Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency
Abstract
:1. Introduction
2. Literature Review
3. Diagnosis
3.1. Clinical Manifestations as Diagnostic Clues
3.2. Triggering Factors
3.3. Laboratory Work Up
4. Management
4.1. Common Complications in Adults
4.2. Multidisciplinary Team
4.3. Dietetic Support
4.4. Family Screening—Genetic Counsellors
4.5. Transition from Pediatric to Adult Hospital
4.6. Preimplantation Genetic Diagnosis
4.7. Pregnancy
4.8. Mortality
5. Current and Upcoming Therapies
5.1. Hepatocyte Transplantation
5.2. Upcoming Therapies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çelik, K.; Terek, D.; Olukman, Ö.; Kağnıcı, M.; Keskin Gözmen, Ş.; Serdaroğlu, E.; Çalkavur, Ş.; Arslanoğlu, S. Urea Cycle Disorders in Neonates: Six Case Reports. J. Pediatr. Res. 2017, 4, 85–89. [Google Scholar] [CrossRef]
- Baker, J.; Hitchins, L.; Vucko, E.; Havens, K.; Becker, K.; Arduini, K. Variable disease manifestations and metabolic management within a single family affected by ornithine transcarbamylase deficiency. Mol. Genet. Metab. Rep. 2022, 33 (Suppl. 1), 100906. [Google Scholar] [CrossRef] [PubMed]
- Ratnakumari, L.; Qureshi, I.A.; Butterworth, R.F. Evidence for cholinergic neuronal loss in brain in congenital ornithine transcarbamylase deficiency. Neurosci. Lett. 1994, 178, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Ben-ari, Z.; Dalal, A.; Morry, A.; Pitlik, S.; Zinger, P.; Cohen, J.; Fattal, I.; Galili-Mosberg, R.; Tessler, D.; Baruch, R.G.; et al. Case Report Adult-onset ornithine transcarbamylase (OTC) deficiency unmasked by the Atkins’ diet. J. Hepatol. 2010, 52, 292–295. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Robinson, M.B.; Batshaw, M.L.; Furth, E.E.; Smith, I.; Wilson, J.M. Prolonged Metabolic Correction in Adult Ornithine Transcarbamylase-deficient Mice with Adenoviral Vectors. J. Biol. Chem. 1996, 271, 3639–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, R.F. Effects of hyperammonaemia on brain function. J. Inher. Metab. Dis. 1998, 21 (Suppl. 1), 6–20. [Google Scholar] [CrossRef] [PubMed]
- Laróvere, L.E.; Silvera Ruiz, S.M.; Arranz, J.A.; Dodelson de Kremer, R. Mutation Spectrum and Genotype–Phenotype Correlation in a Cohort of Argentine Patients with Ornithine Transcarbamylase Deficiency: A Single-Center Experience. J. Inborn Errors Metab. Screen. 2018, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gyato, K.; Wray, J.; Huang, Z.J.; Yudkoff, M.; Batshaw, M.L. Metabolic and neuropsychological phenotype in women heterozygous for ornithine transcarbamylase deficiency. Ann. Neurol. 2004, 55, 80–86. [Google Scholar] [CrossRef]
- Tuchman, M.; Jaleel, N.; Morizono, H.; Sheehy, L.; Lynch, M.G. Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum. Mutat. 2002, 19, 93–107. [Google Scholar] [CrossRef]
- Feigenbaum, A. Challenges of managing ornithine transcarbamylase deficiency in female heterozygotes. Mol. Genet. Metab. Rep. 2022, 33, 100941. [Google Scholar] [CrossRef]
- Seker Yilmaz, B.; Baruteau, J.; Arslan, N.; Aydin, H.I.; Barth, M.; Bozaci, A.E.; Brassier, A.; Canda, E.; Cano, A.; Chronopoulou, E.; et al. Three-Country Snapshot of Ornithine Transcarbamylase Deficiency. Life 2022, 12, 1721. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zeng, X.; Zhao, D.; Jiang, N. Liver transplantation in rare late-onset ornithine transcarbamylase deficiency with central nervous system injury: A case report and review of the literature. Brain Behav. 2022, 12, e2765. [Google Scholar] [CrossRef] [PubMed]
