Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients
Abstract
:1. Introduction
2. Methods
2.1. Covariate Factors
2.2. Study Outcomes
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Incidence of Long-Term Cardiac and Renal Complications in the Down Syndrome and Control Groups
3.3. Kaplan–Meier Survival Analysis
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Málaga, S.; Pardo, R.; Málaga, I.; Orejas, G.; Fernández-Toral, J. Renal involvement in Down syndrome. Pediatr. Nephrol. 2005, 20, 614–617. [Google Scholar] [CrossRef]
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W.; Sherman, S.L.; Reeves, R.H. Down syndrome. Nat. Rev. Dis. Primers 2020, 6, 9. [Google Scholar] [CrossRef]
- Dierssen, M. Down syndrome: The brain in trisomic mode. Nat. Rev. Neurosci. 2012, 13, 844–858. [Google Scholar] [CrossRef]
- Antonarakis, S.E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 2017, 18, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Kute, V.B.; Vanikar, A.V.; Shah, P.R.; Gumber, M.R.; Patel, H.V.; Engineer, D.P.; Thakkar, U.G.; Trivedi, H.L. Down syndrome with end-stage renal disease. Indian J. Clin. Biochem. 2013, 28, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Postolache, L.; Parsa, A.; Simoni, P.; Boitsios, G.; Ismaili, K.; Schurmans, T.; Monier, A.; Casimir, G.; Albert, A.; Parsa, C.F. Widespread kidney anomalies in children with Down syndrome. Pediatr. Nephrol. 2022, 37, 2361–2368. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, K.; Constantine, A.; Clift, P.; Condliffe, R.; Moledina, S.; Jansen, K.; Inuzuka, R.; Veldtman, G.R.; Cua, C.L.; Tay, E.L.W.; et al. Cardiovascular Complications of Down Syndrome: Scoping Review and Expert Consensus. Circulation 2023, 147, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Delany, D.R.; Gaydos, S.S.; Romeo, D.A.; Henderson, H.T.; Fogg, K.L.; McKeta, A.S.; Kavarana, M.N.; Costello, J.M. Down syndrome and congenital heart disease: Perioperative planning and management. J. Congenit. Cardiol. 2021, 5, 7. [Google Scholar] [CrossRef]
- Vis, J.C.; Duffels, M.G.; Winter, M.M.; Weijerman, M.E.; Cobben, J.M.; Huisman, S.A.; Mulder, B.J. Down syndrome: A cardiovascular perspective. J. Intellect. Disabil. Res. 2009, 53, 419–425. [Google Scholar] [CrossRef]
- Sobey, C.G.; Judkins, C.P.; Sundararajan, V.; Phan, T.G.; Drummond, G.R.; Srikanth, V.K. Risk of Major Cardiovascular Events in People with Down Syndrome. PLoS ONE 2015, 10, e0137093. [Google Scholar] [CrossRef]
- Kreatsoulas, C.; Anand, S.S. The impact of social determinants on cardiovascular disease. Can. J. Cardiol. 2010, 26 (Suppl. C), 8c–13c. [Google Scholar] [CrossRef] [Green Version]
- Elton, T.S.; Sansom, S.E.; Martin, M.M. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol. 2010, 7, 540–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venegas-Zamora, L.; Bravo-Acuña, F.; Sigcho, F.; Gomez, W.; Bustamante-Salazar, J.; Pedrozo, Z.; Parra, V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front. Genet. 2021, 12, 792231. [Google Scholar] [CrossRef]
