Characteristics of Factors Influencing the Occurrence of Cleft Lip and/or Palate: A Case Analysis and Literature Review
Abstract
:1. Introduction
1.1. Aim of Study
1.2. Materials
1.3. Statistical Methods
2. Results
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.H.; Heike, C.L.; Clarkson, M.D.; Mejino, J.L.V.; Brinkley, J.F.; Tse, R.W.; Birgfeld, C.B.; Fitzsimons, D.A.; Cox, T.C. Evaluation and integration of disparate classification systems for clefts of the lip. Front. Physiol. 2014, 5, 89058. [Google Scholar] [CrossRef]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef]
- Hlongwa, P.; Levin, J.; Rispel, L.C. Epidemiology and clinical profile of individuals with cleft lip and palate utilising specialised academic treatment centres in South Africa. PLoS ONE 2019, 14, e0215931. [Google Scholar] [CrossRef]
- Parada, C.; Chai, Y. Roles of BMP signaling pathway in lip and palate development. Front. Oral Biol. 2012, 16, 60–70. [Google Scholar] [CrossRef]
- Tanaka, S.A.; Mahabir, R.C.; Jupiter, D.C.; Menezes, J.M. Updating the epidemiology of cleft lip with or without cleft palate. Plast. Reconstr. Surg. 2012, 129, 511–518. [Google Scholar] [CrossRef]
- Pastuszak, P.; Dunin-Wilczyńska, I.; Lasota, A. Frequency of additional congenital dental anomalies in children with cleft lip, alveolar and palate. J. Clin. Med. 2020, 9, 3813. [Google Scholar] [CrossRef]
- Stanier, P.; Moore, G.E. Genetics of cleft lip and palate: Syndromic genes contribute to the incidence of non-syndromic clefts. Hum. Mol. Genet. 2004, 13, 73–81. [Google Scholar] [CrossRef]
- Vaivads, M.; Balode, E.; Pilmane, M. Factors affecting facial development and formation of cleft lip and palate: A literature review. Pap. Anthr. 2020, 29, 22–35. [Google Scholar] [CrossRef]
- Harville, E.W.; Wilcox, A.J.; Lie, R.T.; Vindenes, H.; Åbyholm, F. Cleft lip and palate versus cleft lip only: Are they distinct defects? Am. J. Epidemiol. 2005, 162, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, M.; Udagawa, A.; Yoshimoto, S.; Ichinose, M.; Sato, K.; Yamazaki, K.; Matsuno, Y.; Shiota, K.; Mori, C. DNA methylation changes during cleft palate formation induced by retinoic acid in mice. Cleft Palate-Craniofacial J. 2008, 45, 545–551. [Google Scholar] [CrossRef]
- Radhakrishna, U. Small players with a big role: MicroRNAs in pathophysiology of cleft lip and palate. Indian J. Hum. Genet. 2012, 18, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Vahdat, S. Evaluation of the Correlation between Socioeconomic Factors and Pediatric Cleft Lip and Palate. Mod. Med. Lab. J. 2021, 4, 40–49. [Google Scholar] [CrossRef]
- Murray, J. Gene/environment causes of cleft lip and/or palate. Clin. Genet. 2002, 61, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C.; Liu, D.; Grantz, K.L.; Wallace, M.; Mendola, P. Maternal ambient air pollution exposure preconception and during early gestation and offspring congenital orofacial defects. Environ. Res. 2015, 140, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Xu, X.; Zheng, Q.; Shi, B.; Li, J.; Wang, Y. Growth and Development of Craniofacial Structures in Patients at Different Ages with Unrepaired Submucous Cleft Palate. J. Oral Maxillofac. Surg. 2018, 76, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Allori, A.C.; Mulliken, J.B.; Meara, J.G.; Shusterman, S.; Marcus, J.R. Classification of Cleft Lip/Palate: Then and Now. Cleft Palate-Craniofacial J. 2017, 54, 175–188. [Google Scholar] [CrossRef]
