Investigating the Association between Serum and Hematological Biomarkers and Neonatal Sepsis in Newborns with Premature Rupture of Membranes: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions and Study Population
- -
- No sepsis (absence of clinical signs suggestive for sepsis; CRP < 6 mg/L; PCT < 0.5 ng/mL; hematological and biochemical parameters within normal limits; and negative blood culture);
- -
- Presumed EOS ≥3 clinical signs suggestive of sepsis; CRP ≥ 10 mg/L; PCT > 0.5 ng/mL; ≥2 altered serum parameters, other than CRP or PCT: WBC, I/T, PLT; and negative blood culture;
- -
- Proven EOS ≥ 3 clinical signs suggestive of sepsis; CRP ≥ 10 mg/L; PCT > 0.5 ng/mL; ≥2 altered serum parameters, other than CRP or PCT; and positive blood culture.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Lawama, M.; AlZaatreh, A.; Elrajabi, R.; Abdelhamid, S.; Badran, E. Prolonged Rupture of Membranes, Neonatal Outcomes and Management Guidelines. J. Clin. Med. Res. 2019, 11, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Musilova, I.; Bestvina, T.; Hudeckova, M.; Michalec, I.; Cobo, T.; Jacobsson, B.; Kacerovsky, M. Vaginal fluid interleukin-6 concentrations as a point-of-care test is of value in women with preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 2016, 215, 619. [Google Scholar] [CrossRef] [PubMed]
- Toprak, E.; Bozkurt, M.; Dinçgez Çakmak, B.; Özçimen, E.E.; Silahlı, M.; Ender Yumru, A.; Çalışkan, E. Platelet-to-lymphocyte ratio: A new inflammatory marker for the diagnosis of preterm premature rupture of membranes. J. Turk. Ger. Gynecol. Assoc. 2017, 18, 122–126. [Google Scholar] [PubMed]
- Caloone, J.; Rabilloud, M.; Boutitie, F.; Traverse-Glehen, A.; Allias-Montmayeur, F.; Denis, L.; Boisson-Gaudin, C.; Hot, I.J.; Guerre, P.; Cortet, M.; et al. Accuracy of several maternal seric markers for predicting histological chorioamnionitis after preterm premature rupture of membranes: A prospective and multicentric study. Eur. J. Obs. Gynecol. Reprod. Biol. 2016, 205, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Văduva, C.C.; Constantinescu, C.; Radu, M.M.; Văduva, A.R.; Pănuş, A.; Ţenovici, M.; DiŢescu, D.; Albu, D.F. Pregnancy resulting from IMSI after testicular biopsy in a patient with obstructive azoospermia. Rom. J. Morphol. Embryol. 2016, 57, 879–883. [Google Scholar]
- Albu, D.F.; Albu, C.C.; Văduva, C.-C.; Niculescu, M.; Edu, A. Diagnosis problems in a case of ovarian tumor-case presentation. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2016, 57, 1437–1442. [Google Scholar]
- Enătescu, I.; Craina, M.; Gluhovschi, A.; Giurgi-Oncu, C.; Hogea, L.; Nussbaum, L.A.; Bernad, E.; Simu, M.; Cosman, D.; Iacob, D.; et al. The role of personality dimensions and trait anxiety in increasing the likelihood of suicide ideation in women during the perinatal period. J. Psychosom. Obstet. Gynaecol. 2021, 42, 242–252. [Google Scholar]
- Enatescu, V.R.; Bernad, E.; Gluhovschi, A.; Papava, I.; Romosan, R.; Palicsak, A.; Munteanu, R.; Craina, M.; Enatescu, I. Perinatal characteristics and mother’s personality profile associated with increased likelihood of postpartum depression occurrence in a Romanian outpatient sample. J. Ment. Health 2017, 26, 212–219. [Google Scholar] [CrossRef]
- Covali, R.; Socolov, D.; Socolov, R. Coagulation tests and blood glucose before vaginal delivery in healthy teenage pregnant women compared with healthy adult pregnant women. Medicine 2019, 98, e14360. [Google Scholar]
