The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Type and Sample
2.2. Evaluations
2.3. Measurement of Skin Sebum and Moisture
2.4. Statistical Analysis
2.5. Ethics
3. Results
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, J.M.; Platts-Mills, T.A. Home Environmental Interventions for House Dust Mite. J. Allergy Clin. Immunol. Pract 2018, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Asero, R.; Pravettoni, V.; Scala, E.; Villalta, D. House Dust Mite-Shrimp Allergen Interrelationships. Curr. Allergy Asthma Rep. 2020, 20, 9. [Google Scholar] [CrossRef]
- Brehler, R. Clinic and diagnostics of house dust mite allergy. Allergo J. Int. 2022, 32, 1–4. [Google Scholar] [CrossRef]
- Doğru, M.; Günay, M.; Çelik, G.; Aktaş, A. Frequency of allergic conjunctivitis in children with asthma and/or rhinitis. Asthma Allergy Immunol. 2014, 12, 20–25. [Google Scholar]
- Schulze, J.; Agache, I.; Eguiluz-Gracia, I.; Trischler, J.; Zielen, S. Medical algorithm: Diagnosis and treatment of house dust mite-driven allergic asthma. Allergy 2023, 78, 1397–1399. [Google Scholar] [CrossRef]
- Fuiano, N.; Fusilli, S.; Incorvaia, C. House dust mite-related allergic diseases: Role of skin prick test, atopy patch test, and RAST in the diagnosis of different manifestations of allergy. Eur. J. Pediatr. 2010, 169, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Qi, X.; Yin, Y.; Wang, H.; Zhang, H.; Jiang, H.; Yang, L.; Wu, J. Allergens sensitization among children with allergic diseases in Shanghai, China: Age and sex difference. Respir. Res. 2022, 23, 95. [Google Scholar] [CrossRef] [PubMed]
- Cansever, M.; Oruc, C. Aeroallergens sensitization in an allergic paediatric population of Stone city (Mardin), Turkey: Is it compatible with the previous atmospheric distribution analysis? Ann. Med. Res. 2022, 29, 222–227. [Google Scholar] [CrossRef]
- Sayar, E.H. Aeroallergen Sensitivity of Atopic Children in Alanya Region. Selcuk Med. J. 2020, 3, 226–231. [Google Scholar] [CrossRef]
- Bousquet, P.-J.; Chinn, S.; Janson, C.; Kogevinas, M.; Burney, P.; Jarvis, D. Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community Respiratory Health Survey I. Allergy 2007, 62, 301–309. [Google Scholar] [CrossRef]
- Şaşihuseyinoğlu, A.Ş.; Özhan, A.K.; Serbes, M.; Duyuler, G.A.; Bingöl, G.; Yılmaz, M.; Altıntaş, D.U. Distribution of allergen sensitization in childhood by the use of skin test. Asthma Allergy Immunol. 2017, 15, 43–48. [Google Scholar]
- Luo, W.; Hu, H.; Tang, W.; Zou, X.; Huang, H.; Huang, Z.; Liu, Y.; Sun, B. Allergen sensitization pattern of allergic adults and children in southern China: A survey based on real life data. Allergy Asthma Clin. Immunol. 2019, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Özdin, M. The relationship between hematological and allergic values in children with atopic dermatitis. Balıkesir Med. J. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Küçükosmanoğlu, E.; Tanidir, C.; Demir, F.; Coşkun, Ş.; Hafizoğlu, T.; Şeşeoğullari, Y.; Kurnaz, H.; Kozaklı, S.; Sümengen, D.; Özeroğlu, G.; et al. Sensitization to aeroallergens in children living in Istanbul. Gaziantep Med. J. 2009, 15, 10–13. [Google Scholar]
- Mascia, F.; Mariani, V.; Giannetti, A.; Girolomoni, G.; Pastore, S. House dust mite allergen exerts no direct proinflammatory effects on human keratinocytes. J. Allergy Clin. Immunol. 2002, 109, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Karaguzel, D.; Sarac, B.E.; Akel Bilgic, H.; Summak, G.Y.; Unal, M.A.; Kalayci, O.; Karaaslan, C. House dust mite-derived allergens effect on matrix metalloproteases in airway epithelial cells. Exp. Lung Res. 2021, 47, 436–450. [Google Scholar] [CrossRef]
- Bumbacea, R.S.; Corcea, S.L.; Ali, S.; Dinica, L.C.; Fanfaret, I.S.; Boda, D. Mite allergy and atopic dermatitis: Is there a clear link? (Review). Exp. Ther. Med. 2020, 20, 3554–3560. [Google Scholar] [CrossRef] [PubMed]
