Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes
Abstract
:1. Background
2. Search Methodology
3. Results
4. Approach 1: C-peptide Measurement
4.1. 1a. Stimulated C-peptide
4.2. 1b. Fasting C-peptide
4.3. 1c. Urinary C-peptide/Creatinine Ratio
5. Approach 2: Clinical Models
5.1. 2a Insulin Dose-Adjusted A1C
5.2. 2b Model-Estimated Average Plasma C-peptide Concentration
5.3. 2c Model-Estimated Stimulated Peak C-peptide Concentration
6. Approach 3: Other Biomarkers
6.1. 3a Proinsulin/C-peptide Ratio
6.2. 3b Cytokines
6.3. 3c MicroRNA
7. Limitations of Beta Cell Reserve Assessment
7.1. Various Cut off Values
7.2. Various Immunoassays
7.3. Insulin Sensitivity
7.4. Patient Population
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
CGM | Continuous Glucose Monitor |
CPEST | Model-Estimated Average Plasma C-peptide Concentration |
HbA1c | glycosylated haemoglobin A1c |
IDAA1C | Insulin Dose-adjusted A1C |
MMTT | Mixed Meal Tolerance Test |
PI:C | Proinsulin/C-peptide ratio |
TNF | Tumour Necrosis Factor |
IL | Interleukin |
T1D | Type 1 Diabetes |
TDD | Total Daily Dose |
UCCR | Urinary C-Peptide/Creatinine Ratio |
References
- Couper, J.J.; Haller, M.J.; Greenbaum, C.J.; Ziegler, A.G.; Wherrett, D.K.; Knip, M.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. S27), 20–27. [Google Scholar] [CrossRef]
- Fonolleda, M.; Murillo, M.; Vazquez, F.; Bel, J.; Vives-Pi, M. Remission Phase in Paediatric Type 1 Diabetes: New Understanding and Emerging Biomarkers. Horm. Res. Paediatr. 2017, 88, 307–315. [Google Scholar] [CrossRef]
- Zhong, T.; Tang, R.; Gong, S.; Li, J.; Li, X.; Zhou, Z. The remission phase in type 1 diabetes: Changing epidemiology, definitions, and emerging immuno-metabolic mechanisms. Diabetes Metab. Res. Rev. 2020, 36, e3207. [Google Scholar] [CrossRef]
- Scholin, A.; Berne, C.; Schvarcz, E.; Karlsson, F.A.; Bjork, E. Factors predicting clinical remission in adult patients with type 1 diabetes. J. Intern. Med. 1999, 245, 155–162. [Google Scholar] [CrossRef]
- Mortensen, H.B.; Hougaard, P.; Swift, P.; Hansen, L.; Holl, R.W.; Hoey, H.; Bjoerndalen, H.; De Beaufort, C.; Chiarelli, F.; Danne, T.; et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 2009, 32, 1384–1390. [Google Scholar] [CrossRef]
- Hao, W.; Gitelman, S.; DiMeglio, L.A.; Boulware, D.; Greenbaum, C.J. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose. Diabetes Care 2016, 39, 1664–1670. [Google Scholar] [CrossRef]
- Sørensen, J.S.; Johannesen, J.; Pociot, F.; Kristensen, K.; Thomsen, J.; Hertel, N.T.; Kjaersgaard, P.; Brorsson, C.; Birkebaek, N.H.; Danish Society for Diabetes in Childhood and Adolescence. Residual β-Cell function 3-6 years after onset of type 1 diabetes reduces risk of severe hypoglycemia in children and adolescents. Diabetes Care 2013, 36, 3454–3459. [Google Scholar] [CrossRef]
- Keenan, H.A.; Sun, J.K.; Levine, J.; Doria, A.; Aiello, L.P.; Eisenbarth, G.; Bonner-Weir, S.; King, G.L. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 2010, 59, 2846–2853. [Google Scholar] [CrossRef] [PubMed]
- Panero, F.; Novelli, G.; Zucco, C.; Fornengo, P.; Perotto, M.; Segre, O.; Grassi, G.; Cavallo-Perin, P.; Bruno, G. Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care 2009, 32, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Watanabe, C. Rate of beta-cell destruction in type 1 diabetes influences the development of diabetic retinopathy: Protective effect of residual beta-cell function for more than 10 years. J. Clin. Endocrinol. Metab. 2008, 93, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.S. FDA approves teplizumab: A milestone in type 1 diabetes. Lancet Diabetes Endocrinol. 2023, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Herold, K.C.; Bundy, B.N.; Long, S.A.; Bluestone, J.A.; DiMeglio, L.A.; Dufort, M.J.; Gitelman, S.E.; Gottlieb, P.A.; Krischer, J.P.; Linsley, P.S.; et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 603–613. [Google Scholar] [CrossRef]
- Ramos, E.L.; Dayan, C.M.; Chatenoud, L.; Sumnik, Z.; Simmons, K.M.; Szypowska, A.; Gitelman, S.E.; Knecht, L.A.; Niemoeller, E.; Tian, W.; et al. Teplizumab and beta-Cell Function in Newly Diagnosed Type 1 Diabetes. N. Engl. J. Med. 2023, 389, 2151–2161. [Google Scholar] [CrossRef]
- Herold, K.C.; Gitelman, S.E.; Gottlieb, P.A.; Knecht, L.A.; Raymond, R.; Ramos, E.L. Teplizumab: A Disease-Modifying Therapy for Type 1 Diabetes That Preserves beta-Cell Function. Diabetes Care 2023, 46, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, T.; Tang, R.; Wu, C.; Xie, Y.; Liu, F.; Zhou, Z. PD-1 and PD-L1 Expression in Peripheral CD4/CD8+ T Cells Is Restored in the Partial Remission Phase in Type 1 Diabetes. Journal Clin. Endocrinol. Metab. 2020, 105, 1947–1956. [Google Scholar] [CrossRef]
- Zhong, T.; Tang, R.; Xie, Y.; Liu, F.; Li, X.; Zhou, Z. Frequency, clinical characteristics, and determinants of partial remission in type 1 diabetes: Different patterns in children and adults. J. Diabetes 2020, 12, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xia, Y.; Xie, Z.; Zhong, T.; Tang, R.; Li, X.; Zhou, Z. The Unfavorable Impact of DR9/DR9 Genotype on the Frequency and Quality of Partial Remission in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2022, 107, e293–e302. [Google Scholar] [CrossRef]
