Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients and Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Atrial septal defect |
BMI | Body mass index |
CH | Congenital hypothyroidism |
CHD | Congenital heart defect |
DS | Down syndrome |
HDD | Hospital discharge database |
OH | Overt hypothyroidism |
RCDT | Registry of Congenital Defects of Tuscany |
RRDT | Registry of Rare Diseases of Tuscany |
SH | Subclinical hypothyroidism |
T4 | Thyroxine |
TSH | Thyroid-stimulating hormone |
VSD | Ventricular septal defect |
References
- Park, G.W.; Kim, N.E.; Choi, E.K.; Yang, H.J.; Won, S.; Lee, Y.J. Estimating Nationwide Prevalence of Live Births with Down Syndrome and Their Medical Expenditures in Korea. J. Korean Med. Sci. 2019, 34, e207. [Google Scholar] [CrossRef] [PubMed]
- EUROCAT Data. Prevalence Data and Tables. Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en (accessed on 11 March 2024).
- Morris, J.K.; Garne, E.; Wellesley, D.; Addor, M.C.; Arriola, L.; Barisic, I.; Beres, J.; Bianchi, F.; Budd, J.; Dias, C.M.; et al. Major congenital anomalies in babies born with Down syndrome: A EUROCAT population-based registry study. Am. J. Med. Genet. Part A 2014, 164A, 2979–2986. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.J.; LaFranchi, S.H.; Pinter, J.D. Characterization of Thyroid Abnormalities in a Large Cohort of Children with Down Syndrome. Horm. Res. Paediatr. 2017, 87, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Cua, C.L.; Haque, U.; Santoro, S.; Nicholson, L.; Backes, C.H. Differences in mortality characteristics in neonates with Down’s syndrome. J. Perinatol. 2017, 37, 427–431, Erratum in: J. Perinatol. 2017, 37, 465. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, F.; Rossetto Giaccherino, R.; Lanfranco, F.; Motta, G.; Gori, D.; Arvat, E.; Ghigo, E.; Giordano, R. Endocrine Autoimmunity in Down’s Syndrome. Front. Horm. Res. 2017, 48, 133–146. [Google Scholar] [PubMed]
- Mulu, B.; Fantahun, B. Thyroid abnormalities in children with Down syndrome at St. Paul’s hospital millennium medical college, Ethiopia. Endocrinol. Diabetes Metab. 2022, 5, e00337. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Crivicich, E.; De Silvestri, A.; Amariti, R.; Clemente, A.M.; Bassanese, F.; Regalbuto, C.; Vinci, F.; Albertini, R.; Larizza, D. Timing, prevalence, and dynamics of thyroid disorders in children and adolescents affected with Down syndrome. J. Pediatr. Endocrinol. Metab. 2020, 33, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Nunez, J.; Celi, F.S.; Ng, L.; Forrest, D. Multigenic control of thyroid hormone functions in the nervous system. Mol. Cell. Endocrinol. 2008, 287, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Purdy, I.B.; Singh, N.; Brown, W.L.; Vangala, S.; Devaskar, U.P. Revisiting early hypothyroidism screening in infants with Down syndrome. J. Perinatol. 2014, 34, 936–940. [Google Scholar] [CrossRef]
- Wassner, A.J. Congenital Hypothyroidism. Clin. Perinatol. 2018, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wassner, A.J.; Brown, R.S. Congenital hypothyroidism: Recent advances. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 407–412. [Google Scholar]