- Couchet, M.; Breuillard, C.; Corne, C.; Rendu, J.; Morio, B.; Schlattner, U.; Moinard, C. Ornithine Transcarbamylase—From Structure to Metabolism: An Update. Front. Physiol. 2021, 12, 748249. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Khanh Nguyen, N.; Dung Vu, C.; Thu Huong Nguyen, T.; Nguyen, N.L. Late-Onset Ornithine Transcarbamylase Deficiency and Variable Phenotypes in Vietnamese Females with OTC Mutations. Front. Pediatr. 2020, 8, 321. [Google Scholar] [CrossRef] [PubMed]
- Caldovic, L.; Abdikarim, I.; Narain, S.; Tuchman, M.; Morizono, H. Genotype-Phenotype Correlations in Ornithine Transcarbamylase Deficiency: A Mutation Update. J. Genet. Genom. 2015, 42, 181–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassier, A.; Gobin, S.; Arnoux, J.B.; Valayannopoulos, V.; Habarou, F.; Kossorotoff, M.; Servais, A.; Barbier, V.; Dubois, S.; Touati, G.; et al. Long-term outcomes in Ornithine Transcarbamylase deficiency: A series of 90 patients. Orphanet J. Rare Dis. 2015, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dong, L.; Wang, Y.; Zhang, M. Two novel mutations of ornithine transcarbamylase gene identified from three Chinese neonates with ornithine transcarbamylase deficiency. Int. J. Clin. Exp. Med. 2015, 8, 2656–2661. [Google Scholar]
- Wilnai, Y.; Blumenfeld, Y.J.; Cusmano, K.; Hintz, S.R.; Alcorn, D.; Benitz, W.E.; Berquist, W.E.; Bernstein, J.A.; Castillo, R.O.; Concepcion, W.; et al. Prenatal treatment of ornithine transcarbamylase deficiency. Mol. Genet. Metab. 2018, 123, 297–300. [Google Scholar] [CrossRef]
- Andrews, A.; Roberts, S.; Botto, L.D. Benefits of tailored disease management in improving tremor, white matter hyperintensities, and liver enzymes in a child with heterozygous X-linked ornithine transcarbamylase deficiency. Mol. Genet. Metab. Rep. 2022, 33 (Suppl. 1), 100891. [Google Scholar] [CrossRef]
- Burgard, P.; Kölker, S.; Haege, G.; Lindner, M.; Hoffmann, G.F. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders—Review and meta-analysis of observational studies published over more than 35 years. J. Inherit. Metab. Dis. 2016, 39, 219–229. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yamashita, S.; Kakiuchi, T.; Kurogi, K.; Nishi, T.M.; Tago, M.; Yamashita, S.I. Late-Onset Ornithine Transcarbamylase Deficiency Complicated with Extremely High Serum Ammonia Level: Prompt Induction of Hemodialysis as the Key to Successful Treatment. Am. Case Rep. 2022, 23, e937658. [Google Scholar] [CrossRef] [PubMed]
- Wraith, J.E. Ornithine Carbamoyltransferase Deficiency Disease. Arch. Dis. Child. 2001, 84, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torkzaban, M.; Haddad, A.; Baxter, J.K.; Berghella, V.; Gahl, W.A.; Al-Kouatly, H.B. Maternal ornithine transcarbamylase deficiency, a genetic condition associated with high maternal and neonatal mortality every clinician should know: A systematic review. Am. J. Med. Genet. A 2019, 179, 2091–2100. [Google Scholar] [CrossRef]
- Abbott, J.; Senzatimore, M.; Atwal, P. A complex case of delayed diagnosis of ornithine transcarbamylase deficiency in an adult patient with multiple comorbidities. Mol. Genet. Metab. Rep. 2022, 33 (Suppl. 1), 100916. [Google Scholar] [CrossRef]