- Reithofer, M.; Jahn-Schmid, B. Allergens with Protease Activity from House Dust Mites. Int. J. Mol. Sci. 2017, 18, 1368. [Google Scholar] [CrossRef]
- Benedé, S.; Pérez-Rodríguez, L.; Martínez-Blanco, M.; Molina, E.; López-Fandiño, R. Oral Exposure to House Dust Mite Activates Intestinal Innate Immunity. Foods 2021, 10, 561. [Google Scholar] [CrossRef]
- Aktaş Karabay, E.; Aksu Çerman, A. Demodex folliculorum infestations in common facial dermatoses: Acne vulgaris, rosacea, seborrheic dermatitis. An. Bras. Dermatol. 2020, 95, 187–193. [Google Scholar] [CrossRef]
- Bzioueche, H.; Boniface, K.; Drullion, C.; Marchetti, S.; Chignon-Sicard, B.; Sormani, L.; Rocchi, S.; Seneschal, J.; Passeron, T.; Tulic, M.K. Impact of house dust mite in vitiligo skin: Environmental contribution to increased cutaneous immunity and melanocyte detachment. Br. J. Dermatol. 2023, 189, 312–327. [Google Scholar] [CrossRef]
- Leung, D.Y.; Berdyshev, E.; Goleva, E. Cutaneous barrier dysfunction in allergic diseases. J. Allergy Clin. Immunol. 2020, 145, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Segre, J.A. Dialogue between skin microbiota and immunity. Science 2014, 346, 954–959. [Google Scholar] [CrossRef]
- Dréno, B.; Araviiskaia, E.; Berardesca, E.; Gontijo, G.; Sanchez Viera, M.; Xiang, L.F.; Martin, R.; Bieber, T. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, K.A.; Kezic, S.; Jakasa, I.; Hedengran, A.; Linneberg, A.; Skov, L.; Johansen, J.D.; Thyssen, J.P. Effect of atopic skin stressors on natural moisturizing factors and cytokines in healthy adult epidermis. Br. J. Dermatol. 2018, 179, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Kezic, S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Kıykım, A.; Öğülür, İ.; Yazıcı, D.; Çokuğraş, H.; Akdiş, M.; Akdiş, C.A. Epithelial barrier hypothesis and its comparison with the hygiene hypothesis. Turk. Arch. Pediatr. 2023, 58, 122. [Google Scholar] [CrossRef] [PubMed]
- Sozener, Z.C.; Ozturk, B.O.; Cerci, P.; Turk, M.; Akin, B.G.; Akdis, M.; Altiner, S.; Ozbey, U.; Ogulur, I.; Mitamura, Y.; et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022, 77, 1418–1449. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Segura-Fernández-Nogueras, M.-V.; Pérez-Rodríguez, I.; Soler-Gongora, M.; Martinez-Lopez, A.; Fernández-González, A.; Molina-Leyva, A.; Arias-Santiago, S. Skin Barrier Function in Psoriasis and Atopic Dermatitis: Transepidermal Water Loss and Temperature as Useful Tools to Assess Disease Severity. J. Clin. Med. 2021, 10, 359. [Google Scholar] [CrossRef]
- Güneş, H.; Nazik, H.; Özkars, M.Y.; Parlak, N.; Yildiz, A.; Duyuran, Ö.; Yalçin, B.A. The assessment of skin sebum and moisture content of infants with atopic dermatitis. Turk. J. Med. Sci. 2020, 50, 844–848. [Google Scholar] [CrossRef]
- Sator, P.-G.; Schmidt, J.B.; Hönigsmann, H. Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2003, 48, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Borish, L.; Chipps, B.; Deniz, Y.; Gujrathi, S.; Zheng, B.; Dolan, C.M. TENOR study group. Total serum IgE levels in a large cohort of patients with severe or difficult-to-treat asthma. Arch. Bronconeumol. 2021, 57, 249–250. [Google Scholar] [CrossRef]
- Peng, W.; Novak, N. Pathogenesis of atopic dermatitis. Clin. Exp. Allergy 2015, 45, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Pathophysiology of allergic inflammation. Immunol. Rev. 2011, 242, 31–50. [Google Scholar] [CrossRef]
- Tsuge, M.; Ikeda, M.; Matsumoto, N.; Yorifuji, T.; Tsukahara, H. Current Insights into Atopic March. Children 2021, 8, 1067. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M. New insights into the allergic march. Curr. Opin. Pediatr. 2014, 26, 516–520. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Woo, S.-Y.; Han, Y.; Lee, J.H.; Lee, I.-Y.; Lim, I.-S.; Choi, E.-S.; Choi, B.-W.; Cheong, H.-K.; et al. The Indoor Level of House Dust Mite Allergen Is Associated with Severity of Atopic Dermatitis in Children. J. Korean Med. Sci. 2013, 28, 74–79. [Google Scholar] [CrossRef]