- Covali, R.; Socolov, D.; Socolov, R.; Pavaleanu, I.; Carauleanu, A.; Akad, M.; Boiculese, V.L.; Adam, A.M. Complete Blood Count Peculiarities in Pregnant SARS-CoV-2-Infected Patients at Term: A Cohort Study. Diagnostics 2021, 12, 80. [Google Scholar]
- Vicoveanu, P.; Vasilache, I.A.; Nemescu, D.; Carauleanu, A.; Scripcariu, I.S.; Rudisteanu, D.; Burlui, A.; Rezus, E.; Socolov, D. Predictors Associated with Adverse Pregnancy Outcomes in a Cohort of Women with Systematic Lupus Erythematosus from Romania-An Observational Study (Stage 2). J. Clin. Med. 2022, 11, 1964. [Google Scholar] [CrossRef] [PubMed]
- Nemescu, D.; Constantinescu, D.; Gorduza, V.; Carauleanu, A.; Caba, L.; Navolan, D.B. Comparison between paramagnetic and CD71 magnetic activated cell sorting of fetal nucleated red blood cells from the maternal blood. J. Clin. Lab. Anal. 2020, 34, e23420. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, M.; Cărăuleanu, A. The Portrait of a Good Doctor: Conclusions from a Patients and Medical Students Survey. Rev. Cercet. Interv. Soc. 2014, 47, 261–271. [Google Scholar]
- Cucu, A.; Costea, C.; Cărăuleanu, A.; Dumitrescu, G.; Sava, A.; Scripcariu, I.; Costan, V.-V.; Turliuc, S.; Poeata, I.; Turliuc, D. Meningiomas Related to the Chernobyl Irradiation Disaster in North-Eastern Romania Between 1990 and 2015. Rev. Chim. Buchar. Orig. Ed. 2018, 69, 1562–1565. [Google Scholar]
- Turliuc, D.; Turliuc, S.; Cucu, S.; Dumitrescu, G.; Cărăuleanu, A.; Buzdugă, C.; Camelia Tamas Sava, A.; Costea, C. A review of analogies between some neuroanatomical terms and roman household objects. Ann. Anat. Anat. Anz. 2016, 204, 127–133. [Google Scholar] [CrossRef]
- Dorfeuille, N.; Morin, V.; Tétu, A.; Demers, S.; Laforest, G.; Gouin, K.; Piedboeuf, B.; Bujold, E. Vaginal Fluid Inflammatory Biomarkers and the Risk of Adverse Neonatal Outcomes in Women with PPROM. Am. J. Perinatol. 2016, 33, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Li, Z.K.; Zhu, Y.F.; Ju, R.; Hua, S.D.; Yu, C.Z.; Li, X.; Zhang, Y.P.; Li, L.; Yu, Y.; et al. The correlation between prelabour rupture of the membranes and neonatal infectious diseases, and the evaluation of guideline implementation in China: A multi-centre prospective cohort study. Lancet Reg. Health West. Pac. 2020, 3, 100029. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Puopolo, K.M. (Eds.) Risk assessment in neonatal early onset sepsis. In Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sgro, M.; Yudin, M.H.; Lee, S.; Sankaran, K.; Tran, D.; Campbell, D. Early-onset neonatal sepsis: It is not only group B Streptococcus. Paediatr. Child Health 2011, 16, 269. [Google Scholar]
- Shim, G.H.; Kim, S.D.; Kim, H.S.; Kim, E.S.; Lee, H.J.; Lee, J.A.; Choi, C.W.; Kim, E.-K.; Choi, E.H.; Kim, B.I.; et al. Trends in epidemiology of neonatal sepsis in a tertiary center in Korea: A 26-year longitudinal analysis, 1980–2005. J. Korean Med. Sci. 2011, 26, 284–289. [Google Scholar]
- Shah, B.A.; Padbury, J.F. Neonatal sepsis: An old problem with new insights. Virulence 2014, 5, 170–178. [Google Scholar] [CrossRef]
- Ganesan, P.; Shanmugam, P.; Sattar, S.B.; Shankar, S.L. Evaluation of IL-6, CRP and hs-CRP as Early Markers of Neonatal Sepsis. J. Clin. Diagn. Res. 2016, 10, Dc13–Dc17. [Google Scholar] [PubMed]
- Ovayolu, A.; Ovayolu, G.; Karaman, E.; Yuce, T.; Turgut, A.; Bostancıeri, N. Maternal serum endocan concentrations are elevated in patients with preterm premature rupture of membranes. J. Perinat. Med. 2019, 47, 510–515. [Google Scholar] [PubMed]
