Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Ethics
2.2. Umbilical Cord Blood (UCB) and Maternal Blood (MB) Collection
2.3. Metabolic and Hormonal Profile
2.4. Statistical Analysis
3. Results
3.1. Metabolic and Anthropometric Parameters
3.2. SPX Concentration Changes
3.3. SPX and Body Weight
3.4. Interaction with Leptin and Adiponectin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirabeau, O.; Perlas, E.; Severini, C.; Audero, E.; Gascuel, O.; Possenti, R.; Birney, E.; Rosenthal, N.; Gross, C. Identification of Novel Peptide Hormones in the Human Proteome by Hidden Markov Model Screening. Genome Res. 2007, 17, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Walewski, J.L.; Ge, F.; Lobdell, H.; Levin, N.; Schwartz, G.J.; Vasselli, J.R.; Pomp, A.; Dakin, G.; Berk, P.D. Spexin Is a Novel Human Peptide That Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-Induced Obesity. Obesity 2014, 22, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Jasmine, G.; Walewski, J.; Anglade, D.; Berk, P. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin. Semin. Liver Dis. 2016, 36, 360–372. [Google Scholar] [CrossRef]
- Tran, A.; He, W.; Chen, J.T.C.; Belsham, D.D. Spexin: Its Role, Regulation, and Therapeutic Potential in the Hypothalamus. Pharmacol. Ther. 2022, 233, 108033. [Google Scholar] [CrossRef]
- Türkel, İ.; Memi, G.; Yazgan, B. Impact of Spexin on Metabolic Diseases and Inflammation: An Updated Minireview. Exp. Biol. Med. 2022, 247, 567–573. [Google Scholar] [CrossRef]
- Kołodziejski, P.A.; Pruszyńska-Oszmałek, E.; Korek, E.; Sassek, M.; Szczepankiewicz, D.; Kaczmarek, P.; Nogowski, L.; Maćkowiak, P.; Nowak, K.W.; Krauss, H.; et al. Serum Levels of Spexin and Kisspeptin Negatively Correlate with Obesity and Insulin Resistance in Women. Physiol. Res. 2018, 67, 45–56. [Google Scholar] [CrossRef]
- Hodges, S.K.; Teague, A.M.; Dasari, P.S.; Short, K.R. Effect of Obesity and Type 2 Diabetes, and Glucose Ingestion on Circulating Spexin Concentration in Adolescents. Pediatr. Diabetes 2017, 19, 212–216. [Google Scholar] [CrossRef]
- Karaca, A.; Bakar-Ates, F.; Ersoz-Gulcelik, N. Decreased Spexin Levels in Patients with Type 1 and Type 2 Diabetes. Med. Princ. Pract. 2019, 27, 549–554. [Google Scholar] [CrossRef]
- Yu, M.; Ju, M.; Fang, P.; Zhang, Z. Emerging Central and Peripheral Actions of Spexin in Feeding Behavior, Leptin Resistance and Obesity. Biochem. Pharmacol. 2022, 202, 115121. [Google Scholar] [CrossRef]
- Gu, L.; Yan, S.; Huang, Y.; Yang, J.; Peng, Y.; Wang, Y. Serum Spexin Differed in Newly Diagnosed Type 2 Diabetes Patients According to Body Mass Index and Increased with the Improvement of Metabolic Status. Front. Endocrinol. 2022, 13, 1086497. [Google Scholar] [CrossRef]
- Kolodziejski, P.A.; Leciejewska, N.; Chmurzynska, A.; Sassek, M.; Szczepankiewicz, A.; Szczepankiewicz, D.; Malek, E.; Strowski, M.Z.; Checinska-Maciejewska, Z.; Nowak, K.W.; et al. 30-Day Spexin Treatment of Mice with Diet-Induced Obesity (DIO) and Type 2 Diabetes (T2DM) Increases Insulin Sensitivity, Improves Liver Functions and Metabolic Status. Mol. Cell. Endocrinol. 2021, 536, 111420. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejski, P.A.; Pruszynska-Oszmalek, E.; Micker, M.; Skrzypski, M.; Wojciechowicz, T.; Szwarckopf, P.; Skieresz-Szewczyk, K.; Nowak, K.W.; Strowski, M.Z. Spexin: A Novel Regulator of Adipogenesis and Fat Tissue Metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Guo, W.; Ju, M.; Huang, Y.; Zeng, H.; Wang, Y.; Yu, M.; Zhang, Z. Exercise Training Rescues Adipose Tissue Spexin Expression and Secretion in Diet-Induced Obese Mice. Physiol. Behav. 2022, 256, 113958. [Google Scholar] [CrossRef] [PubMed]