- Andersen, M.L.C.M.; Hougaard, P.; Pörksen, S.; Nielsen, L.B.; Fredheim, S.; Svensson, J.; Thomsen, J.; Vikre-Jørgensen, J.; Hertel, T.; Petersen, J.S.; et al. Partial remission definition: Validation based on the insulin dose-adjusted HbA1c (IDAA1C) in 129 Danish children with new-onset type 1 diabetes. Pediatr. Diabetes 2014, 15, 469–476. [Google Scholar] [CrossRef]
- Madsen, J.O.B.; Herskin, C.W.; Zerahn, B.; Jensen, A.K.; Jørgensen, N.R.; Olsen, B.S.; Svensson, J.; Pociot, F.; Johannesen, J. Bone turnover markers during the remission phase in children and adolescents with type 1 diabetes. Pediatr. Diabetes 2020, 21, 366–376. [Google Scholar] [CrossRef]
- Overgaard, A.J.; Madsen, J.O.B.; Pociot, F.; Johannesen, J.; Størling, J. Systemic TNFα correlates with residual β-cell function in children and adolescents newly diagnosed with type 1 diabetes. BMC Pediatr. 2020, 20, 446. [Google Scholar] [CrossRef]
- Kara, Ö.; Esen, İ.; Tepe, D. Factors Influencing Frequency and Duration of Remission in Children and Adolescents Newly Diagnosed with Type 1 Diabetes. Med. Sci. Monit. 2018, 24, 5996–6001. [Google Scholar] [CrossRef]
- Bowden, S.A.; Duck, M.M.; Hoffman, R.P. Young children (<5 yr) and adolescents (>12 yr) with type 1 diabetes mellitus have low rate of partial remission: Diabetic ketoacidosis is an important risk factor. Pediatr. Diabetes 2008, 9 Pt 1, 197–201. [Google Scholar]
- Stuart, A.A.V.; Jager, W.; Klein, M.R.; Teklenburg, G.; Nuboer, R.; Hoorweg, J.J.G.; Vroede, M.A.M.J.; Kruijff, I.; Fick, M.; Schroor, E.J.; et al. Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab. Res. Rev. 2012, 28, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Ortqvist, E.; Falorni, A.; Scheynius, A.; Persson, B.; Lernmark, A. Age governs gender-dependent islet cell autoreactivity and predicts the clinical course in childhood IDDM. Acta Paediatr. 1997, 86, 1166–1171. [Google Scholar] [CrossRef]
- Meng, X.; Gong, C.; Cao, B.; Peng, X.; Wu, D.; Gu, Y.; Wei, L.; Liang, X.; Liu, M.; Li, W.; et al. Glucose fluctuations in association with oxidative stress among children with T1DM: Comparison of different phases. J. Clin. Endocrinol. Metab. 2015, 100, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Nordwall, M.; Ludvigsson, J. Clinical manifestations and beta cell function in Swedish diabetic children have remained unchanged during the last 25 years. Diabetes Metab. Res. Rev. 2008, 24, 472–479. [Google Scholar] [CrossRef]
- Araujo, D.B.; Dantas, J.R.; Silva, K.R.; Souto, D.L.; Pereira, M.D.F.C.; Moreira, J.P.; Luiz, R.R.; Claudio-Da-Silva, C.S.; Gabbay, M.A.; Dib, S.A.; et al. Allogenic Adipose Tissue-Derived Stromal/Stem Cells and Vitamin D Supplementation in Patients With Recent-Onset Type 1 Diabetes Mellitus: A 3-Month Follow-Up Pilot Study. Front. Immunol. 2020, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Pyziak, A.; Zmyslowska, A.; Bobeff, K.; Malachowska, B.; Fendler, W.; Wyka, K.; Baranowska-Jazwiecka, A.; Szymanska, M.; Szadkowska, A.; Mlynarski, W. Markers influencing the presence of partial clinical remission in patients with newly diagnosed type 1 diabetes. J. Pediatr. Endocrinol. Metab. 2017, 30, 1147–1153. [Google Scholar] [CrossRef]
- Jamiołkowska-Sztabkowska, M.; Grubczak, K.; Starosz, A.; Krętowska-Grunwald, A.; Krętowska, M.; Parfienowicz, Z.; Moniuszko, M.; Bossowski, A.; Głowińska-Olszewska, B. Circulating Hematopoietic (HSC) and Very-Small Embryonic like (VSEL) Stem Cells in Newly Diagnosed Childhood Diabetes type 1—Novel Parameters of Beta Cell Destruction/Regeneration Balance and Possible Prognostic Factors of Future Disease Course. Stem Cell Rev. Rep. 2022, 18, 1657–1667. [Google Scholar] [CrossRef]
- Jamiolkowska-Sztabkowska, M.; Glowinska-Olszewska, B.; Luczynski, W.; Konstantynowicz, J.; Bossowski, A. Regular physical activity as a physiological factor contributing to extend partial remission time in children with new onset diabetes mellitus-Two years observation. Pediatr. Diabetes 2020, 21, 800–807. [Google Scholar] [CrossRef]
- Jamiołkowska-Sztabkowska, M.; Głowińska-Olszewska, B.; Bossowski, A. C-peptide and residual β-cell function in pediatric diabetes—State of the art. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 123–133. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.C.V.F.; Kraemer, G.d.C.; Koliski, A.; Carreiro, J.E.; Cat, M.N.L.; De Lacerda, L.; França, S.N. Diabetic Ketoacidosis as the Initial Presentation of Type 1 Diabetes in Children and Adolescents: Epidemiological Study in Southern Brazil. Rev. Paul. Pediatr. 2020, 38, e2018204. [Google Scholar] [CrossRef] [PubMed]