- Hertzog, A.; Selvanathan, A.; Halligan, R.; Fazio, T.; de Jong, G.; Bratkovic, D.; Bhattacharya, K.; Tolun, A.A.; Bennetts, B.; Fisk, K. A serendipitous journey to a promoter variant: The c.-106C>A variant and its role in late-onset ornithine transcarbamylase deficiency. JIMD Rep. 2022, 63, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, M.; Higashi, E.; Uwatoko, T.; Uwatoko, K.; Urashima, M.; Takashima, H.; Watanabe, Y.; Kitazono, T.; Sugimori, H. Late-onset ornithine transcarbamylase deficiency: A rare cause of recurrent abnormal behavior in adults. Acute Med. Surg. 2020, 7, 2–5. [Google Scholar] [CrossRef]
- Gascon-Bayarri, J.; Campdelacreu, J.; Estela, J.; Reñé, R. Severe Hyperammonemia in Late-Onset Ornithine Transcarbamylase Deficiency Triggered by Steroid Administration. Case Rep. Neurol. Med. 2015, 2015, 453752. [Google Scholar] [CrossRef] [Green Version]
- Alameri, M.; Shakra, M.; Alsaadi, T. Fatal coma in a young adult due to late-onset urea cycle deficiency presenting with a prolonged seizure: A case report. J. Med. Case Rep. 2015, 9, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Stepien, K.M.; Geberhiwot, T.; Hendriksz, C.J.; Treacy, E.P. Challenges in diagnosing and managing adult patients with urea cycle disorders. J. Inherit. Metab. Dis. 2019, 42, 1136–1146. [Google Scholar] [CrossRef]
- Marquetand, J.; Freisinger, P.; Lindig, T.; Euler, S.; Gasser, M.; Overkamp, D. Ammonia and coma—A case report of late onset hemizygous ornithine carbamyltransferase deficiency in 68-year-old female. BMC Neurol. 2020, 20, 118. [Google Scholar] [CrossRef]
- Roberts, D.L.; Galbreath, D.A.; Patel, B.M.; Ingall, T.J.; Khatib, A.; Johnson, D.J. Hyperammonemic Coma in an Adult due to Ornithine Transcarbamylase Deficiency. Case Rep. Crit. Care 2013, 2013, 493216. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, M.A.; Alejos, D.; Hasan, T.F.; Atwal, P.S.; Krishnaiengar, S.R.; Freeman, W.D. Adult Presentation of Ornithine Transcarbamylase Deficiency: 2 Illustrative Cases of Phenotypic Variability and Literature Review. Neurohospitalist 2019, 9, 30–36. [Google Scholar] [CrossRef]
- Lu, D.; Han, F.; Qiu, W.; Zhang, H.; Ye, J.; Liang, L.; Wang, Y.; Ji, W.; Zhan, X.; Gu, X.; et al. Clinical and molecular characteristics of 69 Chinese patients with ornithine transcarbamylase deficiency. Orphanet J. Rare Dis. 2020, 15, 340. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Figueroa, H.; Lamance, K.; Sutton, V.R.; Aagaard-Tillery, K.; Van Den Veyver, I. Management of ornithine transcarbamylase deficiency in pregnancy. Am. J. Perinat. 2010, 27, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Anstey, J.R.; Haydon, T.P.; Ghanpur, R.B.; de Jong, G. Initial presentation of a urea cycle disorder in adulthood: An under-recognised cause of severe neurological dysfunction. Med. J. Aust. 2015, 203, 445–447. [Google Scholar] [CrossRef]
- Strong, A.; Gold, J.; Gold, N.B.; Yudkoff, M. Hepatic Manifestations of Urea Cycle Disorders. Clin. Liver Dis. 2021, 18, 198–203. [Google Scholar] [CrossRef]
- Lichter-Konecki, U.; Caldovic, L.; Morizono, H.; Simpson, K. Ornithine transcarbamylase deficiency. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., LJH, B., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2016; pp. 1993–2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK154378/ (accessed on 30 May 2023).