- Suhs, M.; Stengel, A.; Rudolph, A.; Schaper, S.; Wölk, E.; Kobelt, P.; Rose, M.; Hofmann, T. Circulating Spexin Is Associated with Body Mass Index and Fat Mass but Not with Physical Activity and Psychological Parameters in Women across a Broad Body Weight Spectrum. J. Clin. Med. 2022, 11, 5107. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, Y.; Feng, Y.; Zhang, X.; Wang, X.; Yang, Y.; Wang, X. Peripheral Spexin Inhibited Food Intake in Mice. Int. J. Endocrinol. 2020, 2020, 4913785. [Google Scholar] [CrossRef]
- Li, S.; Li, G.; Liu, Q.; Zhang, Y.; Lin, H.; Xiao, L.; Chen, H. Molecular Cloning and Functional Characterization of Spexin in Orange-Spotted Grouper (Epinephelus coioides). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 196–197, 85–91. [Google Scholar] [CrossRef]
- Leciejewska, N.; Pruszyńska-Oszmałek, E.; Mielnik, K.; Głowacki, M.; Lehmann, T.P.; Sassek, M.; Gawęda, B.; Szczepankiewicz, D.; Nowak, K.W.; Kołodziejski, P.A. Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes 2021, 13, 81. [Google Scholar] [CrossRef]
- Sassek, M.; Kolodziejski, P.A.; Szczepankiewicz, D.; Pruszynska-Oszmalek, E. Spexin in the Physiology of Pancreatic Islets—Mutual Interactions with Insulin. Endocrine 2019, 63, 513–519. [Google Scholar] [CrossRef]
- Sherman, S.B.; Harberson, M.; Rashleigh, R.; Gupta, N.; Powers, R.; Talla, R.; Thusu, A.; Hill, J.W. Spexin Modulates Molecular Thermogenic Profile of Adipose Tissue and Thermoregulatory Behaviors in Female C57BL/6 Mice. Horm. Behav. 2022, 143, 105195. [Google Scholar] [CrossRef]
- Pałasz, A.; Suszka-Świtek, A.; Kaśkosz, A.; Plewka, D.; Bogus, K.; Filipczyk, Ł.; Błaszczyk, I.; Bacopoulou, F.; Worthington, J.J.; Piwowarczyk-Nowak, A.; et al. Spexin-Expressing Neurons in the Magnocellular Nuclei of the Human Hypothalamus. J. Chem. Neuroanat. 2021, 111, 101883. [Google Scholar] [CrossRef]
- Hillier, T.A.; Pedula, K.L.; Schmidt, M.M.; Mullen, J.A.; Charles, M.A.; Pettitt, D.J. Childhood Obesity and Metabolic Imprinting: The Ongoing Effects of Maternal Hyperglycemia. Diabetes Care 2007, 30, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Garza, C. Potential Mechanisms of Metabolic Imprinting That Lead to Chronic Disease. Am. J. Clin. Nutr. 1999, 69, 179–197. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organ Technical Report Series; WHO: Geneve, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Wojciechowska, M.; Wiśniewski, O.W.; Pruszynska-Oszmalek, E.; Krauss, H.; Sassek, M.; Leciejewska, N.; Kolodziejski, P.A.; Wilczak, P. Effect of Obesity and Hypothyroidism on Hepcidin Concentration in Pregnancy—A Pilot Study Using Maternal and Umbilical Cord Blood at Delivery Day. J. Physiol. Pharmacol. 2022, 73, 605–612. [Google Scholar] [CrossRef]
- Dunford, A.R.; Sangster, J.M. Maternal and Paternal Periconceptional Nutrition as an Indicator of Offspring Metabolic Syndrome Risk in Later Life through Epigenetic Imprinting: A Systematic Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S655–S662. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.S.; Rosenfeld, C.R. Metabolic Imprinting by Prenatal, Perinatal, and Postnatal Overnutrition: A Review. Semin. Reprod. Med. 2011, 29, 266–276. [Google Scholar] [CrossRef]
- Nagano, N.; Okada, T.; Fukamachi, R.; Yoshikawa, K.; Munakata, S.; Usukura, Y.; Hosono, S.; Takahashi, S.; Mugishima, H.; Matsuura, M.; et al. Insulin-like Growth Factor-1 and Lipoprotein Profile in Cord Blood of Preterm Small for Gestational Age Infants. J. Dev. Orig. Health Dis. 2013, 4, 507–512. [Google Scholar] [CrossRef]