- Strawderman, R.L. Model selection and inference: A practical information-theoretic approach by Kenneth P. Burnham; David R. Anderson. J. Am. Stat. Assoc. 2014, 95, 341. [Google Scholar] [CrossRef]
- Baas, E.; Bierenbroodspot, F.; de Lange, J. Bilateral sagittal split osteotomy versus distraction osteogenesis of the mandible: A randomized clinical trial. Int. J. Oral Maxillofac. Surg. 2015, 44, 180–188. [Google Scholar] [CrossRef]
- Worley, M.L.; Patel, K.G.; Kilpatrick, L.A. Cleft Lip and Palate. Clin. Perinatol. 2018, 45, 661–678. [Google Scholar] [CrossRef]
- Errari-Piloni, C.; Barros, L.A.N.; Jesuíno, F.A.S.; Valladares-Neto, J. Prevalence of cleft lip and palate and associated factors in Brazil’s Midwest: A single-center study. Braz. Oral Res. 2021, 35, e039. [Google Scholar] [CrossRef]
- Berg, E.; Lie, R.T.; Sivertsen, Å.; Haaland, Ø.A. Parental age and the risk of isolated cleft lip: A registry-based study. Ann. Epidemiol. 2015, 25, 942–947.e1. [Google Scholar] [CrossRef] [PubMed]
- Kapos, F.P.; White, L.A.; Schmidt, K.A.; Hawes, S.E.; Starr, J.R. Risk of non-syndromic orofacial clefts by maternal rural-urban residence and race/ethnicity: A population-based case-control study in Washington State 1989–2014. Paediatr. Périnat. Epidemiol. 2020, 35, 292–301. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.P.V.; Arruda, T.T.S.; de Souza, K.S.C.; Bezerra, J.F.; Leite, G.C.P.; de Brito, M.E.F.; Lima, V.M.G.D.M.; Luchessi, A.D.; Bortolin, R.H.; Ururahy, M.A.G.; et al. Risk factors and comorbidities in Brazilian patients with orofacial clefts. Braz. Oral Res. 2018, 32, e24. [Google Scholar] [CrossRef] [PubMed]
- Kozma, A. Gestational Diabetes Mellitus and the Development of Cleft Lip/Palate in Newborns. Acta Endocrinol. 2019, 15, 118–122. [Google Scholar] [CrossRef] [PubMed]
- McKinney, C.; Chowchuen, B.; Pitiphat, W.; DeRouen, T.; Pisek, A.; Godfrey, K. Micronutrients and Oral Clefts: A Case-Control Study. J. Dent. Res. 2013, 92, 1089–1094. [Google Scholar] [CrossRef]
- Ni, W.; Tian, T.; Zhang, L.; Li, Z.; Wang, L.; Ren, A. Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutr. J. 2018, 17, 112. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Tinker, S.; Rasmussen, S.A.; Shaw, G. M; National Birth Defects Prevention Study. Maternal stressors and social support as risks for delivering babies with structural birth defects. Paediatr. Perinat. Epidemiol. 2014, 28, 338–344. [Google Scholar] [CrossRef]
- Welberg, L.A.M.; Thrivikraman, K.V.; Plotsky, P.M. Chronic maternal stress inhibits the capacity to up-regulate placental 11β-hydroxysteroid dehydrogenase type 2 activity. J. Endocrinol. 2005, 186, R7–R12. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.C.; Walker, B.R. Glucocorticoids and insulin resistance: Old hormones, new targets. Clin. Sci. 1999, 96, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Pratt, R.M. Vitamin B6 reduces cortisone-induced cleft palate in the mouse. Teratology 1982, 26, 255–258. [Google Scholar] [CrossRef]
