Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Vision Screening Procedures
2.3. Data Analysis
3. Results
3.1. Demographic Overview
3.2. Cross-Sectional Data
3.2.1. Refractive Errors and Axial Length Overview
3.2.2. Astigmatism Component Interaction
3.2.3. Astigmatic Subtype Comparison
3.2.4. Characteristics of Astigmatism across Three Age Groups
3.2.5. Near-Work and Outdoor Time
3.3. Longitudinal Data
3.3.1. Refractive Errors and Axial Length
3.3.2. Near-Work and Outdoor Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, C.W.; Tsai, A.; Jonas, J.B.; Ohno-Matsui, K.; Chen, J.; Ang, M.; Ting, D.S.W. Digital screen time during the COVID-19 pandemic: Risk for a further myopia boom? Am. J. Ophthalmol. 2021, 223, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheung, S.S.; Chan, H.-N.; Zhang, Y.; Wang, Y.M.; Yip, B.H.; Kam, K.W.; Yu, M.; Cheng, C.-Y.; Young, A.L. Myopia incidence and lifestyle changes among school children during the COVID-19 pandemic: A population-based prospective study. Br. J. Ophthalmol. 2021, 106, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wei, S.; Li, S.-M.; Yang, X.; Cao, K.; Hu, J.; Peng, X.; Yan, R.; Fu, J.; Grzybowski, A. The impact of study-at-home during the COVID-19 pandemic on myopia progression in Chinese children. Front. Public Health 2021, 9, 720514. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, Y.; Yuan, J.; Zhang, Y.; Wang, H.; Zhang, G.; Tu, C.; Lu, X.; Li, J.; Xiong, Y. COVID-19 quarantine reveals that behavioral changes have an effect on myopia progression. Ophthalmology 2021, 128, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Mirhajianmoghadam, H.; Piña, A.; Ostrin, L.A. Objective and subjective behavioral measures in myopic and non-myopic children during the COVID-19 pandemic. Transl. Vis. Sci. Technol. 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, L.; Zheng, S.; Ji, Y.; Xiang, Y.; Lv, B.; Xiong, L.; Li, Z.; Yi, S.; Huang, H. Survey on the progression of myopia in children and adolescents in Chongqing during COVID-19 pandemic. Front. Public Health 2021, 9, 646770. [Google Scholar] [CrossRef]
- Kneepkens, S.C.; de Vlieger, J.; Tideman, J.W.L.; Enthoven, C.A.; Polling, J.R.; Klaver, C.C. Myopia risk behaviour related to the COVID-19 lockdown in Europe: The generation R study. Ophthalmic Physiol. Opt. 2023, 43, 402–409. [Google Scholar] [CrossRef]
- Hashemi, H.; Fotouhi, A.; Yekta, A.; Pakzad, R.; Ostadimoghaddam, H.; Khabazkhoob, M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J. Curr. Ophthalmol. 2018, 30, 3–22. [Google Scholar] [CrossRef]
- Fan, D.; Rao, S.; Cheung, E.; Islam, M.; Chew, S.; Lam, D. Astigmatism in Chinese preschool children: Prevalence, change, and effect on refractive development. Br. J. Ophthalmol. 2004, 88, 938. [Google Scholar] [CrossRef]
- Pan, C.-W.; Zheng, Y.-F.; Anuar, A.R.; Chew, M.; Gazzard, G.; Aung, T.; Cheng, C.-Y.; Wong, T.Y.; Saw, S.-M. Prevalence of refractive errors in a multiethnic Asian population: The Singapore epidemiology of eye disease study. Invest. Ophthalmol. Vis. Sci. 2013, 54, 2590–2598. [Google Scholar] [CrossRef]