- Villalba, A.; Fonolleda, M.; Murillo, M.; Rodriguez-Fernandez, S.; Ampudia, R.-M.; Perna-Barrull, D.; Raina, M.B.; Quirant-Sanchez, B.; Planas, R.; Teniente-Serra, A.; et al. Partial remission and early stages of pediatric type 1 diabetes display immunoregulatory changes. A pilot study. Transl. Res. 2019, 210, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, C.; Cao, B.; Meng, X.; Wei, L.; Wu, D.; Liang, X.; Li, W.; Liu, M.; Gu, Y.; et al. Influence of initial insulin dosage on blood glucose dynamics of children and adolescents with newly diagnosed type 1 diabetes mellitus. Pediatr. Diabetes 2017, 18, 196–203. [Google Scholar] [CrossRef]
- The pediatric diabetes consortium: Improving care of children with type 1 diabetes through collaborative research. Diabetes Technol. Ther. 2010, 12, 685–688. [CrossRef] [PubMed]
- Dost, A.; Herbst, A.; Kintzel, K.; Haberland, H.; Roth, C.L.; Gortner, L.; Holl, R.W. Shorter remission period in young versus older children with diabetes mellitus type 1. Exp. Clin. Endocrinol. Diabetes 2007, 115, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Chobot, A.; Stompór, J.; Szyda, K.; Sokołowska, M.; Deja, G.; Polańska, J.; Jarosz-Chobot, P. Remission phase in children diagnosed with type 1 diabetes in years 2012 to 2013 in Silesia, Poland: An observational study. Pediatr. Diabetes 2019, 20, 286–292. [Google Scholar] [CrossRef]
- Abdul-Rasoul, M.; Habib, H.; Al-Khouly, M. ‘The honeymoon phase’ in children with type 1 diabetes mellitus: Frequency, duration, and influential factors. Pediatr. Diabetes 2006, 7, 101–107. [Google Scholar] [CrossRef]
- Humphreys, A.; Bravis, V.; Kaur, A.; Walkey, H.C.; Godsland, I.F.; Misra, S.; Johnston, D.G.; Oliver, N.S. Individual and diabetes presentation characteristics associated with partial remission status in children and adults evaluated up to 12 months following diagnosis of type 1 diabetes: An ADDRESS-2 (After Diagnosis Diabetes Research Support System-2) study analysis. Diabetes Res. Clin. Pract. 2019, 155, 107789. [Google Scholar]
- Schloot, N.C.; Hanifi-Moghaddam, P.; Aabenhus-Andersen, N.; Alizadeh, B.Z.; Saha, M.T.; Knip, M.; Devendra, D.; Wilkin, T.; Bonifacio, E.; Roep, B.O.; et al. Association of immune mediators at diagnosis of Type 1 diabetes with later clinical remission. Diabet. Med. 2007, 24, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Procaccini, E.; Chianelli, M.; Annovazzi, A.; Fiore, V.; Hawa, M.; Nardi, G.; Ronga, G.; Pozzilli, P.; Signore, A.; et al. Prognostic relevance of pancreatic uptake of technetium-99m labelled human polyclonal immunoglobulins in patients with type 1 diabetes. Eur. J. Nucl. Med. 1998, 25, 503–508. [Google Scholar] [CrossRef]
- Kamado, K.; Fujita, S.; Izumi, K.; Hoshi, M. Remission phase in childhood diabetes--an investigation of summer campers in Japan. Tohoku J. Exp. Med. 1983, 141, 191–198. [Google Scholar] [CrossRef]
- Bonfanti, R.; Bognetti, E.; Meschi, F.; Brunelli, A.; Riva, M.C.; Pastore, M.R.; Calori, G.; Chiumello, G. Residual beta-cell function and spontaneous clinical remission in type 1 diabetes mellitus: The role of puberty. Acta Diabetol. 1998, 35, 91–95. [Google Scholar] [CrossRef]
- Cook, J.J.; Hudson, I.; Harrison, L.C.; Dean, B.; Colman, P.G.; Werther, G.; Warne, G.L.; Court, J.M. Double-blind controlled trial of azathioprine in children with newly diagnosed type I diabetes. Diabetes 1989, 38, 779–783. [Google Scholar] [CrossRef]
- Bober, E.; Dundar, B.; Buyukgebiz, A. Partial remission phase and metabolic control in type 1 diabetes mellitus in children and adolescents. J. Pediatr. Endocrinol. Metab. 2001, 14, 435–441. [Google Scholar] [CrossRef]
- Sanda, S.; Roep, B.O.; von Herrath, M. Islet antigen specific IL-10+ immune responses but not CD4+CD25+FoxP3+ cells at diagnosis predict glycemic control in type 1 diabetes. Clin. Immunol. 2008, 127, 138–143. [Google Scholar] [CrossRef]
- Kordonouri, O.; Danne, T.; Enders, I.; Weber, B. Does the long-term clinical course of type I diabetes mellitus differ in patients with prepubertal and pubertal onset? Results of the Berlin Retinopathy Study. Eur. J. Pediatr. 1998, 157, 202–207. [Google Scholar] [CrossRef]
- Glisic-Milosavljevic, S.; Wang, T.; Koppen, M.; Kramer, J.; Ehlenbach, S.; Waukau, J.; Jailwala, P.; Jana, S.; Alemzadeh, R.; Ghosh, S. Dynamic changes in CD4+ CD25+(high) T cell apoptosis after the diagnosis of type 1 diabetes. Clin. Exp. Immunol. 2007, 150, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.J.; Swift, P.G.; Raymond, N.T.; Botha, J.L. Partial remission phase of diabetes in children younger than age 10 years. Arch. Dis. Child. 1999, 80, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Cadario, F.; Savastio, S.; Rizzo, A.M.; Carrera, D.; Bona, G.; Ricordi, C. Can Type 1 diabetes progression be halted? Possible role of high dose vitamin D and omega 3 fatty acids. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1604–1609. [Google Scholar] [PubMed]
- Lundberg, R.L.; Marino, K.R.; Jasrotia, A.; Maranda, L.S.; Barton, B.A.; Alonso, L.C.; Nwosu, B.U. Partial clinical remission in type 1 diabetes: A comparison of the accuracy of total daily dose of insulin of <0.3 units/kg/day to the gold standard insulin-dose adjusted hemoglobin A1c of ≤9 for the detection of partial clinical remission. J. Pediatr. Endocrinol. Metab. 2017, 30, 823–830. [Google Scholar]