- McGrath, N.; Hawkes, C.P.; McDonnell, C.M.; Cody, D.; O’Connell, S.M.; Mayne, P.D.; Murphy, N.P. Incidence of Congenital Hypothyroidism Over 37 Years in Ireland. Pediatrics 2018, 142, e20181199. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Shojazadeh, A.; Molayemat, M.; Habib, A.; Jeddi, M.; Arabsolghar, R.; Nahas, M.; Rahimi, N.; Ardekani, F.M. Prevalence and predictive factors of transient and permanent congenital hypothyroidism in Fars province, Iran. BMC Pediatr. 2021, 21, 264. [Google Scholar] [CrossRef]
- Tuli, G.; Munarin, J.; Tessaris, D.; Matarazzo, P.; Einaudi, S.; de Sanctis, L. Incidence of primary congenital hypothyroidism and relationship between diagnostic categories and associated malformations. Endocrine 2021, 71, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.V.; LaFranchi, S.H. Congenital hypothyroidism. Orphanet J. Rare Dis. 2010, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Chiovato, L.; Magri, F.; Carlé, A. Hypothyroidism in Context: Where We’ve Been and Where We’re Going. Adv. Ther. 2019, 36, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Cebeci, A.N.; Güven, A.; Yıldız, M. Profile of hypothyroidism in Down’s syndrome. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Vanderpump, M.P. The epidemiology of thyroid disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best. Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.; Stazi, M.A.; Mastroiacovo, P.; Fazzini, C.; Medda, E.; Spagnolo, A.; De Angelis, S.; Grandolfo, M.E.; Taruscio, D.; Cordeddu, V.; et al. A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: Data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J. Clin. Endocrinol. Metab. 2002, 87, 557–562. [Google Scholar] [PubMed]
- Kempers, M.J.; Ozgen, H.M.; Vulsma, T.; Merks, J.H.; Zwinderman, K.H.; de Vijlder, J.J.; Hennekam, R.C. Morphological abnormalities in children with thyroidal congenital hypothyroidism. Am. J. Med. Genet. Part A 2009, 149A, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.A.; Rajagopal, G.; Harinarayan, C.V.; Vanaja, V.; Rajasekhar, D.; Suresh, V.; Sachan, A. High prevalence of associated birth defects in congenital hypothyroidism. Int. J. Pediatr. Endocrinol. 2010, 2010, 940980. [Google Scholar] [CrossRef] [PubMed]
- Graber, E.; Chacko, E.; Regelmann, M.O.; Costin, G.; Rapaport, R. Down syndrome and thyroid function. Endocrinol. Metab. Clin. N. Am. 2012, 41, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Baş, V.N.; Ozgelen, S.; Cetinkaya, S.; Aycan, Z. Diseases accompanying congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2014, 27, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Kinsner-Ovaskainen, A.; Lanzoni, M.; Garne, E.; Loane, M.; Morris, J.; Neville, A.; Nicholl, C.; Rankin, J.; Rissmann, A.; Tucker, D.; et al. A sustainable solution for the activities of the European network for surveillance of congenital anomalies: EUROCAT as part of the EU Platform on Rare Diseases Registration. Eur. J. Med. Genet. 2018, 61, 513–517. [Google Scholar] [CrossRef] [PubMed]
- EUROCAT. Guide 1.5. Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/data-collection/guidelines-for-data-registration_en#inline-nav-2 (accessed on 11 March 2024).