- Opazo, M.C.; Haensgen, H.; Bohmwald, K.; Venegas, L.F.; Boudin, H.; Elorza, A.A.; Simon, F.; Fardella, C.; Bueno, S.M.; Kalergis, A.M.; et al. Imprinting of Maternal Thyroid Hormones in the Offspring. Int. Rev. Immunol. 2017, 36, 240–255. [Google Scholar] [CrossRef]
- Gök, S.; Gök, B.C.; Enli, Y. Evaluation of the Adipokine Levels of Pregnant Women with Preeclampsia. J. Obstet. Gynaecol. Res. 2023, 49, 154–163. [Google Scholar] [CrossRef]
- Pekal, Y.; Özhan, B.; Enli, Y.; Özdemir, Ö.M.A.; Ergin, H. Cord Blood Levels of Spexin, Leptin, and Visfatin in Term Infants Born Small, Appropriate, and Large for Gestational Age and Their Association with Newborn Anthropometric Measurements. J. Clin. Res. Pediatr. Endocrinol. 2022, 14, 444–452. [Google Scholar] [CrossRef]
- Sanli, S.; Bulbul, A.; Ucar, A. The Effect of Umbilical Cord Blood Spexin, Free 25(OH) Vitamin D3 and Adipocytokine Levels on Intrauterine Growth and Anthropometric Measurements in Newborns. Cytokine 2021, 144, 155578. [Google Scholar] [CrossRef]
- Yavuzkir, S.; Ugur, K.; Deniz, R.; Ustebay, D.U.; Mirzaoglu, M.; Yardim, M.; Sahin, İ.; Baykus, Y.; Karagoz, Z.K.; Aydin, S. Maternal and Umbilical Cord Blood Subfatin and Spexin Levels in Patients with Gestational Diabetes Mellitus. Peptides 2020, 126, 170277. [Google Scholar] [CrossRef]
- Kavalakatt, S.; Khadir, A.; Madhu, D.; Devarajan, S.; Warsame, S.; AlKandari, H.; AlMahdi, M.; Koistinen, H.A.; Al-Mulla, F.; Tuomilehto, J.; et al. Circulating Levels of Urocortin Neuropeptides Are Impaired in Children with Overweight. Obesity 2022, 30, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Mantzoros, C.S.; Rifas-Shiman, S.L.; Williams, C.J.; Fargnoli, J.L.; Kelesidis, T.; Gillman, M.W. Cord Blood Leptin and Adiponectin as Predictors of Adiposity in Children at 3 Years of Age: A Prospective Cohort Study. Pediatrics 2009, 123, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, P.S.; Garland, J.S.; Shivpuri, C.; Mick, G.J.; Sasidharan, P.; Pelz, C.J.; McCormick, K.L. Neonatal Cord Blood Leptin: Its Relationship to Birth Weight, Body Mass Index, Maternal Diabetes, and Steroids. Pediatr. Res. 1998, 43, 338–343. [Google Scholar] [CrossRef]
- Kulik-Rechberger, B.; Bury, A.M.; Rakuś-Kwiatosz, A.; Beń-Skowronek, I. Cortisol, Leptin and Free Leptin Index (FLI) in Newborns in the First Days of Life and Their Importance for Body Weight Programming. Ital. J. Pediatr. 2019, 45, 141. [Google Scholar] [CrossRef]
- Laml, T.; Hartmann, B.W.; Ruecklinger, E.; Preyer, O.; Soeregi, G.; Wagenbichler, P. Maternal Serum Leptin Concentrations Do Not Correlate with Cord Blood Leptin Concentrations in Normal Pregnancy. J. Soc. Gynecol. Investig. 2001, 8, 43–47. [Google Scholar] [CrossRef]
- Kuo, S.H.; Yang, Y.H.; Wang, R.H.; Chan, T.F.; Chou, F.H. Relationships between Leptin, HCG, Cortisol, and Psychosocial Stress and Nausea and Vomiting throughout Pregnancy. Biol. Res. Nurs. 2010, 12, 20–27. [Google Scholar] [CrossRef]
- Schubring, C.; Englaro, P.; Siebler, T.; Blum, W.F.; Demirakca, T.; Kratzsch, J.; Kiess, W. Longitudinal Analysis of Maternal Serum Leptin Levels during Pregnancy, at Birth and up to Six Weeks after Birth: Relation to Body Mass Index, Skinfolds, Sex Steroids and Umbilical Cord Blood Leptin Levels. Horm. Res. 1998, 50, 276–283. [Google Scholar] [CrossRef]