- Nwosu, B.U.; Zhang, B.; Ayyoub, S.S.; Choi, S.; Villalobos-Ortiz, T.R.; Alonso, L.C.; Barton, B.A. Children with type 1 diabetes who experienced a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis. PLoS ONE 2018, 13, e0196912. [Google Scholar] [CrossRef]
- Feutren, G.; Assan, R.; Karsenty, G.; Du Rostu, H.; Sirmai, J.; Papoz, L.; Vialettes, B.; Vexiau, P.; Rodier, M.; Lallemand, A.; et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet 1986, 2, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Agner, T.; Damm, P.; Binder, C. Remission in IDDM: Prospective study of basal C-peptide and insulin dose in 268 consecutive patients. Diabetes Care 1987, 10, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.C.; McKay, A.; Ridyard, C.; Thornborough, K.; Bedson, E.; Peak, M.; Didi, M.; Annan, F.; Gregory, J.W.; A Hughes, D.; et al. Continuous subcutaneous insulin infusion versus multiple daily injection regimens in children and young people at diagnosis of type 1 diabetes: Pragmatic randomised controlled trial and economic evaluation. BMJ 2019, 365, l1226. [Google Scholar] [CrossRef] [PubMed]
- Pollé, O.G.; Delfosse, A.; Martin, M.; Louis, J.; Gies, I.; Brinker, M.D.; Seret, N.; Lebrethon, M.-C.; Mouraux, T.; Gatto, L.; et al. Glycemic Variability Patterns Strongly Correlate With Partial Remission Status in Children With Newly Diagnosed Type 1 Diabetes. Diabetes Care 2022, 45, 2360–2368. [Google Scholar] [CrossRef] [PubMed]
- Addala, A.; Zaharieva, D.P.; Gu, A.J.; Prahalad, P.; Scheinker, D.; Buckingham, B.; Hood, K.K.; Maahs, D.M. Clinically Serious Hypoglycemia Is Rare and Not Associated With Time-in-range in Youth With New-onset Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, 3239–3247. [Google Scholar] [CrossRef]
- Kingery, S.E.; Wu, Y.L.; Zhou, B.; Hoffman, R.P.; Yu, C.Y. Gene CNVs and protein levels of complement C4A and C4B as novel biomarkers for partial disease remissions in new-onset type 1 diabetes patients. Pediatr. Diabetes 2012, 13, 408–418. [Google Scholar] [CrossRef]
- Pyziak-Skupien, A.; Bobeff, K.; Wyka, K.; Banach, K.; Malachowska, B.; Fendler, W.; Szadkowska, A.; Mlynarski, W.; Zmyslowska, A. Fetuin-A and Interleukine-8 in Children with the Clinical Remission of Type 1 Diabetes. Iran J. Immunol. 2020, 17, 144–153. [Google Scholar]
- Cadario, F.; Pozzi, E.; Rizzollo, S.; Stracuzzi, M.; Beux, S.; Giorgis, A.; Carrera, D.; Fullin, F.; Riso, S.; Rizzo, A.M.; et al. Vitamin D and ω-3 Supplementations in Mediterranean Diet During the 1st Year of Overt Type 1 Diabetes: A Cohort Study. Nutrients 2019, 11, 2158. [Google Scholar] [CrossRef]
- Casas, R.; Dietrich, F.; Barcenilla, H.; Tavira, B.; Wahlberg, J.; Achenbach, P.; Ludvigsson, J. Glutamic Acid Decarboxylase Injection Into Lymph Nodes: Beta Cell Function and Immune Responses in Recent Onset Type 1 Diabetes Patients. Front. Immunol. 2020, 11, 564921. [Google Scholar] [CrossRef]
- Gomez-Muñoz, L.; Perna-Barrull, D.; Caroz-Armayones, J.M.; Murillo, M.; Rodriguez-Fernandez, S.; Valls, A.; Vazquez, F.; Perez, J.; Corripio, R.; Castaño, L.; et al. Candidate Biomarkers for the Prediction and Monitoring of Partial Remission in Pediatric Type 1 Diabetes. Front. Immunol. 2022, 13, 825426. [Google Scholar] [CrossRef]
- Gomez-Muñoz, L.; Perna-Barrull, D.; Villalba, A.; Rodriguez-Fernandez, S.; Ampudia, R.-M.; Teniente-Serra, A.; Vazquez, F.; Murillo, M.; Perez, J.; Corripio, R.; et al. NK Cell Subsets Changes in Partial Remission and Early Stages of Pediatric Type 1 Diabetes. Front. Immunol. 2020, 11, 611522. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, B.U.; Parajuli, S.; Khatri, K.; Jasmin, G.; Al-Halbouni, L.; Lee, A.F. Partial Clinical Remission Reduces Lipid-Based Cardiovascular Risk in Adult Patients With Type 1 Diabetes. Front. Endocrinol. 2021, 12, 705565. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, B.U.; Villalobos-Ortiz, T.R.; Jasmin, G.A.; Parajuli, S.; Zitek-Morrison, E.; Barton, B.A. Mechanisms and early patterns of dyslipidemia in pediatric type 1 and type 2 diabetes. J. Pediatr. Endocrinol. Metab. 2020, 33, 1399–1408. [Google Scholar] [CrossRef]
- Nwosu, B.U. The Theory of Hyperlipidemic Memory of Type 1 Diabetes. Front. Endocrinol. 2022, 13, 819544. [Google Scholar] [CrossRef] [PubMed]
- Yeşiltepe-Mutlu, G.; Çapacı, M.; Can, E.; Gökçe, T.; Bayrakçı, G.; Muradoğlu, S.; İncir, S.; Çakır, E.P.; Hatun, Ş. A comparison of glycemic parameters and their relationship with C-peptide and Proinsulin levels during partial remission and non-remission periods in children with type 1 diabetes mellitus—A cross-sectional study. BMC Endocr. Disord. 2021, 21, 18. [Google Scholar]
- Chiavaroli, V.; Derraik, J.G.B.; Jalaludin, M.Y.; Albert, B.B.; Ramkumar, S.; Cutfield, W.S.; Hofman, P.L.; Jefferies, C.A. Partial remission in type 1 diabetes and associated factors: Analysis based on the insulin dose-adjusted hemoglobin A1c in children and adolescents from a regional diabetes center, Auckland, New Zealand. Pediatr. Diabetes 2019, 20, 892–900. [Google Scholar] [CrossRef]