- Ford, G.A.; Denniston, S.; Sesser, D.; Skeels, M.R.; LaFranchi, S.H. Transient versus Permanent Congenital Hypothyroidism after the Age of 3 Years in Infants Detected on the First versus Second Newborn Screening Test in Oregon, USA. Horm. Res. Paediatr. 2016, 86, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kanike, N.; Davis, A.; Shekhawat, P.S. Transient hypothyroidism in the newborn: To treat or not to treat. Transl. Pediatr. 2017, 6, 349–358. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Karlsson, B.; Gustafsson, J.; Hedov, G.; Ivarsson, S.A.; Annerén, G. Thyroid dysfunction in Down’s syndrome: Relation to age and thyroid autoimmunity. Arch. Dis. Child. 1998, 79, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Mıhçı, E.; Akçurin, G.; Eren, E.; Kardelen, F.; Akçurin, S.; Keser, I.; Ertuğ, H. Evaluation of congenital heart diseases and thyroid abnormalities in children with Down syndrome. Anadolu Kardiyol. Derg. 2010, 10, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Iughetti, L.; Predieri, B.; Bruzzi, P.; Predieri, F.; Vellani, G.; Madeo, S.F.; Garavelli, L.; Biagioni, O.; Bedogni, G.; Bozzola, M. Ten-year longitudinal study of thyroid function in children with Down’s syndrome. Horm. Res. Paediatr. 2014, 82, 113–121. [Google Scholar] [CrossRef] [PubMed]
- AlAaraj, N.; Soliman, A.T.; Itani, M.; Khalil, A.; De Sanctis, V. Prevalence of thyroid dysfunctions in infants and children with Down Syndrome (DS) and the effect of thyroxine treatment on linear growth and weight gain in treated subjects versus DS subjects with normal thyroid function: A controlled study. Acta Biomed. 2019, 90, 36–42. [Google Scholar] [PubMed]
- Yaqoob, M.; Manzoor, J.; Hyder, S.N.; Sadiq, M. Congenital heart disease and thyroid dysfunction in Down syndrome reported at Children`s Hospital, Lahore, Pakistan. Turk. J. Pediatr. 2019, 61, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.C.; Ragusa, S.S.; Aronica, T.S.; Granata, O.M.; Gucciardino, E.; Corsello, G. Neonatal screening for congenital hypothyroidism in an Italian Centre: A 5-years real-life retrospective study. Ital. J. Pediatr. 2021, 47, 108. [Google Scholar] [CrossRef] [PubMed]
- Rabbiosi, S.; Vigone, M.C.; Cortinovis, F.; Zamproni, I.; Fugazzola, L.; Persani, L.; Corbetta, C.; Chiumello, G.; Weber, G. Congenital hypothyroidism with eutopic thyroid gland: Analysis of clinical and biochemical features at diagnosis and after re-evaluation. J. Clin. Endocrinol. Metab. 2013, 98, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Ford, G.; LaFranchi, S.H. Screening for congenital hypothyroidism: A worldwide view of strategies. Best. Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Nettore, I.C.; Cacace, V.; De Fusco, C.; Colao, A.; Macchia, P.E. The molecular causes of thyroid dysgenesis: A systematic review. J. Endocrinol. Investig. 2013, 36, 654–664. [Google Scholar]
- Kariyawasam, D.; Carré, A.; Luton, D.; Polak, M. Down syndrome and nonautoimmune hypothyroidisms in neonates and infants. Horm. Res. Paediatr. 2015, 83, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Vigone, M.C.; Caiulo, S.; Di Frenna, M.; Ghirardello, S.; Corbetta, C.; Mosca, F.; Weber, G. Evolution of thyroid function in preterm infants detected by screening for congenital hypothyroidism. J. Pediatr. 2014, 164, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.W.; Jeon, G.W.; Sin, J.B. Thyroid dysfunction in very low birth weight preterm infants. Korean J. Pediatr. 2015, 58, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.; Hovsepian, S.; Ansari, A.; Keikha, M.; Khalighinejad, P.; Niknam, N. Screening of congenital hypothyroidism in preterm, low birth weight and very low birth weight neonates: A systematic review. Pediatr. Neonatol. 2018, 59, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.H.; Harada, S.; Kato, T.; Inomata, H.; Aoki, K.; Hirahara, F. Increased incidence of extrathyroidal congenital malformations in Japanese patients with congenital hypothyroidism and their relationship with Down syndrome and other factors. Thyroid 2009, 19, 869–879. [Google Scholar] [CrossRef]