- Durer, S.; Durer, C.; Hoilat, G.J. Adult-onset ornithine transcarbamylase deficiency as a rare cause of fatal hyperammonaemia. Lancet 2021, 398, e11. [Google Scholar] [CrossRef]
- Sysák, R.; Brennerová, K.; Krlín, R.; Štencl, P.; Rusňák, I.; Vargová, M. Effect of Ornithine Transcarbamylase (OTC) Deficiency on Pregnancy and Puerperium. Diagnostics 2022, 12, 415. [Google Scholar] [CrossRef]
- Visek, W.J.; Shoemaker, J.D. Orotic acid, arginine, and hepatotoxicity. J. Am. Coll. Nutr. 1986, 5, 153–166. [Google Scholar] [CrossRef]
- Jang, Y.J.; LaBella, A.L.; Feeney, T.P.; Braverman, N.; Tuchman, M.; Morizono, H.; Ah Mew, N.; Caldovic, L. Disease-causing mutations in the promoter and enhancer of the ornithine transcarbamylase gene. Hum. Mutat. 2018, 39, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, Y.; Wang, W.; Merritt, J.L.; Yeh, M. Hepatocellular Adenoma in a Patient with Ornithine Transcarbamylase Deficiency. Case Rep. Hepatol. 2019, 2019, 2313791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häberle, J.; Burlina, A.; Chakrapani, A.; Dixon, M.; Karall, D.; Lindner, M.; Mandel, H.; Martinelli, D.; Pintos-Morell, G.; Santer, R.; et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J. Inherit. Metab. Dis. 2019, 42, 1192–1230. [Google Scholar] [CrossRef]
- The Human Gene Mutation Database. Available online: https://www.hgmd.cf.ac.uk/ac/search.php (accessed on 27 May 2023).
- Lo, R.S.; Cromie, G.A.; Tang, M.; Teng, K.; Owens, K.; Sirr, A.; Kutz, J.N.; Morizono, H.; Caldovic, L.; Ah Mew, N.; et al. The functional impact of 1570 individual amino acid substitutions in human OTC. Am. J. Hum. Genet. 2023, 110, 863–879. [Google Scholar] [CrossRef] [PubMed]
- Ausems, M.G.; Bakker, E.; Berger, R.; Duran, M.; van Diggelen, O.P.; Keulemans, J.L.; de Valk, H.W.; Kneppers, A.L.; Dorland, L.; Eskes, P.F.; et al. Asymptomatic and late-onset ornithine transcarbamylase deficiency caused by a A208T mutation: Clinical, biochemical and DNA analyses in a four-generation family. Am. J. Med. Genet. 1997, 68, 236–239. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, B.H.; Kim, J.H.; Kim, G.H.; Kim, Y.M.; Cho, J.; Cheon, C.K.; Ko, J.M.; Lee, J.H.; Yoo, H.W. Clinical outcomes and the mutation spectrum of the OTC gene in patients with ornithine transcarbamylase deficiency. J. Hum. Genet. 2015, 60, 501–507. [Google Scholar] [CrossRef]
- Kazmierski, D.; Sharma, N.; O’Leary, K.; Ochieng, P. Valproate-induced fatal acute hyperammonaemia-related encephalopathy in late-onset ornithine transcarbamylase deficiency. BMJ Case Rep. 2021, 14, e241429. [Google Scholar] [CrossRef]
- Sprouse, C.; King, J.; Helman, G.; Pacheco-Colón, I.; Shattuck, K.; Breeden, A.; Seltzer, R.; VanMeter, J.W.; Gropman, A.L. Investigating neurological deficits in carriers and affected patients with ornithine transcarbamylase deficiency. Mol. Genet. Metab. 2014, 113, 136–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.D.; Ratzlaff, R.A.; Meder, J.C.; Atwal, P.S.; Joyce, N.E. Ornithine Transcarbamylase Deficiency: If at First You Do Not Diagnose, Try and Try Again. Case Rep. Crit. Care 2017, 2017, 8724810. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, D.; Mitsubuchi, H.; Matsumoto, S.; Iwai, M.; Nakamura, K.; Hoshide, R.; Harada, N.; Yoshino, M.; Endo, F. Early intervention for late-onset ornithine transcarbamylase deficiency. Pediatr. Int. 2015, 57, e1–e3. [Google Scholar] [CrossRef]