- Pecheur, A.; Barrea, T.; Vandooren, V.; Beauloye, V.; Robert, A.; Lysy, P.A. Characteristics and determinants of partial remission in children with type 1 diabetes using the insulin-dose-adjusted A1C definition. J. Diabetes Res. 2014, 2014, 851378. [Google Scholar] [CrossRef] [PubMed]
- Nagl, K.; Hermann, J.M.; Plamper, M.; Schröder, C.; Dost, A.; Kordonouri, O.; Rami-Merhar, B.; Holl, R.W. Factors contributing to partial remission in type 1 diabetes: Analysis based on the insulin dose-adjusted HbA1c in 3657 children and adolescents from Germany and Austria. Pediatr. Diabetes 2017, 18, 428–434. [Google Scholar] [CrossRef]
- Moya, R.; Robertson, H.K.; Payne, D.; Narsale, A.; Koziol, J.; Davies, J.D. A pilot study showing associations between frequency of CD4(+) memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes. Clin. Immunol. 2016, 166–167, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Narsale, A.; Lam, B.; Moya, R.; Lu, T.; Mandelli, A.; Gotuzzo, I.; Pessina, B.; Giamporcaro, G.; Geoffrey, R.; Buchanan, K.; et al. CD4+CD25+CD127hi cell frequency predicts disease progression in type 1 diabetes. JCI Insight 2021, 6, e136114. [Google Scholar] [CrossRef] [PubMed]
- Kaas, A.; Max Andersen, M.L.; Fredheim, S.; Hougaard, P.; Buschard, K.; Petersen, J.S.; De Beaufort, C.; Robertson, K.J.; Hansen, L.; Mortensen, H.B.; et al. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes. Pediatr. Diabetes 2012, 13, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Genzano, C.B.; Bezzecchi, E.; Carnovale, D.; Mandelli, A.; Morotti, E.; Castorani, V.; Favalli, V.; Stabilini, A.; Insalaco, V.; Ragogna, F.; et al. Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes. Front. Immunol. 2022, 13, 1026416. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, M.; Jonsdottir, B.; Elding Larsson, H. Effect of screening for type 1 diabetes on early metabolic control: The DiPiS study. Diabetologia 2019, 62, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Klocperk, A.; Petruzelkova, L.; Pavlikova, M.; Rataj, M.; Kayserova, J.; Pruhova, S.; Kolouskova, S.; Sklenarova, J.; Parackova, Z.; Sediva, A.; et al. Changes in innate and adaptive immunity over the first year after the onset of type 1 diabetes. Acta Diabetol. 2020, 57, 297–307. [Google Scholar] [CrossRef]
- Lawes, T.; Franklin, V.; Farmer, G. HbA1c tracking and bio-psychosocial determinants of glycaemic control in children and adolescents with type 1 diabetes: Retrospective cohort study and multilevel analysis. Pediatr. Diabetes 2014, 15, 372–383. [Google Scholar] [CrossRef]
- Pinckney, A.; Rigby, M.R.; Keyes-Elstein, L.; Soppe, C.L.; Nepom, G.T.; Ehlers, M.R. Correlation Among Hypoglycemia, Glycemic Variability, and C-Peptide Preservation After Alefacept Therapy in Patients with Type 1 Diabetes Mellitus: Analysis of Data from the Immune Tolerance Network T1DAL Trial. Clin. Ther. 2016, 38, 1327–1339. [Google Scholar] [CrossRef]
- Cengiz, E.; Cheng, P.; Ruedy, K.J.; Kollman, C.; Tamborlane, W.V.; Klingensmith, G.J.; Gal, R.L.; Silverstein, J.; Lee, J.; Redondo, M.J.; et al. Clinical outcomes in youth beyond the first year of type 1 diabetes: Results of the Pediatric Diabetes Consortium (PDC) type 1 diabetes new onset (NeOn) study. Pediatr. Diabetes 2017, 18, 566–573. [Google Scholar] [CrossRef]
- Neylon, O.M.; White, M.; O’Connell, M.A.; Cameron, F.J. Insulin-dose-adjusted HbA1c-defined partial remission phase in a paediatric population--when is the honeymoon over? Diabet. Med. 2013, 30, 627–628. [Google Scholar] [CrossRef]
- Moosavi, M.; Seguin, J.; Polychronakos, C. Effect of autoimmunity risk loci on the honeymoon phase in type 1 diabetes. Pediatr. Diabetes 2017, 18, 459–462. [Google Scholar] [CrossRef]
- McGill, D.E.; Volkening, L.K.; Pober, D.M.; Muir, A.B.; Young-Hyman, D.L.; Laffel, L.M. Depressive Symptoms at Critical Times in Youth With Type 1 Diabetes: Following Type 1 Diabetes Diagnosis and Insulin Pump Initiation. J. Adolesc. Health 2018, 62, 219–225. [Google Scholar] [CrossRef]
- Neuman, V.; Pruhova, S.; Kulich, M.; Kolouskova, S.; Vosahlo, J.; Romanova, M.; Petruzelkova, L.; Obermannova, B.; Funda, D.P.; Cinek, O.; et al. Gluten-free diet in children with recent-onset type 1 diabetes: A 12-month intervention trial. Diabetes Obes. Metab. 2020, 22, 866–872. [Google Scholar] [CrossRef]
- Quattrin, T.; Haller, M.J.; Steck, A.K.; Felner, E.I.; Li, Y.; Xia, Y.; Leu, J.H.; Zoka, R.; Hedrick, J.A.; Rigby, M.R.; et al. Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 2007–2017. [Google Scholar] [CrossRef]
- Cabrera, S.M.; Engle, S.; Kaldunski, M.; Jia, S.; Geoffrey, R.; Simpson, P.; Szabo, A.; Speake, C.; Greenbaum, C.J.; Chen, Y.-G.; et al. Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. Diabetologia 2018, 61, 2356–2370. [Google Scholar] [CrossRef] [PubMed]
- Passanisi, S.; Salzano, G.; Gasbarro, A.; Brancati, V.U.; Mondio, M.; Pajno, G.B.; Alibrandi, A.; Lombardo, F. Influence of Age on Partial Clinical Remission among Children with Newly Diagnosed Type 1 Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 4801. [Google Scholar] [CrossRef] [PubMed]
