Neurodevelopment Outcomes in Very-Low-Birth-Weight Infants with Metabolic Bone Disease at 2 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Strategy of Nutrition Management
2.3. Patient Demographic Data
2.4. Definitions
2.5. Neurodevelopmental Outcome Assessment
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic bone disease of prematurity: Diagnosis and management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Abrams, S.A.; Committee on Nutrition. Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics 2013, 131, e1676–e1683. [Google Scholar] [CrossRef] [PubMed]
- Backström, M.C.; Kuusela, A.L.; Mäki, R. Metabolic bone disease of prematurity. Ann. Med. 1996, 28, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Vachharajani, A.J.; Mathur, A.M.; Rao, R. Metabolic bone disease of prematurity. NeoReviews 2009, 10, e402–e411. [Google Scholar] [CrossRef]
- Harrison, C.M.; Johnson, K.; McKechnie, E. Osteopenia of prematurity: A national survey and review of practice. Acta Paediatr. 2008, 97, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.; Casirati, A.; Stagi, S.; Amato, O.; Piemontese, P.; Liotto, N.; Orsi, A.; Menis, C.; Pesenti, N.; Tabasso, C.; et al. Don’t forget the bones: Incidence and risk factors of metabolic bone disease in a cohort of preterm infants. Int. J. Mol. Sci. 2022, 23, 10666. [Google Scholar] [CrossRef] [PubMed]
- Avila-Alvarez, A.; Urisarri, A.; Fuentes-Carballal, J.; Mandiá, N.; Sucasas-Alonso, A.; Couce, M.L. Metabolic bone disease of prematurity: Risk factors and associated short-term outcomes. Nutrients 2020, 12, 3786. [Google Scholar] [CrossRef]
- Neu, J.; Walker, W.A. Necrotizing enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef]
- Visser, F.; Sprij, A.J.; Brus, F. The validity of biochemical markers in metabolic bone disease in preterm infants: A systematic review. Acta Paediatr. 2012, 101, 562–568. [Google Scholar] [CrossRef]
- Chinoy, A.; Mughal, M.Z.; Padidela, R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term consequences. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F560–F566. [Google Scholar] [CrossRef]
- Motte-Signoret, E.; Jlassi, M.; Lecoq, L.; Wachter, P.Y.; Durandy, A.; Boileau, P. Early elevated alkaline phosphatase as a surrogate biomarker of ongoing metabolic bone disease of prematurity. Eur. J. Pediatr. 2023, 182, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.M.; Rogers, S.P.; Hicks, P.D.; Hawthorne, K.M.; Parker, B.R.; Abrams, S.A. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.W.; Gupta, J.M.; Nayanar, V.V.; Wilkinson, M.; Posen, S. Skeletal changes in preterm infants. Arch. Dis. Child. 1982, 57, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Gharibeh, N.; Razaghi, M.; Vanstone, C.A.; Sotunde, O.F.; Glenn, L.; Mullahoo, K.; Farahnak, Z.; Khamessan, A.; Wei, S.Q.; McNally, D.; et al. Effect of vitamin D supplementation on bone mass in infants with 25-hydroxyvitamin D concentrations less than 50 nmol/L: A prespecified secondary analysis of a randomized clinical trial. JAMA Pediatr. 2023, 177, 353–362. [Google Scholar] [CrossRef]
- Viswanathan, S.; Khasawneh, W.; McNelis, K.; Dykstra, C.; Amstadt, R.; Super, D.M.; Groh-Wargo, S.; Kumar, D. Metabolic bone disease: A continued challenge in extremely low birth weight infants. JPEN J. Parenter. Enteral Nutr. 2014, 38, 982–990. [Google Scholar] [CrossRef]