- Benitz, W.E. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. Clin. Perinatol. 2010, 37, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Helmbrecht, A.R.; Marfurt, S.; Chaaban, H. Systematic Review of the Effectiveness of the Neonatal Early-Onset Sepsis Calculator. J. Perinat. Neonatal Nurs. 2019, 33, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.P.; Benjamin, D.K.; Becker, K.C.; Benjamin, D.K., Jr.; Li, J.; Clark, R.H.; Cohen-Wolkowiez, M.; Smith, P.B. Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr. Infect. Dis. J. 2012, 31, 799–802. [Google Scholar] [CrossRef]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern. Fetal Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [PubMed]
- Gandhi, P.; Kondekar, S. A Review of the Different Haematological Parameters and Biomarkers Used for Diagnosis of Neonatal Sepsis. EMJ Hematol. 2019, 7, 85–92. [Google Scholar] [CrossRef]
- Hedegaard, S.S.; Wisborg, K.; Hvas, A.M. Diagnostic utility of biomarkers for neonatal sepsis—A systematic review. Infect. Dis. 2015, 47, 117–124. [Google Scholar] [CrossRef]
- Vouloumanou, E.K.; Plessa, E.; Karageorgopoulos, D.E.; Mantadakis, E.; Falagas, M.E. Serum procalcitonin as a diagnostic marker for neonatal sepsis: A systematic review and meta-analysis. Intensive Care Med. 2011, 37, 747–762. [Google Scholar] [CrossRef]
- Hincu, M.A.; Zonda, G.I.; Stanciu, G.D.; Nemescu, D.; Paduraru, L. Relevance of Biomarkers Currently in Use or Research for Practical Diagnosis Approach of Neonatal Early-Onset Sepsis. Children 2020, 7, 309. [Google Scholar] [CrossRef]
- Odabasi, I.O.; Bulbul, A. Neonatal Sepsis. Sisli Etfal Hastan Tip Bul. 2020, 54, 142–158. [Google Scholar] [PubMed]
- Tuzun, F.; Ozkan, H.; Cetinkaya, M.; Yucesoy, E.; Kurum, O.; Cebeci, B.; Cakmak, E.; Ozkutuk, A.; Keskinoglu, P.; Baysal, B.; et al. Is European Medicines Agency (EMA) sepsis criteria accurate for neonatal sepsis diagnosis or do we need new criteria? PLoS ONE 2019, 14, e0218002. [Google Scholar]
- Gibbs, R.S.; Blanco, J.E.; St Clair, P.J.; Castaneda, Y.S. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J. Infect. Dis. 1982, 145, 1–8. [Google Scholar]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Achten, N.B.; Dorigo-Zetsma, J.W.; van Rossum, A.M.C.; Oostenbrink, R.; Plötz, F.B. Risk-based maternal group B Streptococcus screening strategy is compatible with the implementation of neonatal early-onset sepsis calculator. Clin. Exp. Pediatr. 2020, 63, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Polcwiartek, L.B.; Smith, P.B.; Benjamin, D.K.; Zimmerman, K.; Love, A.; Tiu, L.; Murray, S.; Kang, P.; Ebbesen, F.; Hagstrøm, S.; et al. Early-onset sepsis in term infants admitted to neonatal intensive care units (2011–2016). J. Perinatol. 2021, 41, 157–163. [Google Scholar] [CrossRef]
- Karabulut, B.; Alatas, S.O. Diagnostic Value of Neutrophil to Lymphocyte Ratio and Mean Platelet Volume on Early Onset Neonatal Sepsis on Term Neonate. J. Pediatr. Intensive Care 2021, 10, 143–147. [Google Scholar]
- Kuzniewicz, M.W.; Puopolo, K.M.; Fischer, A.; Walsh, E.M.; Li, S.; Newman, T.B.; Kipnis, P.; Escobar, G.J. A Quantitative, Risk-Based Approach to the Management of Neonatal Early-Onset Sepsis. JAMA Pediatr. 2017, 171, 365–371. [Google Scholar] [CrossRef]
- Ko, M.H.; Chang, H.Y.; Li, S.T.; Jim, W.T.; Chi, H.; Hsu, C.H.; Peng, C.C.; Lin, C.Y.; Chen, C.H.; Chang, J.H. An 18-year retrospective study on the epidemiology of early-onset neonatal sepsis—Emergence of uncommon pathogens. Pediatr. Neonatol. 2021, 62, 491–498. [Google Scholar]
- Shaaban, H.A.; Safwat, N. Mean platelet volume in preterm: A predictor of early onset neonatal sepsis. J. Matern. Fetal Neonatal. Med. 2020, 33, 206–211. [Google Scholar]