- Marino, K.R.; Lundberg, R.L.; Jasrotia, A.; Maranda, L.S.; Thompson, M.J.; Barton, B.A.; Alonso, L.C.; Nwosu, B.U. A predictive model for lack of partial clinical remission in new-onset pediatric type 1 diabetes. PLoS ONE 2017, 12, e0176860. [Google Scholar] [CrossRef] [PubMed]
- Camilo, D.S.; Pradella, F.; Paulino, M.F.; Baracat, E.C.E.; Marini, S.H.; Guerra, G.; Pavin, E.J.; Parisi, C.; Longhini, A.L.F.; Marques, S.B.; et al. Partial remission in Brazilian children and adolescents with type 1 diabetes. Association with a haplotype of class II human leukocyte antigen and synthesis of autoantibodies. Pediatr. Diabetes 2020, 21, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Nielens, N.; Polle, O.; Robert, A.; Lysy, P.A. Integration of Routine Parameters of Glycemic Variability in a Simple Screening Method for Partial Remission in Children with Type 1 Diabetes. J. Diabetes Res. 2018, 2018, 5936360. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.J.; Libman, I.; Cheng, P.; Kollman, C.; Tosur, M.; Gal, R.L.; Bacha, F.; Klingensmith, G.J.; Clements, M. Racial/Ethnic Minority Youth With Recent-Onset Type 1 Diabetes Have Poor Prognostic Factors. Diabetes Care 2018, 41, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, R.; Cauvin, V.; Stefani, L.; Berchielli, F.; Soffiati, M.; Maines, E. Early Initiation of Intermittently Scanned Continuous Glucose Monitoring in a Pediatric Population With Type 1 Diabetes: A Real World Study. Front. Endocrinol. 2022, 13, 907517. [Google Scholar] [CrossRef]
- Cimbek, E.A.; Bozkır, A.; Usta, D.; Beyhun, N.E.; Ökten, A.; Karagüzel, G. Partial remission in children and adolescents with type 1 diabetes: An analysis based on the insulin dose-adjusted hemoglobin A1c. J. Pediatr. Endocrinol. Metab. 2021, 34, 1311–1317. [Google Scholar] [CrossRef]
- Mørk, F.C.B.; Madsen, J.O.B.; Jensen, A.K.; Hall, G.V.; Pilgaard, K.A.; Pociot, F.; Johannesen, J. Differences in insulin sensitivity in the partial remission phase of childhood type 1 diabetes; a longitudinal cohort study. Diabet. Med. 2022, 39, e14702. [Google Scholar] [CrossRef]
- Buchanan, K.; Mehdi, A.M.; Hughes, I.; Cotterill, A.; Le Cao, K.-A.; Thomas, R.; Harris, M. An improved clinical model to predict stimulated C-peptide in children with recent-onset type 1 diabetes. Pediatr. Diabetes 2019, 20, 166–171. [Google Scholar] [CrossRef]
- Hocking, M.D.; Rayner, P.W.; Nattrass, M. Residual insulin secretion in adolescent diabetics after remission. Arch. Dis. Child. 1987, 62, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Pilacinski, S.; Adler, A.I.; Zozulinska-Ziolkiewicz, D.A.; Gawrecki, A.; Wierusz-Wysocka, B. Smoking and other factors associated with short-term partial remission of Type 1 diabetes in adults. Diabet. Med. 2012, 29, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Vetter, U.; Heinze, E.; Thon, A.; Beischer, W.; Teller, W. The effect of glucose, tolbutamide, and arginine on C-peptide release during remission in type I diabetes mellitus. Eur. J. Pediatr. 1983, 140, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Al Rashed, A.M. Pattern of presentation in type 1 diabetic patients at the diabetes center of a university hospital. Ann. Saudi Med. 2011, 31, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.; Heding, L.; Lieden, G.; Marner, B.; Lernmark, A. Plasmapheresis in the initial treatment of insulin-dependent diabetes mellitus in children. Br. Med. J. 1983, 286, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.; Lindblom, B. Human lymphocyte antigen DR types in relation to early clinical manifestations in diabetic children. Pediatr. Res. 1984, 18, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- Leighton, E.; Sainsbury, C.A.; Jones, G.C. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017, 8, 475–487. [Google Scholar] [CrossRef]
- Pociot, F. Capturing residual beta cell function in type 1 diabetes. Diabetologia 2019, 62, 28–32. [Google Scholar] [CrossRef]
- Polonsky, K.S.; Licinio-Paixao, J.; Given, B.D.; Pugh, W.; Rue, P.; Galloway, J.; Karrison, T.; Frank, B. Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J. Clin. Invest. 1986, 77, 98–105. [Google Scholar] [CrossRef]
- Najjar, S.M.; Perdomo, G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology 2019, 34, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin degradation: Progress and potential. Endocr. Rev. 1998, 19, 608–624. [Google Scholar] [PubMed]
- Jones, A.G.; Hattersley, A.T. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet. Med. 2013, 30, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.M. Assays for insulin, proinsulin(s) and C-peptide. Ann. Clin. Biochem. 1999, 36 Pt 5, 541–564. [Google Scholar] [CrossRef]