- Liang, Y.; Leung, T.-W.; Lian, J.T.; Kee, C.-S. Significant increase in astigmatism in children after study at home during the COVID-19 lockdown. Clin. Exp. Optom. 2023, 106, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Tian, Z.; Xiao, T.; Cao, Z.; Xing, X.; Jin, J. Cohort study on the change trend of astigmatism among preschool children in Baiyun district, Guangzhou from 2018 to 2021. Int. Eye Sci. 2023, 873–877. [Google Scholar]
- Wong, S.-C.; Kee, C.-S.; Leung, T.-W. High prevalence of astigmatism in children after school suspension during the COVID-19 pandemic is associated with axial elongation. Children 2022, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Vincent, S.J.; Collins, M.J. The visual and functional impacts of astigmatism and its clinical management. Ophthalmic Physiol. Opt. 2014, 34, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Collins, M.J.; Carney, L.G. A review of astigmatism and its possible genesis. Clin. Exp. Optom. 2007, 90, 5–19. [Google Scholar] [CrossRef]
- Harvey, E.M.; Dobson, V.; Miller, J.M. Prevalence of high astigmatism, eyeglass wear, and poor visual acuity among Native American grade school children. Optom. Vis. Sci. 2006, 83, 206–212. [Google Scholar] [CrossRef]
- Gwiazda, J.; Grice, K.; Held, R.; McLellan, J.; Thorn, F. Astigmatism and the development of myopia in children. Vis. Res. 2000, 40, 1019–1026. [Google Scholar] [CrossRef]
- Alvarez-Peregrina, C.; Ruiz-Pomeda, A.; Martinez-Perez, C.; Prieto-Garrido, F.L.; Villa-Collar, C.; Gonzalez-Perez, M.; Gonzalez-Abad, A.; Sanchez-Tena, M.A. Subjective behavioral measures in myopic and pre-myopic children before and after the COVID lockdown. Front. Med. 2023, 10, 1308423. [Google Scholar] [CrossRef]
- Madigan, S.; Eirich, R.; Pador, P.; McArthur, B.A.; Neville, R.D. Assessment of Changes in Child and Adolescent Screen Time During the COVID-19 Pandemic: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022, 176, 1188–1198. [Google Scholar] [CrossRef]
- Pan, W.; Lin, J.; Zheng, L.; Lan, W.; Ying, G.; Yang, Z.; Li, X. Myopia and axial length in school-aged children before, during, and after the COVID-19 lockdown—A population-based study. Front. Public Health 2022, 10, 992784. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, Y.; Kam, K.W.; Tang, F.; Li, Y.; Ng, M.P.; Young, A.L.; Ip, P.; Tham, C.C.; Chen, L.J. Prevalence of Myopia in Children Before, During, and After COVID-19 Restrictions in Hong Kong. JAMA Netw. Open 2023, 6, e234080. [Google Scholar] [CrossRef]
- Nagra, M.; Dashrathi, R.; Senthan, E.; Jahan, T.; Campbell, P. Characterisation of internal, refractive, and corneal astigmatism in a UK university student population. Cont. Lens Anterior Eye 2020, 43, 333–337. [Google Scholar] [CrossRef]