- Arcagok, B.C.; Karabulut, B. Platelet to Lymphocyte Ratio in Neonates: A Predictor of Early onset Neonatal Sepsis. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019055. [Google Scholar] [PubMed]
- Stocker, M.; van Herk, W.; El Helou, S.; Dutta, S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; Moonen, R.; et al. C-Reactive Protein, Procalcitonin, and White Blood Count to Rule Out Neonatal Early-onset Sepsis Within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study. Clin. Infect. Dis. 2021, 73, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.; de Waal, K.; Ferguson, J.K. Time to positive blood culture in early onset neonatal sepsis: A retrospective clinical study and review of the literature. J. Paediatr. Child Health 2020, 56, 1371–1375. [Google Scholar] [PubMed]
- Koenig, J.M.; Keenan, W.J. Group B Streptococcus and early-onset sepsis in the era of maternal prophylaxis. Pediatr. Clin. N. Am. 2009, 56, 689–708. [Google Scholar]
- Stoll, B.J.; Hansen, N.I.; Sánchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., 3rd; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef]
- Sabry, N.; Abdelhakeem, M.; Mohamed, H.; Baheeg, G. Validity of Platelet to Lymphocyte Ratio and Neutrophil to Lymphocyte Ratio in Diagnosing Early-onset Neonatal Sepsis in Full-term Newborns. J. Compr. Pediatr. 2022, 13, e115378. [Google Scholar] [CrossRef]
- Al-Matary, A.; Heena, H.; AlSarheed, A.S.; Ouda, W.; AlShahrani, D.A.; Wani, T.A.; Qaraqei, M.; Abu-Shaheen, A. Characteristics of neonatal Sepsis at a tertiary care hospital in Saudi Arabia. J. Infect. Public Health 2019, 12, 666–672. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, G.E.; Park, J.H.; Lee, S.L.; Kim, C.S. Clinical features and prognostic factors of early-onset sepsis: A 7.5-year experience in one neonatal intensive care unit. Korean J. Pediatr. 2019, 62, 36–41. [Google Scholar] [CrossRef]
- Dong, Y.; Basmaci, R.; Titomanlio, L.; Sun, B.; Mercier, J.C. Neonatal sepsis: Within and beyond China. Chin. Med. J. 2020, 133, 2219–2228. [Google Scholar]
- Gkentzi, D.; Kortsalioudaki, C.; Cailes, B.C.; Zaoutis, T.; Kopsidas, J.; Tsolia, M.; Spyridis, N.; Siahanidou, S.; Sarafidis, K.; Heath, P.T.; et al. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, 293–297. [Google Scholar]
- Barcaite, E.; Bartusevicius, A.; Tameliene, R.; Kliucinskas, M.; Maleckiene, L.; Nadisauskiene, R. Prevalence of maternal group B streptococcal colonisation in European countries. Acta Obstet. Gynecol. Scand. 2008, 87, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Wirth, T.; Bergot, M.; Rasigade, J.P.; Pichon, B.; Barbier, M.; Martins-Simoes, P.; Jacob, L.; Pike, R.; Tissieres, P.; Picaud, J.C.; et al. Niche specialization and spread of Staphylococcus capitis involved in neonatal sepsis. Nat. Microbiol. 2020, 5, 735–745. [Google Scholar]
- Chiesa, C.; Natale, F.; Pascone, R.; Osborn, J.F.; Pacifico, L.; Bonci, E.; De Curtis, M. C reactive protein and procalcitonin: Reference intervals for preterm and term newborns during the early neonatal period. Clin. Chim. Acta 2011, 412, 1053–1059. [Google Scholar] [PubMed]
- Eichberger, J.; Resch, E.; Resch, B. Diagnosis of Neonatal Sepsis: The Role of Inflammatory Markers. Front. Pediatr. 2022, 10, 840288. [Google Scholar] [CrossRef] [PubMed]
- Eschborn, S.; Weitkamp, J.H. Procalcitonin versus C-reactive protein: Review of kinetics and performance for diagnosis of neonatal sepsis. J. Perinatol. 2019, 39, 893–903. [Google Scholar] [PubMed]