- Besser, R.E.; Ludvigsson, J.; Jones, A.G.; McDonald, T.J.; Shields, B.M.; Knight, B.A.; Hattersley, A.T. Urine C-peptide creatinine ratio is a noninvasive alternative to the mixed-meal tolerance test in children and adults with type 1 diabetes. Diabetes Care 2011, 34, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Ambery, P.; Donaldson, J.; Parkin, J.; Austin, D.J. Urinary C-peptide analysis in an intervention study: Experience from the DEFEND-2 otelixizumab trial. Diabet. Med. 2016, 33, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Besser, R.E.; Shields, B.M.; Casas, R.; Hattersley, A.T.; Ludvigsson, J. Lessons from the mixed-meal tolerance test: Use of 90-minute and fasting C-peptide in pediatric diabetes. Diabetes Care 2013, 36, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, C.J.; Mandrup-Poulsen, T.; McGee, P.F.; Battelino, T.; Haastert, B.; Ludvigsson, J.; Pozzilli, P.; Lachin, J.M.; Kolb, H.; Type 1 Diabetes Trial Net Research Group; et al. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 2008, 31, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Willemsen, R.H.; Wilinska, M.E.; Tauschmann, M.; Dunger, D.B.; Hovorka, R. Mixed-meal tolerance test to assess residual beta-cell secretion: Beyond the area-under-curve of plasma C-peptide concentration. Pediatr. Diabetes 2019, 20, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.J.; Schatz, D.A.; Skyler, J.S.; Krischer, J.P.; Bundy, B.N.; Miller, J.L.; Atkinson, M.A.; Becker, D.J.; Baidal, D.; DiMeglio, L.A.; et al. Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA(1c) in New-Onset Type 1 Diabetes. Diabetes Care 2018, 41, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Orban, T.; Bundy, B.; Becker, D.J.; A DiMeglio, L.; E Gitelman, S.; Goland, R.; A Gottlieb, P.; Greenbaum, C.J.; Marks, J.B.; Monzavi, R.; et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: A randomised, double-blind, placebo-controlled trial. Lancet 2011, 378, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Boughton, C.K.; Allen, J.M.; Ware, J.; Wilinska, M.E.; Hartnell, S.; Thankamony, A.; Randell, T.; Ghatak, A.; Besser, R.E.; Elleri, D.; et al. Closed-Loop Therapy and Preservation of C-Peptide Secretion in Type 1 Diabetes. N. Engl. J. Med. 2022, 387, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.P.; Fleming, G.A.; Greenbaum, C.J.; Herold, K.C.; Jansa, L.D.; Kolb, H.; Lachin, J.M.; Polonsky, K.S.; Pozzilli, P.; Skyler, J.S.; et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: Report of an ADA workshop, 21-22 October 2001. Diabetes 2004, 53, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, F.; Valenzise, M.; Wasniewska, M.G.; Messina, M.F.; Ruggeri, C.; Arrigo, T.; De Luca, F. Two-year prospective evaluation of the factors affecting honeymoon frequency and duration in children with insulin dependent diabetes mellitus: The key-role of age at diagnosis. Diabetes Nutr. Metab. 2002, 15, 246–251. [Google Scholar]
- Sokolowska, M.; Chobot, A.; Jarosz-Chobot, P. The honeymoon phase—What we know today about the factors that can modulate the remission period in type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2016, 22, 66–70. [Google Scholar] [CrossRef]
- Haller, M.J.; Long, S.A.; Blanchfield, J.L.; Schatz, D.A.; Skyler, J.S.; Krischer, J.P.; Bundy, B.N.; Geyer, S.M.; Warnock, M.V.; Miller, J.L.; et al. Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA(1c), and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 2019, 68, 1267–1276. [Google Scholar] [CrossRef]
- Wentworth, J.M.; Bediaga, N.G.; Giles, L.C.; Ehlers, M.; Gitelman, S.E.; Geyer, S.; Evans-Molina, C.; Harrison, L.C.; The Type 1 Diabetes TrialNet Study Group; The Immune Tolerance Network Study Group. Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables. Diabetologia 2019, 62, 33–40. [Google Scholar] [CrossRef]
- Wentworth, J.M.; Bediaga, N.G.; Gitelman, S.E.; Evans-Molina, C.; Gottlieb, P.A.; Colman, P.G.; Haller, M.J.; Harrison, L.C. Clinical trial data validate the C-peptide estimate model in type 1 diabetes. Diabetologia 2020, 63, 885–886. [Google Scholar] [CrossRef]
- Watkins, R.A.; Evans-Molina, C.; Terrell, J.K.; Day, K.H.; Guindon, L.; Restrepo, I.A.; Mirmira, R.G.; Blum, J.S.; DiMeglio, L.A. Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl. Res. 2016, 168, 96–106.e1. [Google Scholar] [CrossRef]
- Freese, J.; Al-Rawi, R.; Choat, H.; Martin, A.; Lunsford, A.; Tse, H.; Mick, G.; McCormick, K. Proinsulin to C-Peptide Ratio in the First Year After Diagnosis of Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, e4318–e4326. [Google Scholar] [CrossRef]
- Pham, M.N.; Kolb, H.; Mandrup-Poulsen, T.; Battelino, T.; Ludvigsson, J.; Pozzilli, P.; Roden, M.; Schloot, N.C.; European C-Peptide Trial. Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes: Positive association with leptin and resistin and negative association with adiponectin. Diabetes Metab. Res. Rev. 2013, 29, 166–170. [Google Scholar] [CrossRef]
- Xu, G.; Thielen, L.A.; Chen, J.; Grayson, T.B.; Grimes, T.; Bridges, S.L., Jr.; Tse, H.M.; Smith, B.; Patel, R.; Li, P.; et al. Serum miR-204 is an early biomarker of type 1 diabetes-associated pancreatic beta-cell loss. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E723–E730. [Google Scholar] [CrossRef]