- Porzionato, A.; Rucinski, M.; Macchi, V.; Stecco, C.; Sarasin, G.; Sfriso, M.M.; Di Giulio, C.; Malendowicz, L.K.; De Caro, R. Spexin Is Expressed in the Carotid Body and Is Upregulated by Postnatal Hyperoxia Exposure. Adv. Exp. Med. Biol. 2012, 758, 207–213. [Google Scholar] [PubMed]
- Liu, Y.; Sun, L.; Zheng, L.; Su, M.; Liu, H.; Wei, Y.; Li, D.; Wang, Y.; Dai, C.; Gong, Y.; et al. Spexin Protects Cardiomyocytes from Hypoxia-Induced Metabolic and Mitochondrial Dysfunction. Naunyn. Schmiedebergs. Arch. Pharm. 2020, 393, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Salah, N.Y.; Zeid, D.A.; Sabry, R.N.; Fahmy, R.F.; El Abd, M.A.; Awadallah, E.; Omran, A.; El Gendy, Y.G. Circulating Spexins in Children with Obesity: Relation to Cardiometabolic Risk. Eur. J. Clin. Nutr. 2022, 76, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Mărginean, C.O.; Mărginean, C.; Meliţ, L.E. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front. Pediatr. 2018, 6, 271. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
PARAMETER | Non Obese (n = 24) | Obese (n = 24) |
---|---|---|
BEFORE PREGNECY | ||
Women’s age (years) | 30.21 ± 4.32 | 32.13 ± 5.08 |
Height (cm) | 168.1 ± 5.06 | 167.0 ± 4.53 |
Body weight (kg) | 64.41 ± 13.13 | 90.42 ± 12.96 ** |
BMI (kg/m2) | 22.56 ± 0.86 | 32.37 ± 3.89 ** |
ON THE DAY OF BIRTH | ||
Body mass (kg) | 78.42 ± 5.852 | 101.1 ± 11.42 ** |
PARAMETER | Non Obese | Obese |
---|---|---|
Gender (M/F) | 11/13 | 15/9 |
Head circumference (cm) | 36.13 ± 2.11 | 36.33± 2.193 |
Chest circumference (cm) | 34.08 ± 2.1 | 34.2 ± 2.345 |
Abdominal circumference (cm) | 34.46 ± 3.027 | 35.22 ± 2.355 |
Thigh circumference (cm) | 12.33 ± 1.027 | 12.49 ± 1.119 |
Arm circumference (cm) | 10.13 ± 0.832 | 10.25 ± 0.925 |
Parameter | Non-Obese | Obese | ||
---|---|---|---|---|
MB | UCB | MB | UCB | |
Glucose (mg/dL) | 97.04 ± 12.24 | 91.07 ± 11.57 | 103.3 ± 15.26 | 93.49 ± 17.62 |
NEFA (mmol/L) | 0.7309 ± 0.33 | 0.4023 ± 0.15 | 0.7690 ± 0.38 | 0.4583 ± 0.21 |
Cholesterol (mg/dL) | 177.1 ± 44.21 | 92.78 ± 32.51 | 236.7 ± 51.1 ** | 95.09 ± 18.02 |
Triglycerides (mg/dL) | 221.3 ± 96.62 | 128.4 ± 73.93 | 307.5 ± 124.3 * | 142.3 ± 106.1 |
Insulin (ng/mL) | 13.09 ± 6.292 | 3.907 ± 3.390 | 13.79 ± 6.835 | 4.893 ± 4.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowska, M.; Kolodziejski, P.A.; Pruszynska-Oszmalek, E.; Leciejewska, N.; Krauss, H.; Checinska-Maciejewska, Z.; Sassek, M.; Rekas-Dudziak, A.; Bernatek, M.; Skrzypski, M.; et al. Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity? Children 2023, 10, 1517. https://doi.org/10.3390/children10091517
Wojciechowska M, Kolodziejski PA, Pruszynska-Oszmalek E, Leciejewska N, Krauss H, Checinska-Maciejewska Z, Sassek M, Rekas-Dudziak A, Bernatek M, Skrzypski M, et al. Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity? Children. 2023; 10(9):1517. https://doi.org/10.3390/children10091517
Chicago/Turabian StyleWojciechowska, Malgorzata, Pawel A. Kolodziejski, Ewa Pruszynska-Oszmalek, Natalia Leciejewska, Hanna Krauss, Zuzanna Checinska-Maciejewska, Maciej Sassek, Anna Rekas-Dudziak, Malgorzata Bernatek, Marek Skrzypski, and et al. 2023. "Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity?" Children 10, no. 9: 1517. https://doi.org/10.3390/children10091517
APA StyleWojciechowska, M., Kolodziejski, P. A., Pruszynska-Oszmalek, E., Leciejewska, N., Krauss, H., Checinska-Maciejewska, Z., Sassek, M., Rekas-Dudziak, A., Bernatek, M., Skrzypski, M., & Wilczak, M. (2023). Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity? Children, 10(9), 1517. https://doi.org/10.3390/children10091517