- Mjelle, A.B.; Guthe, H.J.T.; Reigstad, H.; Bjørke-Monsen, A.L.; Markestad, T. Serum concentrations of C-reactive protein in healthy term-born Norwegian infants 48–72 hours after birth. Acta Paediatr. 2019, 108, 849–854. [Google Scholar] [CrossRef]
- Saldir, M.; Tunc, T.; Cekmez, F.; Cetinkaya, M.; Kalayci, T.; Fidanci, K.; Babacan, O.; Erdem, G.; Kocak, N.; Sari, E.; et al. Endocan and Soluble Triggering Receptor Expressed on Myeloid Cells-1 as Novel Markers for Neonatal Sepsis. Pediatr. Neonatol. 2015, 56, 415–421. [Google Scholar]
- Zonda, G.I.; Zonda, R.; Cernomaz, A.T.; Paduraru, L.; Grigoriu, B.D. Endocan serum concentration in uninfected newborn infants. J. Infect. Dev. Ctries. 2019, 13, 817–822. [Google Scholar]
- Zonda, G.I.; Zonda, R.; Cernomaz, A.T.; Paduraru, L.; Avasiloaiei, A.L.; Grigoriu, B.D. Endocan—A potential diagnostic marker for early onset sepsis in neonates. J. Infect. Dev. Ctries. 2019, 13, 311–317. [Google Scholar]
- Seliem, W.; Sultan, A.M. Presepsin as a predictor of early onset neonatal sepsis in the umbilical cord blood of premature infants with premature rupture of membranes. Pediatr. Int. 2018, 60, 428–432. [Google Scholar]
- Ruan, L.; Chen, G.Y.; Liu, Z.; Zhao, Y.; Xu, G.Y.; Li, S.F.; Li, C.N.; Chen, L.S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Fang, C.; Xie, L. Diagnostic utility of procalcitonin as a biomarker for late-onset neonatal sepsis. Transl. Pediatr. 2020, 9, 237–242. [Google Scholar] [CrossRef] [PubMed]
Characteristics | PROM ≥ 18 h (Group A, n = 826) | ROM < 18 h (Group B, n = 529) | p Value |
---|---|---|---|
GA (weeks) mean ± SD | 36.15 ± 3.9 | 37.83 ± 2.528 | <0.001 |
Preterm (n/%) * | 332 (40.19%) | 86 (16.25%) | <0.001 |
BW (grams) mean ± SD | 2730.3 ± 857.7 | 3146.3 ± 636.2 | <0.001 |
CS (n/%) | 371 (44.91%) | 245 (46.31%) | 0.615 |
VB (n/%) | 455 (55.08%) | 284 (53.68%) | 0.614 |
Gender (n/%) | Male-419 (50.72%) Female-407 (49.27%) | Male-307 (58.03%) Female-222 (41.96%) | 0.009 |
Apgar score, median and interquartile ranges | Apgar 1 min-7 (5–8) Apgar 5 min-8 (5–9) Apgar 10 min-8 (6–9) | Apgar 1 min-8 (6–9) Apgar 5 min-9 (7–10) Apgar 10 min-9 (8–10) | <0.001 |
Characteristics | Proven EOS (A1) n = 10 | Proven EOS (B1) n = 11 | p Value | Presumed EOS (A2) n = 414 | Presumed EOS (B2) n = 266 | p Value | No Sepsis (A3) n = 402 | No Sepsis (B3) n = 252 | p Value |
---|---|---|---|---|---|---|---|---|---|
GA, WEEKS (mean ± SD) | 29.5 ± 4.3 | 35.3 ± 3.1 | 0.002 | 35.6 ± 4.3 | 37.6 ± 3.1 | <0.001 | 36.8 ± 3.1 | 38.1 ± 1.6 | <0.001 |
Preterm * (n/%) | 9 (90%) | 7 (63.63%) | 0.157 | 185 (44.68%) | 46 (17.29%) | <0.001 | 138 (34.33%) | 32 (12.70%) | <0.001 |
BW (median) | 1484 | 2636 | 0.005 | 2605 | 3109 | <0.001 | 2889 | 3250 | <0.001 |
CS (n/%) | 4 (40%) | 8 (72.72%) | 0.130 | 188 (45.41%) | 123 (46.24%) | 0.519 | 179 (44.53%) | 114 (45.24%) | 0.969 |
VB (n/%) | 6 (60%) | 3 (27.27%) | 0.130 | 226 (54.59%) | 143 (53.76%) | 0.832 | 223 (55.47%) | 138 (54.76%) | 0.859 |
Gender (n/%) | Male-6 (60%) Female-4 (40%) | Male-8 (72.72%) Female-3 (27.27%) | 0.014 | 204 (49.28%) | 152 (57.14%) | 0.045 | 213 (52.99%) | 147 (58.33%) | 0.181 |
210 (50.72%) | 114 (42.86%) | 0.045 | 189 (47.01%) | 105 (41.67%) | 0.181 | ||||
Apgar score, median and interquartile ranges | Apgar 1 min-6 (4–7) Apgar 5 min-7 (5–8) Apgar 10 min-7 (5–8) | Apgar 1 min-7 (5–8) Apgar 5 min-8 (7–9) Apgar 10 min-8 (7–9) | 0.47 | Apgar 1 min-8 (5–9) Apgar 5 min-8 (6–9) Apgar 10 min-8 (7–9) | Apgar 1 min-8 (7–9) Apgar 5 min-9 (8–10) Apgar 10 min-9 (8–10) | <0.001 | Apgar 1 min-8 (7–9) Apgar 5 min-9 (7–10) Apgar 10 min-9 (7–10) | Apgar 1 min-9 (8–10) Apgar 5 min-9 (8–10) Apgar 10 min-9 (8–10) | <0.001 |