- Weingärtner, J.; Lotz, K.; Fanghänel, J.; Gedrange, T.; Bienengräber, V.; Proff, P. Induktion und Prävention von Lippen-Kiefer-Gaumen-Segel-Spalten und Neuralrohrdefekten unter besonderer Berücksichtigung der B-Vitamine und des Methylierungszyklus. J. Orofac. Orthop. 2007, 68, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Jahanbin, A.; Shadkam, E.; Miri, H.H.; Shirazi, A.S.; Abtahi, M. Maternal Folic Acid Supplementation and the Risk of Oral Clefts in Offspring. J. Craniofacial Surg. 2018, 29, e534–e541. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.; Bronsky, P. Prenatal Craniofacial Development: New Insights on Normal and Abnormal Mechanisms. Crit. Rev. Oral Biol. Med. 1995, 6, 368–422. [Google Scholar] [CrossRef]
- Sato, Y.; Yoshioka, E.; Saijo, Y.; Miyamoto, T.; Sengoku, K.; Azuma, H.; Tanahashi, Y.; Ito, Y.; Kobayashi, S.; Minatoya, M.; et al. Population attributable fractions of modifiable risk factors for nonsyndromic orofacial clefts: A prospective cohort study from the Japan environment and children’s study. J. Epidemiol. 2021, 31, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Agopian, A.J.; Kim, J.; Langlois, P.H.; Lee, L.; Whitehead, L.W.; Symanski, E.; Herdt, M.L.; Delclos, G.L. Maternal occupational physical activity and risk for orofacial clefts. Am. J. Ind. Med. 2017, 60, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Verma, U.; Tiwari, R.; Article, O. Heterogeneous conceptualization of etiopathogenesis: Oral pyogenic granuloma. Natl. J. Maxillofac. Surg. 2019, 10, 3–7. [Google Scholar]
- Moore, L.L.; Singer, M.R.; Bradlee, M.L.; Rothman, K.J.; Milunsky, A. A Prospective Study of the Risk of Congenital Defects Associated with Maternal Obesity and Diabetes Mellitus. Epidemiology 2000, 11, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Spilson, S.V.; Kim, H.J.E.; Chung, K.C. Association Between Maternal Diabetes Mellitus and Newborn Oral Cleft. Ann. Plast. Surg. 2001, 47, 477–481. [Google Scholar] [CrossRef]
- Åberg, A.; Westbom, L.; Källén, B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum. Dev. 2001, 61, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, T.; Oparil, S. The effect of antihypertensive drugs on the fetus. J. Hum. Hypertens. 2002, 16, 293–298. [Google Scholar] [CrossRef]
- Xu, D.-P.; Qu, W.-D.; Sun, C.; Cao, R.-Y.; Liu, D.-W.; Du, P.-G.M. A Study on Environmental Factors for Nonsyndromic Cleft Lip and/or Palate. J. Craniofacial Surg. 2018, 29, 364–367. [Google Scholar] [CrossRef]
- Soim, A.; Sheridan, S.C.; Hwang, S.; Hsu, W.; Fisher, S.C.; Shaw, G.M.; Feldkamp, M.L.; Romitti, P.A.; Reefhuis, J.; Langlois, P.H.; et al. A population-based case–control study of the association between weather-related extreme heat events and orofacial clefts. Birth Defects Res. 2018, 110, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Cheshmi, B.; Jafari, Z.; Naseri, M.A.; Davari, H.A. Assessment of the correlation between various risk factors and orofacial cleft disorder spectrum: A retrospective case-control study. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bánhidy, F.; Puhó, E.H.; Czeizel, A.E. Efficacy of medical care of epileptic pregnant women based on the rate of congenital abnormalities in their offspring. Congenit. Anomalies 2011, 51, 34–42. [Google Scholar] [CrossRef]