- Horber, S.; Orth, M.; Fritsche, A.; Peter, A. Comparability of c-peptide measurements—Current status and clinical relevance. Exp. Clin. Endocrinol. Diabetes 2023, 131, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Fourlanos, S.; Narendran, P.; Byrnes, G.B.; Colman, P.G.; Harrison, L.C. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 2004, 47, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, B.U. Partial Clinical Remission of Type 1 Diabetes: The Need for an Integrated Functional Definition Based on Insulin-Dose Adjusted A1c and Insulin Sensitivity Score. Front. Endocrinol. 2022, 13, 884219. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, K.J.; Regensteiner, J.G.; Bauer, T.A.; Brown, M.S.; Dorosz, J.L.; Hull, A.; Zeitler, P.; Draznin, B.; Reusch, J.E.B. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J. Clin. Endocrinol. Metab. 2010, 95, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Dabelea, D.; D’agostino, R.B.; Mason, C.C.; West, N.; Hamman, R.F.; Mayer-Davis, E.J.; Maahs, D.; Klingensmith, G.; Knowler, W.C.; Nadeau, K. Development, validation and use of an insulin sensitivity score in youths with diabetes: The SEARCH for Diabetes in Youth study. Diabetologia 2011, 54, 78–86. [Google Scholar] [CrossRef] [PubMed]
Method | Threshold to Define Residual Beta Cell Function | Author |
---|---|---|
MMTT-Stimulated C-Peptide | ≥300 pmol/L at 120 min | Li X * [15], Zhong T * [16], Chen Y * [17] |
>300 pmol/L at 90 min | Mortensen HB ^ [5] Max Anderson ML ^ [18], Madsen JOB * [19], Overgaard AJ * [20] | |
Insulin TDD and HbA1c | <0.5 U/kg/d, HbA1c < 8% | Kara O [21] Bowden SA [22] |
≤0.5 U/kg/d, HbA1c ≤ 7.5% | Verrijn SAA [23] Ortqvist E [24], Meng X [25] | |
<0.5 U/kg/d, HbA1c < 7.5% | Nordwall M [26] | |
≤0.5 U/kg/d, HbA1c < 7.5% | Araujo DB [27] | |
<0.5 U/kg/d, HbA1c < 7% | Pyziak A [28] Jamiolkowska-Sztabkowska [29,30,31], Souza L [32], Villalba A [33] | |
≤0.5 U/kg/d, HbA1c < 7% | Wang Y [34] Pediatric Diabetes Consortium [35] Dost A [36] | |
<0.5 U/kg/d, HbA1c ≤ 7% | Chobot A [37] | |
<0.5 U/kg/d, HbA1c ≤ 6% | Abdul-Rasoul M [38] | |
≤0.4 U/kg/d, HbA1c < 7% | Humphreys A [39] | |
≤0.38 U/kg/d, HbA1c < 7.5% | Schloot NC [40] | |
<0.1 U/kg/d, “normal HbA1c” for >3 weeks | Barone R [41] | |
<10 units/day, “normal metabolic state” | Kamado K [42] | |
<0.3 U/kg/d, “normal” HbA1c for at least 10 days | Bonfanti R [43] | |
<0.5 U/kg/d, HbA1c ≤ 7.9%, preprandial blood glucose ≤ 8mM | Cook JJ [44] | |
Insulin TDD | <0.5 U/kg/d | Bober E [45], Sanda S [46] Kordonouri O [47] Glisic-Milosavljevic S [48] Muhammad BJ [49], Cadario F [50] |
≤0.49 U/kg/d | Meng X [25] | |
<0.3 U/kg/d | Lundberg RL [51] Jamiolkowska-Sztabkowska [31] Nwosu BU [52] | |
<0.25 U/kg/d | Feutren G [53] | |
≤50% of dose at time of discharge | Glisic-Milosavljevic S [48] Agner T [54] | |
Clinical Model-IDAA1C | <9 | Blair JC [55], Polle OG [56], Addala A [57], Kingery SE [58], Villalba A [33] Pyziak-Skupien A [59] Cadario F [60] Casas R [61] Fonolleda M [2] |
≤9 | Mortensen HB [5], Gomez-Munoz L [62,63], Nwosu BU [52,64,65,66], Yesiltepe-Mutlu [67], Chiavaroli V [68], Pecheur A [69], Nagl K [70], Moya R [71], Narsale A [72], Kaas A [73], Bechi Genzano C [74], Lundgren M [75], Klocperk A [76], Lawes T [77], Pinckney A [78], Cengiz E [79], Neylon OM [80], Moosavi M [81], McGill DE [82], Max Andersen ML [18], Madsen JOB [19], Zhong T [16], Li X [15], Neuman V [83], Quattrin T [84], Cabrera SM [85] Pyziak A [28], Lundberg RL [51] Passanisi S [86], Marino KR [87] Camilo DS [88], Nielens N [89] Redondo MJ [90] Franceschi R [91] Cimbek EA [92], Mork FCB [93] | |
Clinical Model-Glycemic Target-Adjusted HbA1c | ≤4.5 | Nielens N [89] |
Clinical Model-Estimated C-Peptide Model | Clinical Model to estimate 90 min stimulated c peptide | Buchanan K [94] |
Other | Insulin TDD < 0.5 U/kg/d and minimal/no glycosuria | Hocking MD [95] |
Insulin TDD < 0.3 U/kg/d and “proper glycaemic control” and c-peptide > 0.5 ng/ml | Jamiolkowska-Sztabkowska [31] | |
Insulin TDD ≤ 0.3 U/kg/d and HbA1c < 7% and a random serum c-peptide > 0.5 ng/ml | Pilacinski S [96] | |
Insulin TDD < 0.5 U/kg/d and no glycosuria and “detectable c-peptide” | Vetter U [97] | |
Insulin TDD < 0.5 U/kg/d and absent/minimal glycosuria for >4 weeks and period of no clinical symptoms | Al Rashed AM [98] | |
Insulin TDD < 0.5 U/kg/d and minimal/no glycosuria for ≥1 month | Ludvigsson J [99,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, E.C.; Hawkes, C.P. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. Children 2024, 11, 186. https://doi.org/10.3390/children11020186
Kennedy EC, Hawkes CP. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. Children. 2024; 11(2):186. https://doi.org/10.3390/children11020186
Chicago/Turabian StyleKennedy, Elaine C., and Colin P. Hawkes. 2024. "Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes" Children 11, no. 2: 186. https://doi.org/10.3390/children11020186
APA StyleKennedy, E. C., & Hawkes, C. P. (2024). Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. Children, 11(2), 186. https://doi.org/10.3390/children11020186