- Park, C.Y.; Oh, J.-H.; Chuck, R.S. Predicting ocular residual astigmatism using corneal and refractive parameters: A myopic eye study. Curr. Eye Res. 2013, 38, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Manny, R.E.; Deng, L.; Gwiazda, J.; Hyman, L.; Weissberg, E.; Scheiman, M.; Fern, K.D. Internal astigmatism in myopes and non-myopes: Compensation or constant? Optom. Vis. Sci. 2016, 93, 1079. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, Y.; Zhang, Y.; Zhang, L.; Zhao, M.; Wang, K. Evaluating internal and ocular residual astigmatism in Chinese myopic children. Jpn. J. Ophthalmol. 2017, 61, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Kam, K.W.; Chee, A.S.H.; Tang, R.C.Y.; Zhang, Y.; Zhang, X.J.; Wang, Y.M.; Li, S.L.; Chen, L.J.; Young, A.L.; Tham, C.C. Differential compensatory role of internal astigmatism in school children and adults: The Hong Kong Children Eye Study. Eye 2023, 37, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power vectors: An application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Bobier, W.R. Corneal and lenticular components of total astigmatism in a preschool sample. Optom. Vis. Sci. 2004, 81, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, L.; Tan, C.-S.; Lanca, C.; Foo, L.-L.; Sabanayagam, C.; Saw, S.-M. Systematic Review and Meta-Analysis on the Impact of COVID-19 Pandemic–Related Lifestyle on Myopia. Asia-Pac. J. Ophthalmol. 2022, 11, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; Ramírez-Guerrero, S.; Rojas-Carabali, W.; de-la-Torre, A.; Talero-Gutiérrez, C. Effects of remote learning during the COVID-19 lockdown on children’s visual health: A systematic review. BMJ Open 2022, 12, e062388. [Google Scholar] [CrossRef]
- Chan, K.-H.; Shik, H.-T.; Kwok, K.W.; Kee, C.-S.; Leung, T.-W. Bi-directional Refractive Compensation for With-the-Rule and Against-the-Rule Astigmatism in Young Adults. Invest. Ophthalmol. Vis. Sci. 2022, 63, 15. [Google Scholar] [CrossRef]
- Chu, C.H.G.; Kee, C.S. Effects of optically imposed astigmatism on early eye growth in chicks. PLoS ONE 2015, 10, e0117729. [Google Scholar] [CrossRef]
- Hoseini-Yazdi, H.; Vincent, S.J.; Read, S.A.; Collins, M.J. Astigmatic defocus leads to short-term changes in human choroidal thickness. Invest. Ophth. Vis. Sci. 2020, 61, 48. [Google Scholar] [CrossRef]
- Schmid, K.L.; Wildsoet, C.F. Natural and imposed astigmatism and their relation to emmetropization in the chick. Exp Eye Res 1997, 64, 837–847. [Google Scholar] [CrossRef]
- Brémond-Gignac, D.; Copin, H.; Lapillonne, A.; Milazzo, S. Visual development in infants: Physiological and pathological mechanisms. Curr. Opin. Ophthalmol. 2011, 22, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Buehren, T.; Collins, M.J.; Carney, L. Corneal aberrations and reading. Optom. Vis. Sci. 2003, 80, 159–166. [Google Scholar] [CrossRef]