- Rüegger, C.M.; Lindner, M.; Ballhausen, D.; Baumgartner, M.R.; Beblo, S.; Das, A.; Gautschi, M.; Glahn, E.M.; Grünert, S.C.; Hennermann, J.; et al. Cross-sectional observational study of 208 patients with non-classical urea cycle disorders. J. Inherit. Metab. Dis. 2014, 37, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Ladha, F.A.; Le Mons, C.; Craigen, W.J.; Magoulas, P.L.; Marom, R.; Lewis, A.M. Barriers to a successful healthcare transition for individuals with urea cycle disorders. Mol. Genet. Metab. 2023, 139, 107609. [Google Scholar] [CrossRef] [PubMed]
- Gariani, K.; Nascimento, M.; Superti-Furga, A.; Tran, C. Clouds over IMD? Perspectives for inherited metabolic diseases in adults from a retrospective cohort study in two Swiss adult metabolic clinics. Orphanet J. Rare Dis. 2020, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Stepien, K.M.; Kieć-Wilk, B.; Lampe, C.; Tangeraas, T.; Cefalo, G.; Belmatoug, N.; Francisco, R.; Del Toro, M.; Wagner, L.; Lauridsen, A.G.; et al. Challenges in Transition from Childhood to Adulthood Care in Rare Metabolic Diseases: Results From the First Multi-Center European Survey. Front Med. 2021, 8, 652358. [Google Scholar] [CrossRef] [PubMed]
- Abeyagunawardena, S.; Abeyagunawardena, A.; Rajindrajith, S. Transition from paediatric to adult care: An emerging challenge. Sri Lanka J. Child. Health 2021, 50, 334–337. [Google Scholar] [CrossRef]
- Chabrol, B.; Jacquin, P.; Francois, L.; Broué, P.; Dobbelaere, D.; Douillard, C.; Dubois, S.; Feillet, F.; Perrier, A.; Fouilhoux, A.; et al. Transition from pediatric to adult care in adolescents with hereditary metabolic diseases: Specific guidelines from the French network for rare inherited metabolic diseases (G2M). Arch. De Pediatr. 2018, 25, 344–349. [Google Scholar] [CrossRef]
- White, P.H.; Cooley, W.C. Transitions Clinical Report Authoring Group; American Academy of Pediatrics; American Academy of Family Physicians; American College of Physicians. Supporting the Health Care Transition From Adolescence to Adulthood in the Medical Home. Pediatrics 2019, 143, e20183610. [Google Scholar]
- Lee, H.S.; Jin, H.J.; Hye, W.C.; Chun, K.L.; Yoo, H.W.; Mi, K.K.; Inn, S.K. Preimplantation genetic diagnosis for ornithine transcarbamylase deficiency by simultaneous analysis of duplex-nested PCR and fluorescence in situ hybridization: A case report. J. Korean Med. Sci. 2007, 22, 572–576. [Google Scholar] [CrossRef]
- Verlinsky, Y.; Rechitsky, S.; Verlinsky, O.; Strom, C.; Kuliev, A. Preimplantation diagnosis for ornithine transcarbamylase deficiency. Reprod. BioMed. Online 2000, 1, 45–47. [Google Scholar] [CrossRef]
- Ray, P.F.; Gigarel, N.; Bonnefont, J.P.; Attié, T.; Hamamah, S.; Frydman, N.; Vekemans, M.; Frydman, R.; Munnich, A. First specific preimplantation genetic diagnosis for ornithine transcarbamylase deficiency. Prenat. Diag. 2000, 20, 1048–1054. [Google Scholar] [CrossRef]
- Pinho, G.; Ross, G.; Krishnamoorthy, K.; Kresge, C.; Shih, L.Y.; Apuzzio, J.J.; Williams, S.F. Ornithine transcarbamylase deficiency and pregnancy: A case series and review of recommendations. Case Rep. Women’s Health 2022, 34, e00390. [Google Scholar] [CrossRef]
- Açıkalın, A.; Dişel, N.R.; Direk, E.Ç.; Ilgınel, M.T.; Sebe, A.; Bıçakçı, Ş. A rare cause of postpartum coma: Isolated hyperammonemia due to urea cycle disorder. Am. J. Emerg. Med. 2016, 34, 1894. [Google Scholar] [CrossRef]