- Ukarapong, S.; Venkatarayappa, S.K.B.; Navarrete, C.; Berkovitz, G. Risk factors of metabolic bone disease of prematurity. Early Hum. Dev. 2017, 112, 29–34. [Google Scholar] [CrossRef]
- Chen, W.; Yang, C.; Chen, H.; Zhang, B. Risk factors analysis and prevention of metabolic bone disease of prematurity. Medicine 2018, 97, e12861. [Google Scholar] [CrossRef]
- Hekimoğlu, B.S. Risk factors and clinical features of osteopenia of prematurity: Single-center experience. Trends Pediatr. 2023, 4, 24–30. [Google Scholar] [CrossRef]
- Ferrone, M.; Geraci, M. A review of the relationship between parenteral nutrition and metabolic bone disease. Nutr. Clin. Pract. 2007, 22, 329–339. [Google Scholar] [CrossRef]
- Alkharfy, T.M.; Ba-Abbad, R.; Hadi, A.; Sobaih, B.H.; AlFaleh, K.M. Total parenteral nutrition-associated cholestasis and risk factors in preterm infants. Saudi J. Gastroenterol. 2014, 20, 293–296. [Google Scholar] [CrossRef]
- Jolin-Dahel, K.; Ferretti, E.; Montiveros, C.; Grenon, R.; Barrowman, N.; Jimenez-Rivera, C. Parenteral nutrition-induced cholestasis in neonates: Where does the problem lie? Gastroenterol. Res. Pract. 2013, 2013, 163632. [Google Scholar] [CrossRef]
- Dabezies, E.J.; Warren, P.D. Fractures in very low birth weight infants with rickets. Clin. Orthop. Relat. Res. 1997, 335, 233–239. [Google Scholar] [CrossRef]
- Toomey, F.; Hoag, R.; Batton, D.; Vain, N. Rickets associated with cholestasis and parenteral nutrition in premature infants. Radiology 1982, 142, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, V.; Tagliabue, P. Metabolic bone disease in preterm newborn: An update on nutritional issues. Ital. J. Pediatr. 2009, 35, 20. [Google Scholar] [CrossRef] [PubMed]
- Saarela, T.; Vaarala, A.; Lanning, P.; Koivisto, M. Incidence, ultrasonic patterns and resolution of nephrocalcinosis in very low birthweight infants. Acta Paediatr. 1999, 88, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Duran, I.; Martin, A.; Kribs, A.; Benz-Bohm, G.; Michalk, D.V.; Roth, B. Nephrocalcinosis in preterm infants: A single center experience. Pediatr. Nephrol. 2002, 17, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.S.; Cole, T.J.; Bishop, N.J.; Lucas, A. Neonatal factors predicting childhood height in preterm infants: Evidence for a persisting effect of early metabolic bone disease? J. Pediatr. 2000, 137, 668–673. [Google Scholar] [CrossRef]
- Högberg, U.; Andersson, J.; Högberg, G.; Thiblin, I. Metabolic bone disease risk factors strongly contributing to long bone and rib fractures during early infancy: A population register study. PLoS ONE 2018, 13, e0208033. [Google Scholar] [CrossRef]
- Rogers, E.E.; Hintz, S.R. Early neurodevelopmental outcomes of extremely preterm infants. Semin. Perinatol. 2016, 40, 497–509. [Google Scholar] [CrossRef]
- Yu, Y.-T.; Hsieh, W.-S.; Hsu, C.-H.; Chen, L.-C.; Lee, W.-T.; Chiu, N.-C.; Wu, Y.-C.; Jeng, S.-F. A psychometric study of the Bayley Scales of Infant and Toddler Development–3rd Edition for term and preterm Taiwanese infants. Res. Dev. Disabil. 2013, 34, 3875–3883. [Google Scholar] [CrossRef]