- Sparks, T.N.; Griffin, E.; Page, J.; Pilliod, R.; Shaffer, B.L.; Caughey, A.B. Down syndrome: Perinatal mortality risks with each additional week of expectant management. Prenat. Diagn. 2016, 36, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Dakkak, W.; Oliver, T.I. Ventricular Septal Defect. 2023 6. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Amr, N.H. Thyroid Disorders in Subjects with Down Syndrome: An Update. Acta Biomed. 2018, 89, 132–139. [Google Scholar] [PubMed]
- Uthayaseelan, K.; Kadari, M.; Subhan, M.; Saji Parel, N.; Krishna, P.V.; Gupta, A.; Uthayaseelan, K. Congenital Anomalies in Infant With Congenital Hypothyroidism: A Review of Pathogenesis, Diagnostic Options, and Management Protocols. Cureus 2022, 14, e24669. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Rajakumar, G. Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes 2016, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhu, P.; Wang, R.; Wu, Q.; Wang, M.; Zhang, X.; Mei, L.; Tang, J.; Kumar, M.; Wang, X.; et al. Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin. Genet. 2017, 91, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Dentice, M.; Cordeddu, V.; Rosica, A.; Ferrara, A.M.; Santarpia, L.; Salvatore, D.; Chiovato, L.; Perri, A.; Moschini, L.; Fazzini, C.; et al. Missense mutation in the transcription factor NKX2-5: A novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 2006, 91, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Ramos, H.E.; Nesi-França, S.; Boldarine, V.T.; Pereira, R.M.; Chiamolera, M.I.; Camacho, C.P.; Graf, H.; de Lacerda, L.; Carvalho, G.A.; Maciel, R.M. Clinical and molecular analysis of thyroid hypoplasia: A population-based approach in southern Brazil. Thyroid 2009, 19, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Brust, E.S.; Beltrao, C.B.; Chammas, M.C.; Watanabe, T.; Sapienza, M.T.; Marui, S. Absence of mutations in PAX8, NKX2.5, and TSH receptor genes in patients with thyroid dysgenesis. Arq. Bras. Endocrinol. Metabol. 2012, 56, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, T.L.O.; Ramos, Y.R.; Strappa, G.B.; Jesus, M.S.; Santos, J.G.; Sousa, C.; Carvalho, G.; Fernandes, V.; Boa-Sorte, N.; Amorim, T.; et al. Mutation screening in the genes PAX-8, NKX2-5, TSH-R, HES-1 in cohort of 63 Brazilian children with thyroid dysgenesis. Arch. Endocrinol. Metab. 2018, 62, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, D.; Gliwicz, D.; Ciara, E.; Gerfen, J.; Pelc, M.; Piekutowska-Abramczuk, D.; Kugaudo, M.; Chrzanowska, K.; Spinner, N.B.; Krajewska-Walasek, M. Spectrum of JAG1 gene mutations in Polish patients with Alagille syndrome. J. Appl. Genet. 2014, 55, 329–336. [Google Scholar] [CrossRef] [PubMed]