- Krämer, U.; Lemmen, C.; Bartusel, E.; Link, E.; Ring, J.; Behrendt, H. Current eczema in children is related to Der f 1 exposure but not to Der p 1 exposure. Br. J. Dermatol. 2006, 154, 99–105. [Google Scholar] [CrossRef]
- Proksch, E.; Lachapelle, J.-M. The management of dry skin with topical emollients-recent perspectives. Behandlung der trockenen Haut mit topischen Emulsionen-neue Entwicklungen. JDDG J. Dtsch. Dermatol. Ges. 2005, 3, 768–774. [Google Scholar] [CrossRef]
- Kekonen, A.; Bergelin, M.; Eriksson, J.-E.; Vaalasti, A.; Ylänen, H.; Kielosto, S.; Viik, J. Bioimpedance method for monitoring venous ulcers: Clinical proof-of-concept study. Biosens. Bioelectron. 2021, 178, 112974. [Google Scholar] [CrossRef]
- AlDisi, R.; Bader, Q.; Bermak, A. Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors 2022, 22, 6350. [Google Scholar] [CrossRef] [PubMed]
- Nazik, H.; Yıldız, B.T. Evaluation of skin disorders, skin sebum and moisture in patients with Parkinson’s disease. Neurol. Asia 2019, 24, 249–254. [Google Scholar]
- Egawa, G.; Kabashima, K. Barrier dysfunction in the skin allergy. Allergol. Int. 2018, 67, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Berghi, O.N.; Vrinceanu, D.; Cergan, R.; Dumitru, M.; Costache, A. Solanum melongena allergy (A comprehensive review). Exp. Ther. Med. 2021, 22, 1061. [Google Scholar] [CrossRef] [PubMed]
Group 1 (HDM Allergy) | Group 2 (No HDM Allergy) | Control Group | p Value | |
---|---|---|---|---|
Age (years), median (min-max) | 7.0 (1.0–18.0) | 6.0 (0–17.0) | 6.0 (0–17.0) | 0.041 |
Gender, n (%) | ||||
Female Male | 53 (46.5) 61 (53.5) | 54 (45.8) 64 (54.2) | 60 (54.5) 50 (45.5) | 0.344 |
Group 1 (HDM Allergy) | Group 2 (No HDM Allergy) | Control Group | p Value | |
---|---|---|---|---|
Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | ||
Skin moisture (%) | 33.5 (10.0–50.0) | 37.0 (11.0–58.0) | 38.0 (19.0–69.0) | <0.001 |
Skin sebum (%) | 24.5 (16.0–55.0) | 25.0 (16.0–49.0) | 28.0 (16.0–51.0) | 0.102 |
WBCs (103 mm3) | 8500.0 (4000.0–19,000.0) | 8145.0 (3050.0–21,580.0) | - | 0.172 |
Neutrophils (103/uL) | 4000.0 (1700.0–38,080.0) | 3850.0 (300.0–10,370.0) | - | 0.156 |
Eosinophils (103/uL) | 380.0 (40.0–2260.0) | 220.0 (0.0–4160.0) | - | <0.001 |
Eosinophils (%) | 4.4 (0.3–113.3) | 2.8 (0.0–21.0) | - | <0.001 |
Lymphocytes (103/uL) | 3100.0 (1400.0–6500.0) | 3210.0 (1102.0–7870.0) | - | 0.404 |
Platelets (103 mm3) | 355,000.0 (150,000.0–659,000.0) | 313,500.0 (190,000.0–734,000.0) | - | 0.092 |
Total IgE (IU/mL) | 304.0 (4.0–3840.0) | 41.0 (1.0–3633.0) | - | <0.001 |
Skin Mositure | Skin Sebum | ||
---|---|---|---|
Skin Moisture | Correlation coefficient (r) | - | −0.304 |
p value | - | <0.001 | |
Skin Sebum | Correlation coefficient (r) | −0.304 | - |
p value | <0.001 | - | |
Eosinophils (103/uL) | Correlation coefficient (r) | −0.084 | −0.019 |
p value | 0.230 | 0.783 | |
Eosinophils (%) | Correlation coefficient (r) | −0.089 | −0.029 |
p value | 0.201 | 0.683 | |
Total IgE (IU/mL) | Correlation coefficient (r) | −0.232 | 0.034 |
p value | 0.001 | 0.632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaş, U.; Altaş, Z.M.; Ercan, N.; Özkars, M.Y. The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases. Children 2023, 10, 1483. https://doi.org/10.3390/children10091483
Altaş U, Altaş ZM, Ercan N, Özkars MY. The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases. Children. 2023; 10(9):1483. https://doi.org/10.3390/children10091483
Chicago/Turabian StyleAltaş, Uğur, Zeynep Meva Altaş, Nazlı Ercan, and Mehmet Yaşar Özkars. 2023. "The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases" Children 10, no. 9: 1483. https://doi.org/10.3390/children10091483
APA StyleAltaş, U., Altaş, Z. M., Ercan, N., & Özkars, M. Y. (2023). The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases. Children, 10(9), 1483. https://doi.org/10.3390/children10091483