Duration of stay, days (mean ± SD) | 52.10 ± 40.5 | 22.73 ± 12.1 | <0.005 | 18.80 ± 24.6 | 9.75 ± 17.1 | <0.001 | 10.92 ± 15.1 | 4.81 ± 3.8 | <0.001 |
Risk Factors | Proven EOS (A1) n = 10 | Proven EOS (B1) n = 11 | p Value | Presumed EOS (A2) n = 414 | Presumed EOS (B2) n = 266 | p Value | No Sepsis (A3) n = 402 | No Sepsis (B3) n = 252 | p Value |
---|---|---|---|---|---|---|---|---|---|
Positive amniotic fluid culture (n/%) | 5 (50%) | 0 (0%) | 0.007 | 58 (14.01%) | 15 (5.64%) | 0.001 | 19 (4.73%) | 8 (3.17%) | 0.83 |
Foul smelling amniotic fluid (n/%) | 2 (20%) | 3 (27.27%) | 0.28 | 41 (9.90%) | 27 (10.15%) | 0.41 | 16 (3.98%) | 16 (6.35%) | 0.739 |
Maternal fever (n/%) | 1 (10%) | 1 (9.09%) | 0.94 | 6 (1.45%) | 3 (1.13%) | 0.72 | 1 (0.25%) | 0 (0%) | 0.428 |
Maternal inflammatory markers (n/%) | 0 (0%) | 0 (0%) | - | 5 (1.21%) | 6 (2.26%) | 0.29 | 1 (0.25%) | 0 (0%) | 0.428 |
Neonatal Complications | Proven EOS (A1) n = 10 | Proven EOS (B1) n = 11 | p Value | Presumed EOS (A2) n = 414 | Presumed EOS (B2) n = 266 | p Value | No Sepsis (A3) n = 402 | No Sepsis (B3) n = 252 | p Value |
---|---|---|---|---|---|---|---|---|---|
Short term complications | |||||||||
RDS (n/%) | 9 (90%) | 7 (63.63%) | 0.157 | 134 (32.36%) | 57 (21.42%) | 0.002 | 68 (16.91%) | 5 (1.98%) | <0.001 |
PPHN (n/%) | 1 (10%) | 0 (0%) | 0.28 | 7 (1.69%) | 7 (2.63%) | 0.399 | 2 (0.49%) | 0 (0%) | 0.262 |
Pulmonary hemorrhage (n/%) | 0 (0%) | 1 (9.09%) | 0.329 | 1 (0.24%) | 1 (0.37%) | 0.002 | 1 (0.24%) | 0 (0%) | 0.428 |
Pneumothorax (n/%) | 1 (10%) | 0 (0%) | 0.366 | 8 (1.93%) | 4 (1.50%) | 0.002 | 2 (0.49%) | 2 (0.79%) | 0.636 |
Severe IVH * (n/%) | 0 (0%) | 1 (9.09%) | 0.32 | 8 (1.93%) | 6 (2.25%) | 0.772 | 0 (0%) | 0 (0%) | - |
Long term complications | |||||||||
NEC (n/%) | 1 (10%) | 0 (0%) | 0.28 | 4 (0.96%) | 0 (0%) | 0.049 | 0 (0%) | 0 (0%) | 0.428 |
ROP (n/%) | 2 (20%) | 0 (0%) | <0.001 | 24 (5.79%) | 4 (1.50%) | 0.006 | 4 (0.99%) | 0 (0%) | 0.112 |
BPD (n/%) | 0 (0%) | 1 (9.09%) | 0.329 | 6 (1.44%) | 4 (1.50%) | 0.954 | 4 (0.99%) | 0 (0%) | 0.428 |
Antibiotherapy (days), mean ± SD | 9.2 ± 4.36 | 10.7 ± 4.88 | 0.801 | 4.6 ± 1.83 | 8 ± 1.58 | 0.501 | 8 ± 1.63 | 5.8 ± 1.14 | 0.562 |
Duration of stay, (days), mean ± SD | 52.10 ± 40.5 | 22.73 ± 12.1 | <0.005 | 18.80 ± 24.6 | 9.75 ± 17.1 | <0.001 | 10.92 ± 15.1 | 4.81 ± 3.8 | <0.001 |
Mortality (n/%) | 1 (10%) | 0 (0%) | 0.28 | 8 (1.93%) | 7 (2.63%) | 0.54 | 7 (1.74%) | 0 (0%) | 0.428 |
Pathogen | PROM ≥ 18 h % | ROM < 18 h % | Total (%) |
---|---|---|---|
Staphylococcus spp. | 3 (30%) | 3 (27.3%) | 6 (28.5%) |
Klebsiella pneumoniae | 1 (10%) | 4 (36.4%) | 5 (23.8%) |
Escherichia coli | 5 (50%) | 0 (0%) | 5 (23.8%) |
Streptococcus spp. | 1 (10%) | 3 (27.3%) | 4 (19.2%) |
Listeria monocytogenes | 0 (0%) | 1 (9%) | 1 (4.7%) |
Parameters | PROM > 18 h Group A | ROM < 18 h Group B | Independent t-Test | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | t | p Value | |||||
WBC × 103/mm3 D1/D3/D5 | 19.54 ± 8.02 | 14.45 ± 8.21 | 13.1 ± 6.34 | 21.2 ± 7.87 | 14.34 ± 6.54 | 13.19 ± 7.61 | −3.7 0.2 0.0 | A vs. B D1: <0.001 A vs. B D3: >0.05 A vs. B D5: >0.05 |
I/T ratio | 0.14 ± 0.11 | 0.15 ± 0.08 | −0.53 | A vs. B: >0.05 | ||||
CRP mg/L D1/D3/D5 | 10.83 ± 9.56 | 11.86 ± 11.26 | 8.58 ± 15.06 | 13.02 ± 12.4 | 12.97 ± 18.35 | 8.51 ± 9.40 | −3.3 −1.0 0.0 | A vs. B D1: <0.001 A vs. B D3: >0.05 A vs. B D5: >0.05 |
Fibrinogen D1/D3/D5 | 270 ± 98.3 | 332 ± 118.6 | 362 ± 88.3 | 268 ± 79.8 | 362 ± 114.2 | 340 ± 108.9 | 0.16 −1.7 1.4 | A vs. B D1: >0.05 A vs. B D3: >0.05 A vs. B D5: >0.05 |