- Shaw, A.J.; Collins, M.J.; Davis, B.A.; Carney, L.G. Corneal refractive changes due to short-term eyelid pressure in downward gaze. J. Cataract Refract. Surg. 2008, 34, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.W.; Chan, C.-T.; Lam, C.-H.; Tong, Y.-K.; Kee, C.-S. Changes in corneal astigmatism and near heterophoria after smartphone use while walking and sitting. PLoS ONE 2020, 15, e0243072. [Google Scholar] [CrossRef]
- Collins, M.J.; Kloevekorn-Norgall, K.; Buehren, T.; Voetz, S.C.; Lingelbach, B. Regression of lid-induced corneal topography changes after reading. Optom. Vis. Sci. 2005, 82, 843–849. [Google Scholar] [CrossRef]
- Mansour, A.M.; Haddad, R.S. Corneal topography after ocular rubbing. Cornea 2002, 21, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mao, J.; Luo, R.; Li, F.; Pokharel, G.P.; Ellwein, L.B. Accuracy of noncycloplegic autorefraction in school-age children in China. Optom. Vis. Sci. 2004, 81, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Cao, Y.; Cheng, Q.; Li, X.; Pan, L.; Li, L.; Zhu, H.; Lan, W.; Yang, Z. Objectively measured near work, outdoor exposure and myopia in children. Br. J. Ophthalmol. 2020, 104, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.K.; Dhakal, R.; Sanghavi, V.; Verkicharla, P.K. Ambient light level varies with different locations and environmental conditions: Potential to impact myopia. PLoS ONE 2021, 16, e0254027. [Google Scholar] [CrossRef] [PubMed]
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Sample size | 173 | 119 | 43 | 33 | 54 | 30 | 76 | 56 | ||||
Boys (%) | 55.5 (48.0, 63.0) | 52.1 (43.0, 61.2) | 0.57 | 55.8 (40.3, 71.3) | 45.5 (27.5, 63.4) | 0.37 | 51.9 (38.1, 65.6) | 63.3 (45.0, 81.6) | 0.31 | 57.9 (46.5, 69.3) | 50.0 (36.5, 63.5) | 0.37 |
Monthly family income (%) | 0.05 | 0.31 | 0.21 | 0.012 | ||||||||
≤HKD 19,999 | 59.5 (52.2, 66.9) | 47.9 (38.8, 57.0) | 51.2 (35.6, 66.7) | 39.4 (21.8, 57.0) | 70.4 (57.8, 83.0) | 56.7 (37.8, 75.5) | 69.7 (59.2, 80.3) | 48.2 (34.7, 61.7) | ||||
>HKD 19,999 | 40.5 (33.1, 47.8) | 52.1 (43.0, 61.2) | 48.8 (33.3, 64.4) | 60.6 (43.0, 78.2) | 29.6 (17.0, 42.2) | 43.3 (24.5, 62.2) | 30.3 (19.7, 40.8) | 51.8 (38.3, 65.3) | ||||
Parental Myopia (%) # | 57.2 (49.8, 64.7) | 63.9 (55.1, 72.6) | 0.26 | 81.4 (69.3, 93.5) | 69.7 (53.1, 86.2) | 0.23 | 53.7 (40.0, 67.4) | 63.3 (45.0, 81.6) | 0.39 | 46.7 (35.1, 58.2) | 60.7 (47.5, 73.9) | 0.20 |
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Astigmatism proportion (%) | 49.1 (41.6, 56.7) | 55.5 (46.4, 64.5) | 0.29 | 44.2 (28.7, 59.7) | 57.6 (39.8, 75.4) | 0.25 | 42.6 (29.0, 56.2) | 46.7 (27.7, 65.6) | 0.72 | 56.6 (45.2, 68.0) | 58.9 (45.6, 72.2) | 0.79 |
RA (D) * | 0.62 (0.50, 1.00) | 0.75 (0.50, 1.12) | 0.28 | 0.62 (0.37, 0.87) | 0.87 (0.56, 1.06) | 0.10 | 0.62 (0.50, 0.87) | 0.62 (0.50, 1.15) | 0.25 | 0.75 (0.53, 1.09) | 0.75 (0.37, 1.09) | 0.57 |
RAJ0 (D) * | 0.31 (0.18, 0.45) | 0.26 (0.10, 0.49) | 0.29 | 0.25 (0.17, 0.42) | 0.29 (0.14, 0.53) | 0.69 | 0.28 (0.18, 0.40) | 0.25 (0.17, 0.55) | 0.78 | 0.36 (0.17, 0.53) | 0.28 (0.04, 0.48) | 0.036 |