- Rohininath, T.; Costello, D.J.; Lynch, T.; Monavari, A.; Tuchman, M.; Treacy, E.P. Fatal presentation of ornithine transcarbamylase deficiency in a 62-year-old man and family studies. J. Inherit. Metab. Dis. 2004, 27, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, V.R.; Asafu-Adjaye, M.; Agalou, S.; Rahman, Y. Fatal ammonia toxicity in an adult due to an undiagnosed urea cycle defect: Under-recognition of ornithine transcarbamylase deficiency. Ann. Clin. Biochem. 2010, 47 Pt 3, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Imoto, K.; Tanaka, M.; Goya, T.; Aoyagi, T.; Takahashi, M.; Kurokawa, M. Corticosteroid suppresses urea-cycle-related gene expressions in ornithine transcarbamylase deficiency. BMC Gastroenterol. 2022, 22, 144. [Google Scholar] [CrossRef]
- Cavicchi, C.; Donati, M.; Parini, R.; Rigoldi, M.; Bernardi, M.; Orfei, F.; Gentiloni Silveri, N.; Colasante, A.; Funghini, S.; Catarzi, S.; et al. Sudden unexpected fatal encephalopathy in adults with OTC gene mutations-Clues for early diagnosis and timely treatment. Orphanet J. Rare Dis. 2014, 9, 105. [Google Scholar] [CrossRef]
- Redant, S.; Empain, A.; Mugisha, A.; Kamgang, P.; Attou, R.; Honoré, P.M.; De Bels, D. Management of late onset urea cycle disorders—A remaining challenge for the intensivist? Ann. Intensive Care 2021, 11, 2. [Google Scholar] [CrossRef]
- Laemmle, A.; Stricker, T.; Häberle, J. Switch from Sodium Phenylbutyrate to Glycerol Phenylbutyrate Improved Metabolic Stability in an Adolescent with Ornithine Transcarbamylase Deficiency. JIMD Rep. 2017, 31, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Morioka, D.; Kasahara, M.; Takada, Y.; Shirouzu, Y.; Taira, K.; Sakamoto, S.; Uryuhara, K.; Egawa, H.; Shimada, H.; Tanaka, K. Current role of liver transplantation for the treatment of urea cycle disorders: A review of the worldwide English literature and 13 cases at Kyoto University. Liver Transpl. 2005, 11, 1332–1342. [Google Scholar] [CrossRef]
- Posset, R.; Gropman, A.L.; Nagamani, S.C.S.; Burrage, L.C.; Bedoyan, J.K.; Wong, D.; Berry, G.T.; Baumgartner, M.R.; Yudkoff, M.; Zielonka, M.; et al. Urea Cycle Disorders Consortium and the European Registry and Network for Intoxication Type Metabolic Diseases Consortia Study Group. Impact of Diagnosis and Therapy on Cognitive Function in Urea Cycle Disorders. Ann. Neurol. 2019, 86, 116–128. [Google Scholar]
- Iansante, V.; Mitry, R.R.; Filippi, C.; Fitzpatrick, E.; Dhawan, A. Human hepatocyte transplantation for liver disease: Current status and future perspectives. Pediatr. Res. 2018, 83, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Soria, L.R.; Ah Mew, N.; Brunetti-Pierri, N. Progress and challenges in development of new therapies for urea cycle disorders. Hum. Mol. Genet. 2019, 28, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyburg, J.; Opladen, T.; Spiekerkötter, U.; Schlune, A.; Schenk, J.P.; Schmidt, J.; Weitz, J.; Okun, J.; Bürger, F.; Omran, T.B.; et al. Human heterologous liver cells transiently improve hyperammonemia and ureagenesis in individuals with severe urea cycle disorders. J. Inherit. Metab. Dis. 2018, 41, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.S.; Gurung, S.; Perocheau, D.; Counsell, J.; Baruteau, J. Gene therapy for inherited metabolic diseases. J. Mother. Child. 2020, 24, 53–64. [Google Scholar] [PubMed]
- Raper, S.E.; Chirmule, N.; Lee, F.S.; Wivel, N.A.; Bagg, A.; Gao, G.P.; Wilson, J.M.; Batshaw, M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 2003, 80, 148–158. [Google Scholar] [CrossRef]
- Moscioni, D.; Morizono, H.; McCarter, R.J.; Stern, A.; Cabrera-Luque, J.; Hoang, A.; Sanmiguel, J.; Wu, D.; Bell, P.; Gao, G.P.; et al. Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol. Ther. 2006, 14, 25–33. [Google Scholar] [CrossRef]