- Çelik, P.; Ayranci Sucakli, I.; Yakut, H.I. Which Bayley-III cut-off values should be used in different developmental levels? Turk. J. Med. Sci. 2020, 50, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Pascal, A.; Govaert, P.; Oostra, A.; Naulaers, G.; Ortibus, E.; Van den Broeck, C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: A meta-analytic review. Dev. Med. Child. Neurol. 2018, 60, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hsu, C.H.; Chang, J.H.; Taiwan Premature Infant Follow-Up Network. Neurodevelopmental outcomes at 2 and 5 years of age in very-low-birth-weight preterm infants born between 2002 and 2009: A prospective cohort study in Taiwan. Pediatr Neonatol 2020, 61, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Thanhaeuser, M.; Steyrl, D.; Fuiko, R.; Brandstaetter, S.; Binder, C.; Thajer, A.; Huber-Dangl, M.; Haiden, N.; Berger, A.; Repa, A. Neurodevelopmental outcome of extremely low birth weight infants with cholestasis at 12 and 24 months. Neonatology 2022, 119, 501–509. [Google Scholar] [CrossRef]
- Kim, N.H.; Youn, Y.A.; Cho, S.J.; Hwang, J.-H.; Kim, E.-K.; Kim, E.A.-R.; Lee, S.M.; Network, K.N. The predictors for the non-compliance to follow-up among very low birth weight infants in the Korean neonatal network. PLoS ONE 2018, 13, e0204421. [Google Scholar] [CrossRef]
No MBD (n = 362) | MBD (n = 97) | ||
---|---|---|---|
Characteristics | N (%) | N (%) | p-Value |
Maternal characteristics | |||
Age of mother at birth ≥35 y/o | 48 (13.3) | 20 (20.6) | 0.070 |
Obstetrical condition | |||
Preeclampsia | 75 (20.7) | 11 (11.3) | 0.036 |
PPROM | 138 (38.1) | 45 (46.4) | 0.140 |
Antenatal glucocorticoid | |||
Any | 285 (78.7) | 72 (74.2) | 0.344 |
Course completed | 244 (67.4) | 60 (61.9) | 0.305 |
Type of delivery | 0.002 | ||
Vaginal | 95 (26.2) | 41 (42.3) | |
Cesarean section | 267 (73.8) | 56 (57.7) | |
Multiple births—no | 139 (38.4) | 26 (26.8) | 0.035 |
Infant characteristics | |||
Median gestational age (IQR)—wk | 29.1 (27.3–31.6) | 25.6 (25.0–27.6) | <0.001 |
Median birth weight (IQR)—g | 1060.5 (895–1211) | 742 (635–890) | <0.001 |
Small for gestational age | 156 (43.1) | 26 (26.8) | 0.004 |
Male sex | 180 (49.7) | 43 (44.3) | 0.345 |
Median Apgar score at 5 min (IQR) | 8 (7–9) | 7 (6–8) | <0.001 |
Support during fetal–neonatal transition | |||
Invasive respiratory support | 137 (37.8) | 78 (80.4) | <0.001 |
Circulatory support | 13 (3.6) | 7 (7.2) | 0.157 |
RDS | 130 (35.9) | 69 (71.1) | <0.001 |
Surfactant administration | 86 (23.8) | 48 (49.5) | <0.001 |
Surgery for PDA | 25 (6.9) | 47 (48.5) | <0.001 |
Postnatal steroid for BPD | 22 (6.1) | 19 (19.6) | <0.001 |
Use of Vit D3 | 90 (24.9) | 31 (32) | 0.159 |
Median length of PN used (IQR)—d | 22.0 (17.0–29.0) | 36.0 (28.0–49.0) | <0.001 |
Median peak serum ALP levels (IQR)—U/L | 428.0 (319.0–571.0) | 700 (549.0–824.0) | <0.001 |
No MBD (n = 362) | MBD (n = 97) | ||
---|---|---|---|
Morbidity | N (%) | N (%) | p-Value |
Cholestasis | 25 (6.9) | 18 (18.6) | <0.001 |
BPD | 252 (69.6) | 95 (97.9) | <0.001 |
NEC stage ≥II | 3 (0.8) | 4 (4.1) | 0.039 |
Culture-proven sepsis | 53 (14.6) | 28 (28.9) | 0.001 |
Severe ROP (stage ≥3) | 56 (15.5) | 43 (44.3) | <0.001 |
Severe IVH (≥grade 3) | 6 (1.7) | 15 (15.5) | <0.001 |
Cystic PVL | 17 (4.7) | 13 (13.4) | 0.002 |