- Boyle, R.J. Effects of certain prenatal drugs on the fetus and newborn. Pediatr. Rev. 2002, 23, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ailes, E.C.; Gilboa, S.M.; Gill, S.K.; Broussard, C.S.; Crider, K.S.; Berry, R.J.; Carter, T.C.; Hobbs, C.A.; Interrante, J.D.; Reefhuis, J.; et al. Association between antibiotic use among pregnant women with urinary tract infections in the first trimester and birth defects, National Birth Defects Prevention Study 1997 to 2011. Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 940–949. [Google Scholar] [CrossRef]
- Benitz, W. Antibacterial Medication Use During Pregnancy and Risk of Birth Defects: National Birth Defects Prevention Study. Yearb. Neonatal Périnat. Med. 2010, 2010, 1–2. [Google Scholar] [CrossRef]
- Lin, K.J.; Mitchell, A.A.; Yau, W.-P.; Louik, C.; Hernández-Díaz, S. Maternal Exposure to Amoxicillin and the Risk of Oral Clefts. Epidemiology 2012, 23, 699–705. [Google Scholar] [CrossRef]
- Pradat, P.; Robert-Gnansia, E.; Di Tanna, G.L.; Rosano, A.; Lisi, A.; Mastroiacovo, P.; All Contributors to the MADRE Database. First trimester exposure to corticosteroids and oral clefts. Birth Defects Res. Part A Clin. Mol. Teratol. 2003, 67, 968–970. [Google Scholar] [CrossRef]
- Gitau, R.; Cameron, A.; Fisk, N.M.; Glover, V. Fetal exposure to maternal cortisol. Lancet 1998, 352, 707–708. [Google Scholar] [CrossRef]
- Chi, C.-C.; Wang, S.-H.; Kirtschig, G.; Wojnarowska, F. Systematic review of the safety of topical corticosteroids in pregnancy. J. Am. Acad. Dermatol. 2010, 62, 694–705. [Google Scholar] [CrossRef]
- Margulis, A.V.; Mitchell, A.A.; Gilboa, S.M.; Werler, M.M.; Mittleman, M.A.; Glynn, R.J.; Hernandez-Diaz, S. Use of topiramate in pregnancy and risk of oral clefts. Am. J. Obstet. Gynecol. 2012, 207, 405.e1–405.e7. [Google Scholar] [CrossRef]
- Benninger, K.L.; Borghese, T.; Kovalcik, J.B.; Moore-Clingenpeel, M.; Isler, C.; Bonachea, E.M.; Stark, A.R.; Patrick, S.W.; Maitre, N.L. Prenatal Exposures Are Associated with Worse Neurodevelopmental Outcomes in Infants with Neonatal Opioid withdrawal Syndrome. Front. Pediatr. 2020, 8, 462. [Google Scholar] [CrossRef]
- Fell, M.; Dack, K.; Chummun, S.; Sandy, J.; Wren, Y.; Lewis, S. Maternal Cigarette Smoking and Cleft Lip and Palate: A Systematic Review and Meta-Analysis. Cleft Palate-Craniofacial J. 2021, 59, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Lieff, S.; Olshan, A.F.; Werler, M.; Strauss, R.P.; Smith, J.; Mitchell, A. Maternal cigarette smoking during pregnancy and risk of oral clefts in newborns. Am. J. Epidemiol. 1999, 150, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.C.; Raynes-Greenow, C.; Turner, R.M.; Bower, C.; Nassar, N.; O’Leary, C.M. Maternal Alcohol Consumption during Pregnancy and the Risk of Orofacial Clefts in Infants: A Systematic Review and Meta-Analysis. Paediatr. Périnat. Epidemiol. 2014, 28, 322–332. [Google Scholar] [CrossRef]
- Molina-Solana, R.; Yáñez-Vico, R.-M.; Iglesias-Linares, A.; Mendoza-Mendoza, A.; Solano-Reina, E. Current concepts on the effect of environmental factors on cleft lip and palate. Int. J. Oral Maxillofac. Surg. 2013, 42, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Danis, D.O.; Bachrach, K.; Piraquive, J.; Marston, A.P.; Levi, J.R. Cleft Lip and Palate in Newborns Diagnosed with Neonatal Abstinence Syndrome. Otolaryngol. Head Neck Surg. 2020, 164, 199–205. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Fatone, M.C.; Malcangi, G.; Avantario, P.; Piras, F.; Patano, A.; Di Pede, C.; Netti, A.; Ciocia, A.M.; De Ruvo, E.; et al. Modifiable Risk Factors of Non-Syndromic Orofacial Clefts: A Systematic Review. Children 2022, 9, 1846. [Google Scholar] [CrossRef] [PubMed]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Hameed, O.; Amin, N.; Haria, P.; Patel, B.; Hay, N. Orthodontic burden of care for patients with a cleft lip and/or palate. J. Orthod. 2019, 46, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Magee, W.P., Jr.; Vander Burg, R.; Hatcher, K.W. Cleft lip and palate as a cost-effective health care treatment in the developing world. World J. Surg. 2010, 34, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Beaty, T.H.; Murray, J.C.; Marazita, M.L.; Munger, R.G.; Ruczinski, I.; Hetmanski, J.B.; Liang, K.Y.; Wu, T.; Murray, T.; Fallin, M.D.; et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat. Genet. 2010, 42, 525–529. [Google Scholar] [CrossRef] [PubMed]
Name of Gene | Symbol |
---|---|
Transforming growth factor—alpha | TGFA |
Transforming growth factor—133 | TGF 133 |
Methylene tetrahydrofolate Reductase | MTHFR |
- | - |
Endothelin—1 | ET1 |
BCL3 Transcription Coactivator | BCL3 |
Retinoic acid receptor alpha | RARA |
MSX1-Msh Homeobox 1 | MSX-1 |
Syndromes | Name of Gene | Symbol |
---|---|---|
Waardenburg syndrome, type II A | Microphthalmia—Associated Transcription Factor | MITF |
Di George syndrome | Di George syndrome chromosome region | CATCH 22 |
Treacher Collins syndrome mandibulofacial dysostosis | Treacle Ribosome Biogenesis Factor 1 RNA Polymerase I and III Subunit C RNA Polymerase I and III Subunit D RNA Polymerase I Subunit B | TCOF1, POLR1C, POLR1D, POLR1B |
Van der Woude syndrome | Interferon Regulatory Factor—6 | IRF 6 |
CLP-Ectodermal dysplasia syndrome | Poliovirus receptor related-1 | PVRL1 |
Ectrodactyly, ectodermal dysplasia orofacial cleft syndrome Pigment Anomaly-Ectrodactyly Hypodontia Syndrome | Tumor Protein P63 | TP63 |
Zollinger syndrome-3, Zellweger Syndrome | Peroxisomal Biogenesis Factor 2 | (PXMP3) PEX2 |
Diastrophic dysplasia | Diastrophic dysplasia sulfate transporter | DTDST |
Gorlin syndrome (Basal cell nevus syndrome 1) | Patched 1 | PTCH1 |
Midline or Unilateral Incomplete | Unilateral Complete | Bilateral | Score | |
---|---|---|---|---|
l | 1 | . | . | 0 |
L | 3 | . | . | 0 |
S | 6 | . | . | 0 |
al | 1 | . | . | 0.333 |
LA | 1 | . | . | 0.333 |
sh | 1 | . | . | 0.333 |
SL | 1 | . | . | 0.333 |
SU | 1 | . | . | 0.333 |
HSH | 4 | . | . | 0.333 |
Lal | 1 | . | . | 0.333 |
laHS | . | 2 | . | 1 |
LAHS | . | 15 | . | 1 |
Shal | . | 1 | . | 1 |
SHAL | . | 24 | . | 1 |
HSHAl | . | . | 1 | 1.333 |
HSHAL | . | . | 2 | 1.333 |
LAHSH | . | . | 2 | 1.333 |
LAHSHL | . | . | 1 | 1.667 |
lHSHAL | . | . | 1 | 1.667 |
lahSHAL | . | . | 1 | 2 |
LAHSHal | . | . | 1 | 2 |
LAHSHAL | . | . | 11 | 2 |
Odds Ratio | 97.5% | 2.5% | Estimate | Std. Error | z Value | Pr (>|z|) | |
---|---|---|---|---|---|---|---|
(Intercept): 1 | 5.3849 | 0.7187 | 0.0480 | −1.6836 | 0.6905 | −2.4383 | 0.0148 |
(Intercept): 2 | 0.4718 | 7.7150 | 0.5822 | 0.7511 | 0.6592 | 1.1395 | 0.2545 |
Low or very low birth weight | 0.9747 | 3.7668 | 0.2794 | 0.0256 | 0.6636 | 0.0385 | 0.9693 |
Child was born fourth or more in a row | 1.3162 | 2.5587 | 0.2256 | −0.2748 | 0.6195 | −0.4435 | 0.6574 |