- Moyer, A.J.; Gardiner, K.; Reeves, R.H. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet. 2021, 37, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Ellapen, T.J.; Barnard, M.; Hammill, H.V.; Swanepoel, M. The health benefits of exercise therapy for patients with Down syndrome: A systematic review. Afr. J. Disabil. 2019, 8, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, C.A.; Chaudhari, M.P. Cardiovascular abnormalities in Down’s syndrome: Spectrum, management and survival over 22 years. Arch. Dis. Child. 2012, 97, 326–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, D.S.; Ivy, D.D. Pulmonary Hypertension in the Population with Down Syndrome. Cardiol. Ther. 2022, 11, 33–47. [Google Scholar] [CrossRef]
- Versacci, P.; Di Carlo, D.; Digilio, M.C.; Marino, B. Cardiovascular disease in Down syndrome. Curr. Opin. Pediatr. 2018, 30, 616–622. [Google Scholar] [CrossRef]
- Lo, A.; Brown, H.G.; Fivush, B.A.; Neu, A.M.; Racusen, L.C. Renal disease in Down syndrome: Autopsy study with emphasis on glomerular lesions. Am. J. Kidney Dis. 1998, 31, 329–335. [Google Scholar] [CrossRef]
- Alsultan, M.K.; Bdeir, Z.N.; Obeid, A.; Alsamarrai, O.; Nabil Al Houri, H.; Hassan, Q. Primary membranoproliferative glomerulonephritis in a child with down syndrome complicated with CVA: A case report. Ann. Med. Surg. 2022, 81, 104441. [Google Scholar] [CrossRef]
- Said, S.M.; Cornell, L.D.; Sethi, S.; Fidler, M.E.; Al Masri, O.; Marple, J.; Nasr, S.H. Acquired glomerular lesions in patients with Down syndrome. Hum. Pathol. 2012, 43, 81–88. [Google Scholar] [CrossRef]
- Topaloglu, U.; Palchuk, M.B. Using a Federated Network of Real-World Data to Optimize Clinical Trials Operations. JCO Clin. Cancer Inform. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Kahn, M.G.; Callahan, T.J.; Barnard, J.; Bauck, A.E.; Brown, J.; Davidson, B.N.; Estiri, H.; Goerg, C.; Holve, E.; Johnson, S.G.; et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. EGEMS 2016, 4, 1244. [Google Scholar] [CrossRef] [Green Version]
- Hüls, A.; Costa, A.C.S.; Dierssen, M.; Baksh, R.A.; Bargagna, S.; Baumer, N.T.; Brandão, A.C.; Carfi, A.; Carmona-Iragui, M.; Chicoine, B.A.; et al. Medical vulnerability of individuals with Down syndrome to severe COVID-19-data from the Trisomy 21 Research Society and the UK ISARIC4C survey. EClinicalMedicine 2021, 33, 100769. [Google Scholar] [CrossRef] [PubMed]
- Hithersay, R.; Baksh, R.A.; Startin, C.M.; Wijeratne, P.; Hamburg, S.; Carter, B.; Strydom, A. Optimal age and outcome measures for Alzheimer’s disease prevention trials in people with Down syndrome. Alzheimer’s Dement. 2021, 17, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.A.; Baksh, R.A.; Pape, S.E.; Strydom, A.; Gulliford, M.C.; Chan, L.F. Diabetes and Obesity in Down Syndrome Across the Lifespan: A Retrospective Cohort Study Using U.K. Electronic Health Records. Diabetes Care 2022, 45, 2892–2899. [Google Scholar] [CrossRef]
- Dierssen, M.; Herault, Y.; Helguera, P.; Martínez de Lagran, M.; Vazquez, A.; Christian, B.; Carmona-Iragui, M.; Wiseman, F.; Mobley, W.; Fisher, E.M.C.; et al. Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Mol. Syndromol. 2021, 12, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.J.; Zimmerman, K.; Linardic, C.M.; Cannon, S.; Pastore, A.; Patsiogiannis, V.; Rossi, P.; Santoro, S.L.; Skotko, B.G.; Torres, A.; et al. Detection of iron deficiency in children with Down syndrome. Genet. Med. 2020, 22, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Kernan, K.F.; Carcillo, J.A. Hyperferritinemia and inflammation. Int. Immunol. 