Post-hemorrhagic hydrocephalus | 1 (0.3) | 8 (8.2) | <0.001 |
No MBD (n = 362) | MBD (n = 97) | ||
---|---|---|---|
Bayley-III Scales * | Median (IQR) | Median (IQR) | p-Value |
Cognitive | 90.0 (85.0–95.0) | 90.0 (80.0–95.0) | <0.001 |
Motor | 94.0 (88.0–100.0) | 88.0 (82.0–94.0) | <0.001 |
Language | 94.0 (86.0–100.0) | 89.0 (83.0–97.0) | 0.014 |
Osteoporosis Only (n = 76) | Osteoporosis with Fracture (n = 21) | ||
---|---|---|---|
Bayley-III Scales * | Median (IQR) | Median (IQR) | p-Value |
Cognitive | 90.0 (80.0–95.0) | 90.0 (80.0–95.0) | 0.789 |
Motor | 88.0 (82.0–94.0) | 88.0 (82.0–94.0) | 0.822 |
Language | 90.0 (86.0–97.0) | 89.0 (79.0–94.0) | 0.712 |
Outcome | Parameter | Mean Ratio | 95% CI | p-Value | |
---|---|---|---|---|---|
Cognitive | (Intercept) | 86.439 | 79.061–94.506 | <0.001 | |
Impression rickets or fracture | Yes | 0.966 | 0.943–0.990 | 0.005 | |
No | 1.000 | ||||
Assessment time | 24 months | 0.934 | 0.923–0.946 | <0.001 | |
12 months | 0.966 | 0.954–0.977 | <0.001 | ||
6 months | 1.000 | ||||
Gestational age | 1.004 | 1.001–1.007 | 0.005 | ||
Cystic PVL | Yes | 0.914 | 0.869–0.961 | <0.001 | |
No | 1.000 | ||||
Language | (Intercept) | 81.669 | 74.399–89.649 | <0.001 | |
Impression rickets or fracture | Yes | 0.994 | 0.971–1.017 | 0.590 | |
No | 1.000 | ||||
Assessment time | 24 months | 0.994 | 0.981–1.008 | 0.422 | |
12 months | 0.968 | 0.955–0.981 | <0.001 | ||
6 months | 1.000 | ||||
Gestational age | 1.005 | 1.001–1.008 | 0.004 | ||
Cystic PVL | Yes | 0.949 | 0.906–0.994 | 0.028 | |
No | 1.000 | ||||
Steroids for chronic lung disease | Yes | 0.947 | 0.914–0.981 | 0.002 | |
No | 1.000 | ||||
Motor | (Intercept) | 93.563 | 92.091–95.059 | <0.001 | |
Impression rickets or fracture | Yes | 0.951 | 0.922–0.982 | 0.002 | |
No | 1.000 | ||||
Assessment time | 24 months | 1.033 | 1.018–1.047 | <0.001 | |
12 months | 1.045 | 1.031–1.060 | <0.001 | ||
6 months | 1.000 | ||||
Intubation during fetal–neonatal transition | Yes | 0.956 | 0.936–0.977 | <0.001 | |
No | 1.000 | ||||
Cystic PVL | Yes | 0.870 | 0.815–0.930 | <0.001 | |
No | 1.000 | ||||
Cholestasis | Yes | 0.939 | 0.898–0.982 | 0.005 | |
No | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-W.; Chang, Y.-J.; Chen, L.-J.; Lee, C.-H.; Hsiao, C.-C.; Chen, J.-Y.; Chen, H.-N. Neurodevelopment Outcomes in Very-Low-Birth-Weight Infants with Metabolic Bone Disease at 2 Years of Age. Children 2024, 11, 76. https://doi.org/10.3390/children11010076
Chen Y-W, Chang Y-J, Chen L-J, Lee C-H, Hsiao C-C, Chen J-Y, Chen H-N. Neurodevelopment Outcomes in Very-Low-Birth-Weight Infants with Metabolic Bone Disease at 2 Years of Age. Children. 2024; 11(1):76. https://doi.org/10.3390/children11010076
Chicago/Turabian StyleChen, Yu-Wen, Yu-Jun Chang, Lih-Ju Chen, Cheng-Han Lee, Chien-Chou Hsiao, Jia-Yuh Chen, and Hsiao-Neng Chen. 2024. "Neurodevelopment Outcomes in Very-Low-Birth-Weight Infants with Metabolic Bone Disease at 2 Years of Age" Children 11, no. 1: 76. https://doi.org/10.3390/children11010076
APA StyleChen, Y.-W., Chang, Y.-J., Chen, L.-J., Lee, C.-H., Hsiao, C.-C., Chen, J.-Y., & Chen, H.-N. (2024). Neurodevelopment Outcomes in Very-Low-Birth-Weight Infants with Metabolic Bone Disease at 2 Years of Age. Children, 11(1), 76. https://doi.org/10.3390/children11010076