Men (boy) | 0.8755 | 2.9256 | 0.4459 | 0.1329 | 0.4799 | 0.2770 | 0.7818 |
Cleft in any parent’s history | 6.6475 | 1.2151 | 0.0186 | −1.8942 | 1.0659 | −1.7772 | 0.0755 |
Mother’s secondary or high education | 0.6102 | 5.9077 | 0.4546 | 0.4940 | 0.6542 | 0.7551 | 0.4502 |
Toxic risk at mother’s work:1 | 4.9688 | 1.9260 | 0.0210 | −1.6032 | 1.1524 | −1.3912 | 0.1642 |
Toxic risk at mother’s work: 2 | 0.1344 | 80.8591 | 0.6845 | 2.0068 | 1.2173 | 1.6486 | 0.0992 |
Mother’s Infections or drug toxicity during pregnancy | 1.1702 | 2.5310 | 0.2885 | −0.1572 | 0.5540 | −0.2838 | 0.7766 |
Mother’s stress during pregnancy: 1 | 0.8226 | 8.6182 | 0.1715 | 0.1953 | 0.9993 | 0.1955 | 0.8450 |
Mother’s stress during pregnancy: 2 | 9.3879 | 0.7837 | 0.0145 | −2.2394 | 1.0182 | −2.1994 | 0.0278 |
Interaction between cleft in any parent’s history and Mother’s secondary or high education | 0.0370 | 322.1006 | 2.2732 | 3.2980 | 1.2637 | 2.6098 | 0.0091 |
Estimate | 2.5% | 97.5% | Std. Error | t Value | Pr (>|t|) | |
---|---|---|---|---|---|---|
(Intercept) | 1.0946 | 0.7251 | 1.4641 | 0.1854 | 5.9050 | 0.0000 |
Low or very low birth weight | 0.0635 | −0.3011 | 0.4280 | 0.1829 | 0.3470 | 0.7296 |
Child was born fourth or more in a row | −0.0163 | −0.3688 | 0.3362 | 0.1768 | −0.0921 | 0.9269 |
Men (boy) | 0.0013 | −0.2641 | 0.2668 | 0.1332 | 0.0100 | 0.9921 |
Cleft in any parent’s history | 0.2718 | −0.2709 | 0.8146 | 0.2723 | 0.9984 | 0.3214 |
Mother’s secondary or high education | −0.1350 | −0.4982 | 0.2281 | 0.1822 | −0.7413 | 0.4609 |
Toxic risk in mother’s work | −0.0333 | −0.4055 | 0.3389 | 0.1867 | −0.1784 | 0.8589 |
Mother’s Infections or poisoning during pregnancy | 0.0812 | −0.2370 | 0.3993 | 0.1596 | 0.5088 | 0.6125 |
Mother’s stress during pregnancy | 0.4454 | −0.0770 | 0.9678 | 0.2620 | 1.6996 | 0.0935 |
Interaction between cleft in any parent’s history and Mother’s secondary or high education | −0.6610 | −1.3124 | −0.0095 | 0.3268 | −2.0227 | 0.0468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulesa-Mrowiecka, M.; Lipowicz, A.; Marszałek-Kruk, B.A.; Kania, D.; Wolański, W.; Myśliwiec, A.; Dowgierd, K. Characteristics of Factors Influencing the Occurrence of Cleft Lip and/or Palate: A Case Analysis and Literature Review. Children 2024, 11, 399. https://doi.org/10.3390/children11040399
Kulesa-Mrowiecka M, Lipowicz A, Marszałek-Kruk BA, Kania D, Wolański W, Myśliwiec A, Dowgierd K. Characteristics of Factors Influencing the Occurrence of Cleft Lip and/or Palate: A Case Analysis and Literature Review. Children. 2024; 11(4):399. https://doi.org/10.3390/children11040399
Chicago/Turabian StyleKulesa-Mrowiecka, Małgorzata, Anna Lipowicz, Bożena Anna Marszałek-Kruk, Damian Kania, Wojciech Wolański, Andrzej Myśliwiec, and Krzysztof Dowgierd. 2024. "Characteristics of Factors Influencing the Occurrence of Cleft Lip and/or Palate: A Case Analysis and Literature Review" Children 11, no. 4: 399. https://doi.org/10.3390/children11040399
APA StyleKulesa-Mrowiecka, M., Lipowicz, A., Marszałek-Kruk, B. A., Kania, D., Wolański, W., Myśliwiec, A., & Dowgierd, K. (2024). Characteristics of Factors Influencing the Occurrence of Cleft Lip and/or Palate: A Case Analysis and Literature Review. Children, 11(4), 399. https://doi.org/10.3390/children11040399