PROVEN SEPSIS Subgroup A1 Subgroup B1 | Day 1 | Day 3 | Day 5 | Independent t-Test | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | t | p Value | |
WBC × 103/mm3 | 12.05 ± 7.74 | 13.15 ± 10.89 | 17.71 ± 6.98 | −0.8 −0.5 −1.0 | A1 vs. B1 D1: >0.05 A1 vs. B1 D3: >0.05 A1 vs. B1 D5: >0.05 |
15.1 ± 8.03 | 15.49 ± 8.13 | 23.67 ± 15 | |||
Procalcitonin (ng/mL) | 17.32 ± 3.16 | 3.72 | A1 vs. B1: <0.05 | ||
12.78 ± 2.42 | |||||
I/T ratio | 0.20 ± 0.08 | 2.0 | A1 vs. B1: >0.05 | ||
0.12 ± 0.04 | |||||
CRP mg/L | 21.5 ± 19.10 | 38.5 ± 18.75 | 20.64 ± 14.25 | 0.4 0.0 2.1 | A1 vs. B1 D1: >0.05 A1 vs. B1 D3: >0.05 A1 vs. B1 D5: >0.05 |
19.57 ± 16.93 | 38.36 ± 7.56 | 47.88 ± 6.48 | |||
Fibrinogen | 399 ± 81.4 | 450 ± 191 | 380 ± 103 | 0.7 −0.0 0.3 | A1 vs. B1 D1: >0.05 A1 vs. B1 D3: >0.05 A1 vs. B1 D5: >0.05 |
355 ± 109.4 | 457 ± 125 | 358 ± 104 |
Presumed EOS Subgroup A2 Subgroup B2 | Day 1 | Day 3 | Day 5 | Independent t-Test | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | t | p Value | |
WBC × 103/mm3 | 20.13 ± 9.15 | 13.92 ± 9.15 | 15.31 ± 9.05 | −2.4 0.6 0.7 | A2 vs. B2 D1: <0.05 A2 vs. B2 D3: >0.05 A2 vs. B2 D5: >0.05 |
21.9 ± 9.18 | 13.23 ± 6.9 | 14.83 ± 7.09 | |||
Procalcitonin (ng/mL) | 9.12 ± 1.26 | 4.84 | A2 vs. B2: < 0.05 | ||
4.37 ± 1.14 | |||||
I/T ratio | 0.14 ± 0.12 | −0.4 | A2 vs. B2: >0.05 | ||
0.15 ± 0.09 | |||||
CRP (mg/L) | 13.96 ± 10.17 | 13.4 ± 6.7 | 17.6 ± 9.78 | −3.0 −0.3 0.2 | A2 vs. B2 D1: <0.05 A2 vs. B2 D3: >0.05 A2 vs. B2 D5: >0.05 |
17 ± 4.37 | 13.8 ± 9.32 | 18 ± 10.7 | |||
Fibrinogen | 277 ± 104 | 343 ± 120 | 364 ± 87.6 | 0.1 −0.0 1.3 | A2 vs. B2 D1: >0.05 A2 vs. B2 D3: >0.05 A2 vs. B2 D5: >0.05 |
275 ± 84.7 | 344 ± 109 | 342 ± 110 | |||
No sepsis Subgroup A3 Subgroup B3 | Day 1 Mean ± SD | Day 3 Mean ± SD | Day 5 Mean ± SD | t | p value |
WBC × 103/mm3 | 19.09 ± 6.44 | 13.02 ± 6.13 | 11.42 ± 4.80 | −3.0 −0.5 0.9 | A3 vs. B3 D1: <0.05 A3 vs. B3 D3: >0.05 A3 vs. B3 D5: >0.05 |
20.76 ± 5.57 | 13.39 ± 5.19 | 10.55 ± 3.99 | |||
I/T ratio | 0.104 ± 0.09 | −3.5 | A3 vs. B3: >0.05 | ||
0.14 | |||||
CRP mg/L | 7.03 ± 6.5 | 7.18 ± 5.77 | 4.99 ± 3.38 | −0.9 −0.7 −2.0 | A3 vs. B3 D1: >0.05 A3 vs. B3 D3: >0.05 A3 vs. B3 D5: <0.05 |
7.57 ± 5.6 | 7.80 ± 6.93 | 6.22 ± 3.42 | |||
Fibrinogen | 257 ± 86 | 293 ± 92.67 | 350 ± 88 | 0.1 −2.5 0.8 | A3 vs. B3 D1: >0.05 A3 vs. B3 D3: <0.05 A3 vs. B3 D5: >0.05 |
255 ± 68.11 | 383 ± 99.59 | 320 ± 115 |
Serum Biomarkers | Groups | ANOVA Results | Bonferroni Test | |||||
---|---|---|---|---|---|---|---|---|
F Score | p Value | Mean Difference | Standard Error | p Value | 95% Confidence Interval Lower Limit | 95% Confidence Interval Upper Limit | ||
WBC day 1 | A1–B1 | 7.13 | <0.001 | −3.05 | 3.45 | 1.000 | −13.21 | 7.11 |
A2–B2 | −8.71 | 2.56 | 0.010 | −16.24 | −1.17 | |||
A3–B3 | −8.08 | 2.53 | 0.022 | −15.53 | −0.64 | |||
WBC day 3 | A1–B1 | 2.79 | 0.016 | −2.34 | 3.59 | 1.000 | −12.92 | 8.24 |
A2–B2 | 0.48 | 0.68 | 1.000 | −1.53 | 2.50 | |||
A3–B3 | −0.037 | 0.90 | 1.000 | −3.03 | 2.28 | |||
WBC day 5 | A1–B1 | 8.27 | <0.001 | −5.96 | 3.23 | 0.98 | −15.49 | 3.57 |
A2–B2 | 0.68 | 0.82 | 1.000 | −1.73 | 3.10 | |||
A3–B3 | 0.87 | 1.28 | 1.000 | −2.91 | 4.66 | |||
CRP day 1 | A1–B1 | 41.43 | <0.001 | 1.92 | 4.92 | 1.000 | −12.55 | 16.40 |
A2–B2 | −3.05 | 0.82 | 0.003 | −5.47 | −0.64 | |||
A3–B3 | −0.54 | 0.91 | 1.000 | −3.22 | 2.13 | |||
CRP day 3 | A1–B1 | 21.4 | <0.001 | 0.13 | 6.33 | 1.000 | −18.50 | 18.78 |
A2–B2 | −0.39 | 1.16 | 1.000 | −3.84 | 3.05 | |||
A3–B3 | −0.61 | 1.79 | 1.000 | −5.91 | 4.68 | |||
