with disabilities: Scoping review. J. Med. Internet Res. 2021, 23, e25745. [Google Scholar] [CrossRef] [PubMed]
- Rapczyński, M.; Werner, P.; Handrich, S.; Al-Hamadi, A.J.S. A Baseline for Cross-Database 3D Human Pose Estimation. Sensors 2021, 21, 3769. [Google Scholar] [CrossRef]
Participate (n = 41) | |
---|---|
Gender, n (%) | |
Boy/Girl | 22 (53.6)/19 (46.4) |
GA, wk, mean ± SD | 31.7 (3.9) |
Birth weight, g, mean ± SD | 1735.5 (704.8) |
Type of delivery, C/S, n (%) | 24 (55.8) |
Preterm, n (%) | 37 (90.2) |
Meningitis, n (%) | 4 (9.8) |
Preeclampsia, n (%) | 7(17.1) |
GDM, n (%) | 5 (12.2) |
Maternal age, years, mean ± SD | 34.2 (4.2) |
Maternal education < 12 years, n (%) | 14 (34.1) |
PVL, n (%) | 1 (2.4) |
IVH, n (%) | 9 (21.9) |
BPD, n (%) | 12 (29.3) |
NEC, n (%) | 0 (0) |
Corrected age while recording, months, mean ± SD | 4.8 (2.9) |
Gross Motor Development Delay, n (%) | 7 (17.0) |
Cerebral Palsy, n (%) | 1 (2.4) |
HINE PTS, n | 270 |
Level 0, n (%) | 84 |
Level 1, n (%) | 106 |
Level 3, n (%) | 80 |
Label | Level 0 vs. Levels 1, 3 | p-Value | |
---|---|---|---|
Key Points | Thirteen | Five | |
Avgs | 77.667% | 88.062% | 4.84 × 10−24 |
SDs | 1.265% | 1.225% | |
Label | Levels 0, 1 vs. level 3 | p-Value | |
Key Points | Thirteen | Five | |
Avgs | 96.049% | 94.333% | 6.99 × 10−13 |
SDs | 0.633% | 0.468% |
Predicted Labels | |||||
---|---|---|---|---|---|
Thirteen Key Points | Five Key Points | ||||
Level 0 | Levels 1, 3 | Level 0 | Levels 1, 3 | ||
True labels | Level 0 | 2498 | 22 | 2468 | 52 |
Levels 1, 3 | 1787 | 3793 | 915 | 4665 | |
Levels 0, 1 | Level 3 | Levels 0, 1 | Level 3 | ||
Levels 0, 1 | 5624 | 76 | 5588 | 112 | |
Level 3 | 244 | 2156 | 347 | 2053 |
Thirteen Key Points | Five Key Points | Supported Instances | |||
---|---|---|---|---|---|
Specificity | Sensitivity | Specificity | Sensitivity | ||
Level 0 | 99.127% | 99.127% | 97.937% | 83.602% | 2520 |
Levels 1, 3 | 67.975% | 67.975% | 83.602% | 97.937% | 5580 |
Averages | 83.551% | 83.551% | 90.769% | 90.769% | |
Levels 0, 1 | 98.667% | 89.833% | 98.035% | 85.542% | 5700 |
Level 3 | 89.833% | 98.667% | 85.542% | 98.035% | 2400 |
Averages | 94.250% | 94.250% | 91.788% | 91.788% |
Labels | Thirteen Key Points | Five Key Points |
---|---|---|
Level 0 vs. levels 1, 3 | 0.563 1 | 0.745 2 |
Levels 0, 1 vs. level 3 | 0.903 3 | 0.860 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, H.-W.; Chang, C.-K.; Huang, T.-H.; Chen, L.-C.; Chen, H.-L.; Yang, S.-T.; Chen, C.-C.; Wang, K. Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study. Children 2023, 10, 1239. https://doi.org/10.3390/children10071239
Chung H-W, Chang C-K, Huang T-H, Chen L-C, Chen H-L, Yang S-T, Chen C-C, Wang K. Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study. Children. 2023; 10(7):1239. https://doi.org/10.3390/children10071239
Chicago/Turabian StyleChung, Hao-Wei, Che-Kuei Chang, Tzu-Hsiu Huang, Li-Chiou Chen, Hsiu-Lin Chen, Shu-Ting Yang, Chien-Chih Chen, and Kuochen Wang. 2023. "Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study" Children 10, no. 7: 1239. https://doi.org/10.3390/children10071239
APA StyleChung, H. -W., Chang, C. -K., Huang, T. -H., Chen, L. -C., Chen, H. -L., Yang, S. -T., Chen, C. -C., & Wang, K. (2023). Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study. Children, 10(7), 1239. https://doi.org/10.3390/children10071239