2017, 29, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Kell, D.B.; Pretorius, E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014, 6, 748–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madley-Dowd, P.; Hughes, R.; Tilling, K.; Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 2019, 110, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, H.; Skorniewska, Z.; Harrison, P.J.; Taquet, M. Risks of neurological and psychiatric sequelae 2 years after hospitalisation or intensive care admission with COVID-19 compared to admissions for other causes. Brain Behav. Immun. 2023, 112, 85–95. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | Patients with DS, N (% of Cohort) | |
---|---|---|
Sex | ||
Female | 23,421 (72) | |
Male | 9003 (28) | |
Unknown Gender | 20 (0.0) | |
Race | ||
White | 22,042 (68) | |
Black or African American | 3816 (12) | |
Asian | 918 (3) | |
American Indian or Alaska Native | 170 (1) | |
Native Hawaiian or Other Pacific Islander | 73 (0) | |
Unknown | 5425 (17) | |
Age at index | 24.5 ± 15 | 32,444 (100) |
BMI, kg/m2 | 28.8 ± 7.54 | 17,667 (57) |
Systolic Blood Pressure, mmHg | 116 ± 14.6 | 20,980 (67) |
Diastolic Blood Pressure, mmHg | 73.2 ± 14.5 | 20,960 (67) |
Cholesterol, mg/dL | 176 ± 37.7 | 4351 (14) |
LDL, mg/dL | 102 ± 31.7 | 4199 (13) |
HDL, mg/dL | 50.8 ± 14.9 | 4224 (14) |
Triglyceride, mg/dL | 123 ± 89.9 | 4295 (14) |
Glucose, mg/dL | 93.3 ± 67.3 | 12,228 (39) |
Albumin, g/dL | 3.96 ± 0.637 | 9266 (30) |
Creatinine, mg/dL | 0.915 ± 6.06 | 10,701 (34) |
Calcium, mg/dL | 8.98 ± 0.973 | 9669 (31) |
Leukocytes, 103/µL | 34.1 ± 160 | 17,152 (55) |
Erythrocytes, 106/µL | 4.17 ± 0.662 | 17,271 (55) |
Platelets, 103/µL | 276 ± 156 | 17,480 (56) |
Alanine aminotransferase, U/L | 28.3 ± 51.6 | 9794 (31) |
Aspartate aminotransferase, U/L | 28.9 ± 46.5 | 9714 (31) |
Alkaline phosphatase, U/L | 109 ± 84.4 | 8538 (27) |
Iron, µg/dL | 67.1 ± 47.1 | 1730 (6) |
Ferritin, ng/mL | 176 ± 1471 | 2159 (7) |
Before Matching | After Matching | |||||||
---|---|---|---|---|---|---|---|---|
Down Syndrome Cohort (n = 32,783) | Control Cohort (n = 138,546) | Std Diff. | p Value | Down Syndrome Cohort (n = 21,755) | Control Cohort (n = 21,755) | Std Diff. | p Value | |
Age at index | ||||||||
Mean ± SD | 24.5 ± 15.0 | 22.3 ± 20.8 | 0.123 | <0.001 | 23.4 ± 17.2 | 25.3 ± 20.1 | 0.104 | <0.001 |
Sex (%) | ||||||||
Female | 23,367 (72.4) | 68,208 (50.4) | 0.462 | <0.001 | 13,201 (60.7) | 12,461 (57.3) | 0.069 | <0.001 |
Male | 8917 (27.6) | 67,044 (49.6) | 0.463 | <0.001 | 8544 (39.3) | 9285 (42.7) | 0.069 | <0.001 |
Missing | 10 (0.0) | 21 (0.0) | 0.010 | 0.067 | 10 (0.0) | 10 (0.0) | <0.001 | 1 |
Race (%) | ||||||||
White | 21,988 (68.1) | 64,165 (47.4) | 0.428 | <0.001 | 13,258 (60.9) | 13,246 (60.9) | 0.001 | 0.906 |
Black or African American | 3817 (11.8) | 23,270 (17.2) | 0.153 | <0.001 | 2604 (12.0) | 2682 (12.3) | 0.011 | 0.252 |
Asian | 879 (2.7) | 7149 (5.3) | 0.131 | <0.001 | 685 (3.1) | 667 (3.1) | 0.005 | 0.619 |
American Indian | 169 (0.5) | 822 (0.6) | 0.011 | 0.076 | 103 (0.5) | 88 (0.4) | 0.010 | 0.277 |