RAJ45 (D) * | 0 (−0.10, 0.09) | −0.12 (−0.25, 0) | <0.001 | 0.03 (−0.04, 0.15) | −0.14 (−0.01, 0.28) | <0.001 | −0.01 (−0.09, 0.09) | −0.12 (−0.20, 0.01) | 0.008 | −0.03 (−0.14, 0.06) | −0.12 (−0.24, 0) | 0.013 |
CA (D) | 1.19 (0.89, 1.58) | 1.47 (0.99, 2.41) | <0.001 | 1.10 (0.84, 1.34) | 1.57 (0.93, 2.42) | 0.009 | 1.13 (0.71, 1.46) | 1.53 (0.98, 2.69) | 0.004 | 1.33 (0.91, 1.82) | 1.43 (1.02, 2.12) | 0.16 |
CAJ0 (D) | 0.57 (0.39, 0.77) | 0.67 (0.43, 1.00) | 0.017 | 0.53 (0.38, 0.65) | 0.69 (0.41, 1.00) | 0.11 | 0.54 (0.34, 0.72) | 0.71 (0.44, 1.22) | 0.011 | 0.65 (0.43, 0.89) | 0.60 (0.43, 0.89) | 0.91 |
CAJ45 (D) | −0.08 (−0.18, 0.04) | −0.19 (−0.34, 0.08) | <0.001 | −0.05 (−0.14, 0.04) | −0.20 (−0.34, −0.08) | <0.001 | −0.08 (−0.16, 0.04) | −0.15 (−0.41, −0.06) | 0.004 | −0.09 (−0.20, 0.05) | −0.20 (−0.33, −0.09) | 0.006 |
IA (D) | 0.69 (0.42, 0.91) | 0.93 (0.66, 1.55) | <0.001 | 0.68 (0.40, 0.88) | 0.94 (0.66, 1.46) | 0.004 | 0.70 (0.40, 0.90) | 0.81 (0.66, 1.84) | 0.012 | 0.75 (0.50, 1.01) | 0.97 (0.67, 1.52) | 0.003 |
IAJ0 (D) | −0.25 (−0.41, −0.13) | −0.35 (−0.61, −0.22) | <0.001 | −0.25 (−0.37, −0.11) | −0.36 (−0.53, −0.22) | 0.047 | −0.26 (−0.39, −0.13) | −0.34 (−0.85, −0.16) | 0.042 | −0.26 (−0.44, −0.14) | −0.34 (−0.62, −0.23) | 0.016 |
IAJ45 (D) | 0.06 (−0.05, 0.20) | 0.08 (−0.06, 0.28) | 0.32 | 0.09 (−0.02, 0.21) | 0.08 (−0.05, 0.34) | 0.75 | 0.03 (−0.09, 0.20) | 0.07 (−0.10, 0.21) | 0.59 | 0.07 (−0.08, 0.18) | 0.09 (−0.10, 0.33) | 0.51 |
SER (D) | −1.38 (−2.22, −1.00) | −1.50 (−2.75, −0.94) | 0.38 | −1.19 (−1.81, −0.93) | −1.50 (−2.85, −0.91) | 0.15 | −1.47 (−2.21, −1.06) | −1.56 (−2.83, −1.09) | 0.61 | −1.53 (−2.53, −1.00) | −1.47 (−2.75, −0.93) | 0.89 |
Axial length (mm) | 23.67 ± 0.95 | 23.77 ± 1.08 | 0.40 | 23.47 ± 0.94 | 23.37 ± 1.12 | 0.66 | 23.62 ± 0.84 | 23.87 ± 1.05 | 0.23 | 23.81 ± 1.02 | 23.95 ± 1.03 | 0.45 |
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Total near-work time (h/day) | ||||||||||||
Weekdays | 3.50 (2.50, 5.00) | 4.50 (2.00, 6.50) | 0.011 | 3.00 (2.00, 5.00) | 5.00 (2.00, 7.50) | 0.058 | 4.00 (3.00, 5.00) | 4.50 (2.88, 7.13) | 0.16 | 3.00 (2.00, 5.00) | 4.00 (1.78, 6.00) | 0.19 |
Weekends | 4.00 (3.00, 5.25) | 5.50 (3.00, 8.00) | <0.001 | 4.00 (3.00, 6.00) | 6.00 (2.25, 9.00) | 0.087 | 4.00 (3.00, 5.50) | 5.50 (3.88, 8.88) | 0.016 | 4.00 (2.13, 5.00) | 5.25 (3.00, 7.75) | 0.012 |
Non-screen time (h/day) | ||||||||||||
Weekdays | 1.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.045 | 1.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.017 | 1.50 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.35 | 1.00 (0.50, 2.00) | 2.00 (0.50, 3.75) | 0.35 |
Weekends | 1.25 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.066 | 1.00 (1.00, 2.00) | 2.00 (1.00, 4.00) | 0.075 | 1.75 (1.00, 2.00) | 2.00 (0.50, 2.63) | 0.76 | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | 0.12 |
Screen time (h/day) | ||||||||||||