- de Filippis, T.; Marelli, F.; Nebbia, G.; Porazzi, P.; Corbetta, S.; Fugazzola, L.; Gastaldi, R.; Vigone, M.C.; Biffanti, R.; Frizziero, D.; et al. JAG1 Loss-Of-Function Variations as a Novel Predisposing Event in the Pathogenesis of Congenital Thyroid Defects. J. Clin. Endocrinol. Metab. 2016, 101, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Passeri, E.; Frigerio, M.; De Filippis, T.; Valaperta, R.; Capelli, P.; Costa, E.; Fugazzola, L.; Marelli, F.; Porazzi, P.; Arcidiacono, C.; et al. Increased risk for non-autoimmune hypothyroidism in young patients with congenital heart defects. J. Clin. Endocrinol. Metab. 2011, 96, E1115–E1119. [Google Scholar] [CrossRef] [PubMed]
- Scavone, M.; Tallarico, V.; Stefanelli, E.; Parisi, F.; De Sarro, R.; Salpietro, C.; Ceravolo, G.; Sestito, S.; Pensabene, L.; Chimenz, R.; et al. Cardiac malformations in children with congenital hypothyroidism. J. Biol. Regul. Homeost. Agents. 2020, 34, 91–97. [Google Scholar] [PubMed]
- van Trotsenburg, A.S.; Vulsma, T.; van Santen, H.M.; Cheung, W.; de Vijlder, J.J. Lower neonatal screening thyroxine concentrations in down syndrome newborns. J. Clin. Endocrinol. Metab. 2003, 88, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Pepe, G.; Corica, D.; De Sanctis, L.; Salerno, M.; Faienza, M.F.; Tessaris, D.; Tuli, G.; Scala, I.; Penta, L.; Alibrandi, A.; et al. Prospective evaluation of autoimmune and non-autoimmune subclinical hypothyroidism in Down syndrome children. Eur. J. Endocrinol. 2020, 182, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.; Casado, Á. Oxidative stress, thyroid dysfunction & Down syndrome. Indian J. Med. Res. 2015, 142, 113–119. [Google Scholar] [PubMed]
- Dierssen, M.; Fructuoso, M.; Martínez de Lagrán, M.; Perluigi, M.; Barone, E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front. Neurosci 2020, 14, 670. [Google Scholar]
- Kariyawasam, D.; Rachdi, L.; Carré, A.; Martin, M.; Houlier, M.; Janel, N.; Delabar, J.M.; Scharfmann, R.; Polak, M. DYRK1A BAC transgenic mouse: A new model of thyroid dysgenesis in Down syndrome. Endocrinology 2015, 156, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Kanavin, O.J.; Aaseth, J.; Birketvedt, G.S. Thyroid hypofunction in Down’s syndrome: Is it related to oxidative stress? Biol. Trace Elem. Res. 2000, 78, 35–42. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, R.; Casado, A.; López-Fernández, E.; Carrascosa, D.; Ramírez, V.; Sáez, J. Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia 1996, 52, 871–873. [Google Scholar] [CrossRef] [PubMed]
Total | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Period | Number of Cases | Prevalence (95% CI) | p | Number of Cases | Prevalence (95% CI) | p | Number of Cases | Prevalence (95% CI) | p |
2003–2009 | 8 | 7.4% (3.2–14.6%) | <0.0001 | 4 | 6.3% (1.7–16.2%) | 0.0001 | 4 | 8.9% (2.4–22.7%) | 0.0024 |
2010–2017 | 18 | 15.0% (8.9–23.7%) | 7 | 13.5% (5.4–27.7%) | 11 | 16.2% (8.1–28.9%) | |||
2003–2017 | 26 | 11.4% (7.4–16.7%) | 11 | 9.6% (4.8–17.1%) | 15 | 13.3% (7.4–21.9%) |
Total | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Period | Number of Cases | Prevalence (95% CI) | p | Number of Cases | Prevalence (95% CI) | p | Number of Cases | Prevalence (95% CI) | p |
2003–2009 | 15 | 13.9% (7.8–22.9%) | 0.188 | 5 | 8.0% (2.6–18.5%) | 0.045 | 10 | 22.2% (10.6–40.9%) | 0.0008 |
2010–2017 | 14 | 11.7% (6.4–19.6%) | 86 | 11.5% (4.2–25.1%) | 8 | 11.8% (5.1–23.2%) | |||
2003–2017 | 29 | 12.7% (8.5–18.3%) | 11 | 9.6% (4.8–17.1%) | 18 | 15.9% (9.4–25.2%) |
Variable Number (%) | DS Children without CH and OH § | Congenital Hypothyroidism | Overt Hypothyroidism | ||