Native Hawaiian | 44 (0.1) | 283 (0.2) | 0.018 | 0.008 | 29 (0.1) | 38 (0.2) | 0.011 | 0.271 |
Missing or unknown | 5397 (12.6) | 39,584 (13.0) | 0.302 | <0.001 | 5076 (23.3) | 5034 (23.1) | 0.005 | 0.634 |
Social economic status | ||||||||
Housing/economic circumstances problem | 6526 (20.2) | 158 (0.1) | 0.705 | <0.001 | 90 (0.4) | 133 (0.6) | 0.028 | 0.004 |
Employment and unemployment problems | 691 (2.1) | 108 (0.1) | 0.198 | <0.001 | 74 (0.3) | 81 (0.4) | 0.005 | 0.573 |
Problems related to education and literacy | 267 (0.8) | 203 (0.2) | 0.097 | <0.001 | 73 (0.3) | 79 (0.4) | 0.005 | 0.626 |
Occupational exposure to risk factors | 182 (0.6) | 55 (0.0) | 0.095 | <0.001 | 30 (0.1) | 24 (0.1) | 0.008 | 0.414 |
Lifestyle | ||||||||
Tobacco use (smoking) | 8909 (27.6) | 333 (0.2) | 0.860 | <0.001 | 331 (1.5) | 327 (1.5) | 0.002 | 0.875 |
Nicotine dependence (smoking) | 4994 (15.5) | 1308 (1.0) | 0.547 | <0.001 | 675 (3.1) | 658 (3.0) | 0.005 | 0.636 |
Alcohol liver disease (alcohol drinking) | 10 (0.0) | 24 (0.0) | 0.008 | 0.134 | 10 (0.0) | 12 (0.1) | 0.004 | 0.670 |
Comorbidities | ||||||||
Type 2 diabetes mellitus | 3770 (11.7) | 3695 (2.7) | 0.351 | <0.001 | 725 (3.3) | 783 (3.6) | 0.015 | 0.128 |
Vitamin D deficiency | 702 (2.2) | 1521 (1.1) | 0.082 | <0.001 | 443 (2.0) | 554 (2.5) | 0.034 | <0.001 |
Hyperlipidemia | 545 (1.7) | 2296 (1.7) | 0.001 | 0.904 | 421 (1.9) | 554 (2.5) | 0.041 | <0.001 |
Depression | 7649 (23.7) | 2381 (1.8) | 0.697 | <0.001 | 1353 (6.2) | 1381 (6.3) | 0.005 | 0.580 |
Sleep disorder | 5688 (17.6) | 2081 (1.5) | 0.568 | <0.001 | 1682 (7.7) | 1819 (8.4) | 0.023 | 0.016 |
Psychoactive substance use | 7627 (23.6) | 1993 (1.5) | 0.709 | <0.001 | 1090 (5.0) | 1099 (5.1) | 0.002 | 0.844 |
Laboratory | ||||||||
BMI | ||||||||
n (%) | 16,756 (51.9) | 22,749 (16.8) | 0.784 | <0.001 | 6992 (32.1) | 5818 (26.7) | 0.338 | <0.001 |
mean ± SD, kg/m2 | 27.5 ± 7.3 | 22.0 ± 6.7 | 0.784 | <0.001 | 26.0 ± 7.9 | 23.5 ± 6.9 | 0.338 | <0.001 |
≥30 kg/m2, n (%) | 3637 (11.1) | 2359 (1.7) | 0.595 | <0.001 | 1505 (6.9) | 671 (3.1) | 0.036 | <0.001 |
Missing | 12,390 (37.8) | 115,797 (83.6) | 14,763 (67.9) | 15,937 (73.3) | ||||
CRP | ||||||||
n (%) | 1061 (3.3) | 1580 (1.2) | 737 (3.4) | 840 (3.9) | ||||
mean ± SD, mg/L | 26.4 ± 45.9 | 11.8 ± 31.8 | 0.371 | <0.001 | 29.3 ± 47.8 | 14.5 ± 36.8 | 0.349 | <0.001 |
Missing | 1061 (3.3) | 1581 (1.2) | 0.144 | <0.001 | 737 (3.4) | 841 (3.9) | 0.026 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-N.; Huang, J.-Y.; Wang, C.-H.; Su, P.-H. Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients. Children 2023, 10, 1351. https://doi.org/10.3390/children10081351
Huang Y-N, Huang J-Y, Wang C-H, Su P-H. Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients. Children. 2023; 10(8):1351. https://doi.org/10.3390/children10081351
Chicago/Turabian StyleHuang, Yu-Nan, Jing-Yang Huang, Chung-Hsing Wang, and Pen-Hua Su. 2023. "Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients" Children 10, no. 8: 1351. https://doi.org/10.3390/children10081351
APA StyleHuang, Y.-N., Huang, J.-Y., Wang, C.-H., & Su, P.-H. (2023). Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients. Children, 10(8), 1351. https://doi.org/10.3390/children10081351