- Wang, L.; Bell, P.; Morizono, H.; He, Z.; Pumbo, E.; Yu, H.; White, J.; Batshaw, M.L.; Wilson, J.M. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol. Genet. Metab. 2017, 120, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Harding, C.O.; Geberhiwot, T.; Couce, M.L.; Tan, W.-H.; Khan, A.; Hualde, L.C.; Diaz, G.A.; Konczal, L.; Thomas, J.; Guffon, N.; et al. Safety and Efficacy of DTX301 in Adults with Late-Onset Ornithine Transcarbamylase (OTC) Deficiency: A Phase 1/2 Trial. In Molecular Therapy; Cell Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Baruteau, J.; Waddington, S.N.; Alexander, I.E.; Gissen, P. Gene therapy for monogenic liver diseases: Clinical successes, current challenges and future prospects. J. Inherit. Metab. Dis. 2017, 40, 497–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisowski, L.; Dane, A.P.; Chu, K.; Zhang, Y.; Cunningham, S.C.; Wilson, E.M.; Nygaard, S.; Grompe, M.; Alexander, I.E.; Kay, M.A. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 2014, 506, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Baruteau, J.; Cunningham, S.C.; Yilmaz, B.S.; Perocheau, D.P.; Eaglestone, S.; Burke, D.; Thrasher, A.J.; Waddington, S.N.; Lisowski, L.; Alexander, I.E.; et al. Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Mol. Ther. Methods Clin. Dev. 2021, 23, 135–146. [Google Scholar] [CrossRef]
- Martini, P.G.V.; Guey, L.T. A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Hum. Gene Ther. 2019, 30, 1180–1189. [Google Scholar] [CrossRef]
- Prieve, M.G.; Harvie, P.; Monahan, S.D.; Roy, D.; Li, A.G.; Blevins, T.L.; Paschal, A.E.; Waldheim, M.; Bell, E.C.; Galperin, A.; et al. Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Mol. Ther. 2018, 26, 801–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Yang, Y.; Breton, C.; Bell, P.; Li, M.; Zhang, J.; Che, Y.; Saveliev, A.; He, Z.; White, J.; et al. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci. Adv. 2020, 6, 5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, L.; Bell, P.; McMenamin, D.; He, Z.; White, J.; Yu, H.; Xu, C.; Morizono, H.; Musunuru, K.; et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 2016, 34, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Ginn, S.L.; Amaya, A.K.; Liao, S.H.Y.; Zhu, E.; Cunningham, S.C.; Lee, M.; Hallwirth, C.V.; Logan, G.J.; Tay, S.S.; Cesare, A.J.; et al. Efficient in vivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Rep. 2019, 2, 100065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabulica, M.; Srinivasan, R.C.; Akcakaya, P.; Allegri, G.; Bestas, B.; Firth, M.; Hammarstedt, C.; Jakobsson, T.; Jakobsson, T.; Ellis, E.; et al. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol. Ther. 2021, 29, 1903–1917. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.S.; Gold, J.I.; Woodall, A.; Yilmaz, B.S.; Gissen, P.; Stepien, K.M. Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency. Children 2023, 10, 1368. https://doi.org/10.3390/children10081368
Ibrahim MS, Gold JI, Woodall A, Yilmaz BS, Gissen P, Stepien KM. Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency. Children. 2023; 10(8):1368. https://doi.org/10.3390/children10081368
Chicago/Turabian StyleIbrahim, Majitha Seyed, Jessica I. Gold, Alison Woodall, Berna Seker Yilmaz, Paul Gissen, and Karolina M. Stepien. 2023. "Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency" Children 10, no. 8: 1368. https://doi.org/10.3390/children10081368
APA StyleIbrahim, M. S., Gold, J. I., Woodall, A., Yilmaz, B. S., Gissen, P., & Stepien, K. M. (2023). Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency. Children, 10(8), 1368. https://doi.org/10.3390/children10081368