---|---|---|---|---|---|
n = 165 | n = 26 | p * | n = 29 | p * | |
Sex | |||||
Males | 86 (52.1) | 11 (42.3) | 0.352 | 11 (37.9) | 0.159 |
Preterm infants ** | 26 (18.8) | 11 (42.3) | 0.009 | 5 (18.5) | 0.969 |
Maternal age | |||||
<35 | 58 (38.4) | 7 (26.9) | 0.516 | 7 (25.0) | 0.364 |
≥35–<40 | 50 (33.1) | 10 (38.5) | 10 (35.7) | ||
≥40 | 43 (28.5) | 9 (34.6) | 11 (32.3) | ||
Paternal age | |||||
<35 | 39 (30.5) | 3 (15.8) | 0.199 | 6 (25.0) | 0.661 |
≥35–<40 | 31 (24.2) | 3 (15.8) | 8 (33.3) | ||
≥40 | 58 (45.3) | 13 (68.4) | 10 (41.7) | ||
Maternal BMI | |||||
<19 | 12 (9.1) | 1 (3.8) | 0.716 | 2 (7.4) | 0.982 |
≥19–<25 | 76 (57.5) | 18 (69.2) | 17 (63.0) | ||
≥25–≤30 | 34 (25.8) | 5(19.2) | 7 (25.9) | ||
>30 | 10 (7.6) | 2 (7.7) | 1 (3.7) | ||
Maternal nationality | |||||
Italy and Developed Countries | 112 (75.2) | 22 (84.6) | 0.294 | 24 (88.8) | 0.117 |
Maternal education | |||||
Elementary and lower secondary | 41 (30.4) | 4 (15.4) | 0.042 | 5 (19.2) | 0.429 |
Upper secondary | 56 (41.5) | 8 (30.8) | 14 (53.8) | ||
Tertiary | 38 (28.1) | 14 (53.8) | 7 (26.9) | ||
Maternal smoking during pregnancy | |||||
Smokers | 13 (10.7) | 1 (4.8) | 0.396 | 4 (16.7) | 0.410 |
Associated CHDs | |||||
Yes | 52 (31.5) | 15 (57.7) | 0.009 | 14 (48.3) | 0.079 |
DS Children n = 228 | Congenital Hypothyroidism n = 26 | Overt Hypothyroidism n = 29 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Anomalies | Number (%) | Number (%) | OR (95%CI) | p | adjOR (95%CI) * | p | Number (%) | OR (95%CI) | p | adjOR (95%CI) * | p |
Total CHDs | 84 (36.8%) | 15 (57.7%) | 2.96 (1.27–6.89) | 0.012 | 2.24 (0.90–5.58) | 0.082 | 14 (48.2%) | 2.03 (0.91–4.51) | 0.085 | 1.68 (0.55–2.98) | 0.254 |
Severe CHDs | 27 (11.8%) | 5 (19.2%) | 1.94 (0.65–5.79) | 0.232 | 1.47 (0.45–4.76) | 0.518 | 3 (10.3%) | 0.94 (0.26–3.43) | 0.928 | 0.60 (0.12–2.92) | 0.525 |
VSD | 37 (16.2%) | 3 (11.5%) | 0.85 (0.23–3.06) | 0.801 | 0.55 (0.14–2.18) | 0.399 | 10 (34.5%) | 3.42 (1.41–8.31) | 0.009 | 3.07 (1.15–8.15) | 0.025 |
AVSD | 20 (8.7%) | 4 (15.4%) | 2.12 (0.64–7.10) | 0.221 | 1.45 (0.40–5.25) | 0.568 | 2 (6.9%) | 0.87 (0.18–4.05) | 0.853 | 0.78 (0.16–3.86) | 0.760 |
ASD | 19 (8.3%) | 2 (7.7%) | 0.90 (0.19–4.20) | 0.892 | 0.77 (0.14–4.27) | 0.767 | 3 (10.3%) | 1.24 (0.33–4.63) | 0.749 | 0.81 (0.16–4.13) | 0.806 |
PDA | 15 (6.6%) | 4 (15.4%) | 2.82 (0.81–9.76) | 0.102 | 2.60 (0.65–10.32) | 0.175 | 1 (3.4%) | 0.55 (0.07–4.50) | 0.551 | 0.57 (0.07–4.86) | 0.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorini, F.; Coi, A.; Pierini, A.; Assanta, N.; Bottoni, A.; Santoro, M. Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children 2024, 11, 513. https://doi.org/10.3390/children11050513
Gorini F, Coi A, Pierini A, Assanta N, Bottoni A, Santoro M. Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children. 2024; 11(5):513. https://doi.org/10.3390/children11050513
Chicago/Turabian StyleGorini, Francesca, Alessio Coi, Anna Pierini, Nadia Assanta, Antonio Bottoni, and Michele Santoro. 2024. "Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects" Children 11, no. 5: 513. https://doi.org/10.3390/children11050513
APA StyleGorini, F., Coi, A., Pierini, A., Assanta, N., Bottoni, A., & Santoro, M. (2024). Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children, 11(5), 513. https://doi.org/10.3390/children11050513