CRP day 5 | A1–B1 | 3.2 | 0.007 | 11.19 | 6.37 | 1.000 | −7.59 | 29.98 |
A2–B2 | 0.45 | 1.41 | 1.000 | −3.72 | 4.62 | |||
A3–B3 | 24.70 | 4.90 | 0.04 | 10.27 | 39.14 | |||
Fibrinogen day 1 | A1–B1 | 5.2 | <0.001 | 43.9 | 55.08 | 1.000 | −118.29 | 206.09 |
A2–B2 | 1.41 | 9.02 | 1.000 | −25.16 | 27.98 | |||
A3–B3 | 1.34 | 10.40 | 1.000 | −29.28 | 31.97 | |||
Fibrinogen day 3 | A1–B1 | 4.96 | <0.001 | −7.19 | 63.63 | 1.000 | −195.52 | 181.14 |
A2–B2 | 5.60 | 1.61 | 0.008 | 0.86 | 10.36 | |||
A3–B3 | −90.39 | 42.92 | 0.541 | −217.45 | 36.65 | |||
Fibrinogen day 5 | A1–B1 | 0.73 | 0.59 | 21.16 | 50.95 | 1.000 | −130.06 | 172.39 |
A2–B2 | 22.34 | 16.88 | 1.000 | −27.75 | 72.44 | |||
A3–B3 | −1.23 | 2.34 | 1.000 | −8.14 | 5.68 |
Serum Biomarkers | Coefficient | p Value | 95% Confidence Interval |
---|---|---|---|
WBC day 1 | 0.98 | 0.005 | 0.016–0.09 |
WBC day 3 | 1.74 | 0.028 | −0.08–−0.004 |
WBC day 5 | −0.32 | 0.769 | −0.04–0.03 |
CRP day 1 | 1.67 | 0.004 | −0.01–0.02 |
CRP day 3 | −0.19 | 0.063 | −0.0008–0.03 |
CRP day 5 | −0.46 | 0.483 | −0.044–0.021 |
Fibrinogen day 1 | −0.88 | 0.642 | −0.002–0.001 |
Fibrinogen day 3 | −0.15 | 0.823 | −0.002–0.002 |
Fibrinogen day 5 | −0.57 | 0.117 | −0.004–0.0004 |
Biomarker | AUC Value | 95% Confidence Interval |
---|---|---|
WBC day 1 | 0.55 | 0.35–0.76 |
WBC day 3 | 0.47 | 0.32–0.69 |
WBC day 5 | 0.49 | 0.36–0.68 |
CRP day 1 | 0.76 | 0.58–0.88 |
CRP day 3 | 0.66 | 0.47–0.85 |
CRP day 5 | 0.62 | 0.39–0.86 |
Fibrinogen day 1 | 0.34 | 0.28–0.55 |
Fibrinogen day 3 | 0.37 | 0.36–0.61 |
Fibrinogen day 5 | 0.35 | 0.24–0.63 |
I/T | 0.58 | 0.41–0.74 |
PCT | 0.78 | 0.69–0.93 |
WBC + CRP + Fibrinogen (day 1) | 0.83 | 0.71–0.96 |
WBC + CRP + Fibrinogen (day 3) | 0.90 | 0.84–0.95 |
WBC + CRP + Fibrinogen (day 5) | 0.70 | 0.59–0.82 |
I/T + PCT | 0.76 | 0.61–0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hincu, M.-A.; Zonda, G.-I.; Vicoveanu, P.; Harabor, V.; Harabor, A.; Carauleanu, A.; Melinte-Popescu, A.-S.; Melinte-Popescu, M.; Mihalceanu, E.; Stuparu-Cretu, M.; et al. Investigating the Association between Serum and Hematological Biomarkers and Neonatal Sepsis in Newborns with Premature Rupture of Membranes: A Retrospective Study. Children 2024, 11, 124. https://doi.org/10.3390/children11010124
Hincu M-A, Zonda G-I, Vicoveanu P, Harabor V, Harabor A, Carauleanu A, Melinte-Popescu A-S, Melinte-Popescu M, Mihalceanu E, Stuparu-Cretu M, et al. Investigating the Association between Serum and Hematological Biomarkers and Neonatal Sepsis in Newborns with Premature Rupture of Membranes: A Retrospective Study. Children. 2024; 11(1):124. https://doi.org/10.3390/children11010124
Chicago/Turabian StyleHincu, Maura-Adelina, Gabriela-Ildiko Zonda, Petronela Vicoveanu, Valeriu Harabor, Anamaria Harabor, Alexandru Carauleanu, Alina-Sînziana Melinte-Popescu, Marian Melinte-Popescu, Elena Mihalceanu, Mariana Stuparu-Cretu, and et al. 2024. "Investigating the Association between Serum and Hematological Biomarkers and Neonatal Sepsis in Newborns with Premature Rupture of Membranes: A Retrospective Study" Children 11, no. 1: 124. https://doi.org/10.3390/children11010124
APA StyleHincu, M. -A., Zonda, G. -I., Vicoveanu, P., Harabor, V., Harabor, A., Carauleanu, A., Melinte-Popescu, A. -S., Melinte-Popescu, M., Mihalceanu, E., Stuparu-Cretu, M., Vasilache, I. -A., Nemescu, D., & Paduraru, L. (2024). Investigating the Association between Serum and Hematological Biomarkers and Neonatal Sepsis in Newborns with Premature Rupture of Membranes: A Retrospective Study. Children, 11(1), 124. https://doi.org/10.3390/children11010124