Weekdays | 2.00 (1.00, 3.00) | 2.00 (1.00, 4.00) | 0.93 | 2.00 (1.00, 4.00) | 2.00 (1.00, 5.00) | 0.65 | 2.00 (1.50, 3.00) | 2.00 (1.19, 4.00) | 0.80 | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.75) | 0.58 |
Weekends | 2.50 (2.00, 4.00) | 3.00 (1.50, 6.00) | 0.11 | 3.00 (1.50, 5.00) | 3.00 (1.00, 6.50) | 0.65 | 2.25 (1.88, 4.00) | 3.50 (2.00, 7.25) | 0.10 | 2.25 (1.25, 4.00) | 3.00 (1.50, 5.00) | 0.39 |
Outdoor time (h/day) | ||||||||||||
Weekdays | 1.00 (0, 1.00) | 1.00 (0, 2.00) | 0.077 | 0.50 (0, 1.50) | 1.50 (0.25, 2.00) | 0.011 | 1.00 (0, 1.00) | 0.75 (0, 1.50) | 0.66 | 1.00 (0, 1.00) | 1.00 (0, 1.88) | 0.88 |
Weekends | 1.50 (1.00, 2.00) | 2.00 (1.00, 3.50) | 0.001 | 1.00 (1.00, 2.00) | 2.50 (1.00, 4.25) | 0.001 | 2.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.32 | 2.00 (0.50, 2.00) | 2.00 (0.85, 3.88) | 0.15 |
2020 | 2022 | p-Value | |
---|---|---|---|
RA (D) | 0.62 (0.50, 0.87) | 0.75 (0.40, 1.12) | 0.13 |
RAJ0 (D) | 0.26 (0.15, 0.38) | 0.22 (0.06, 0.50) | 0.74 |
RAJ45 (D) | 0.01 (−0.08, 0.11) | −0.06 (−0.24, 0.02) | <0.001 |
CA (D) | 1.16 (0.84, 1.41) | 1.44 (0.98, 1.94) | <0.001 |
CAJ0 (D) | 0.56 (0.36, 0.69) | 0.62 (0.38, 0.88) | 0.067 |
CAJ45 (D) | −0.05 (−0.14, 0.07) | −0.20 (−0.33, −0.06) | 0.001 |
IA (D) | 0.70 (0.45, 0.90) | 0.95 (0.64, 1.39) | 0.001 |
IAJ0 (D) | −0.27 (−0.40, −0.14) | −0.35 (−0.54, −0.23) | 0.015 |
IAJ45 (D) | 0.03 (−0.08, 0.20) | 0.08 (−0.12, 0.30) | 0.66 |
SER (D) | −1.28 (−1.98, −1.00) | −1.94 (−3.00, −1.05) | <0.001 |
Axial length (mm) | 23.50 ± 0.89 | 24.15 ± 1.01 | <0.001 |
2020 | 2022 | p-Value | |
---|---|---|---|
Total near-work time (h/day) | |||
Weekdays | 3.50 (2.63, 5.00) | 5.00 (2.50, 7.00) | <0.001 |
Weekends | 4.00 (3.00, 5.38) | 6.00 (3.63, 9.00) | <0.001 |
Non-screen time (h/day) | |||
Weekdays | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | <0.001 |
Weekends | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | 0.001 |
Screen time (h/day) | |||
Weekdays | 2.00 (1.00, 3.38) | 2.25 (1.50, 4.00) | 0.053 |
Weekends | 2.75 (2.00, 4.00) | 4.00 (1.63, 6.00) | 0.002 |
Outdoor time (h/day) | |||
Weekdays | 0.5 (0, 1.00) | 1.00 (0, 1.50) | 0.21 |
Weekends | 1.50 (1.00, 2.00) | 2.00 (1.00, 4.00) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Kang, B.-S.; Kee, C.-S.; Leung, T.-W. Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children 2024, 11, 154. https://doi.org/10.3390/children11020154
Liang Y, Kang B-S, Kee C-S, Leung T-W. Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children. 2024; 11(2):154. https://doi.org/10.3390/children11020154
Chicago/Turabian StyleLiang, Yuanyuan, Byung-Soo Kang, Chea-Su Kee, and Tsz-Wing Leung. 2024. "Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes" Children 11, no. 2: 154. https://doi.org/10.3390/children11020154
APA StyleLiang, Y., Kang, B. -S., Kee, C. -S., & Leung, T. -W. (2024). Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children, 11(2), 154. https://doi.org/10.3390/children11020154