Retrospective Analysis of Fever in Pediatric Age: Our Experience over the Last 5 Years
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogoina, D. Fever, fever patterns and diseases called ‘fever’—A review. J. Infect. Public. Health. 2011, 4, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Hay, A.D.; Heron, J.; Ness, A. ALSPAC study team. The prevalence of symptoms and consultations in pre-school children in the Avon Longitudinal Study of Parents and Children (ALSPAC): A prospective cohort study. Fam. Pract. 2005, 22, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Atha, W.F. Heat-related illness. Emerg. Med. Clin. N. Am. 2013, 31, 1097–1108. [Google Scholar] [CrossRef]
- Bongers, K.S.; Salahudeen, M.S.; Peterson, G.M. Drug-associated hyperthermia: A longitudinal analysis of hospital presentations. J. Clin. Pharm. Ther. 2020, 45, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Johnson, J.M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Auton. Neurosci. 2016, 196, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Romanovsky, A.A. Thermoregulation: Some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R37–R46. [Google Scholar] [CrossRef] [PubMed]
- Turrin, N.P.; Rivest, S. Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp. Biol. Med. 2004, 229, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Romanovsky, A.A.; Steiner, A.A.; Matsumura, K. Cells that trigger fever. Cell Cycle 2006, 5, 2195–2197. [Google Scholar] [CrossRef]
- Conti, B.; Tabarean, I.; Andrei, C.; Bartfai, T. Cytokines and fever. Front. Biosci. 2004, 9, 1433–1449. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Cangelosi, A.M.; Becherucci, P.; Pierattelli, M.; Galli, L.; de Martino, M. Knowledge, attitudes and misconceptions of Italian healthcare professionals regarding fever management in children. BMC Pediatr. 2018, 18, 194. [Google Scholar] [CrossRef]
- Purssell, E.; Collin, J. Fever phobia: The impact of time and mortality—A systematic review and meta-analysis. Int. J. Nurs. Stud. 2016, 56, 81–89. [Google Scholar] [CrossRef]
- Clericetti, C.M.; Milani, G.P.; Bianchetti, M.G.; Simonetti, G.D.; Fossali, E.F.; Balestra, A.M.; Bozzini, M.A.; Agostoni, C.; Lava, S.A.G. Systematic review finds that fever phobia is a worldwide issue among caregivers and healthcare providers. Acta Paediatr. 2019, 108, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Gomez, B.; Mintegi, S.; Bressan, S.; Da Dalt, L.; Gervaix, A.; Lacroix, L.; on behalf of the European Group for Validation of the Step-by-Step Approach. Validation of the “Step-by-Step” Approach in the Management of Young Febrile Infants. Pediatrics 2016, 138, e20154381. [Google Scholar] [CrossRef]
- Sutiman, N.; Khoo, Z.X.; Ong, G.Y.K.; Piragasam, R.; Chong, S.L. Validation and comparison of the PECARN rule, Step-by-Step approach and Lab-score for predicting serious and invasive bacterial infections in young febrile infants. Ann. Acad. Med. Singap. 2022, 51, 595–604. [Google Scholar] [CrossRef]
- Fever in under 5s: Assessment and Initial Management; National Institute for Health and Care Excellence (NICE): London, UK, 2021.
- Philbin, D.; Hall, D. Fifteen-minute consultation: The approach to the febrile child. Arch. Dis. Child. Educ. Pract. Ed. 2022, 107, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Antoon, J.W.; Peritz, D.C.; Parsons, M.R.; Skinner, A.C.; Lohr, J.A. Etiology and Resource Use of Fever of Unknown Origin in Hospitalized Children. Hosp. Pediatr. 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Cho, C.Y.; Lai, C.C.; Lee, M.L.; Hsu, C.L.; Chen, C.J.; Chang, L.Y.; Lo, C.W.; Chiang, S.F.; Wu, K.G. Clinical analysis of fever of unknown origin in children: A 10-year experience in a northern Taiwan medical center. J. Microbiol. Immunol. Infect. 2017, 50, 40–45. [Google Scholar] [CrossRef]
- Szymanski, A.M.; Clifford, H.; Ronis, T. Fever of unknown origin: A retrospective review of pediatric patients from an urban, tertiary care center in Washington, DC. World J. Pediatr. 2020, 16, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.; Robinson, J.L. Fever of unknown origin in children: A systematic review. World J. Pediatr. 2011, 7, 5–10. [Google Scholar] [CrossRef]
- Scaramuzza, A.; Tagliaferri, F.; Bonetti, L.; Soliani, M.; Morotti, F.; Bellone, S.; Cavalli, C.; Rabbone, I. Changing admission patterns in paediatric emergency departments during the COVID-19 pandemic. Arch. Dis. Child. 2020, 105, 704–706. [Google Scholar] [CrossRef]
- Goldman, R.D.; Grafstein, E.; Barclay, N.; Irvine, M.A.; Portales-Casamar, E. Paediatric patients seen in 18 emergency departments during the COVID-19 pandemic. Emerg. Med. J. 2020, 37, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Rotulo, G.A.; Percivale, B.; Molteni, M.; Naim, A.; Brisca, G.; Piccotti, E.; Castagnola, E. The impact of COVID-19 lockdown on infectious diseases epidemiology: The experience of a tertiary Italian Pediatric Emergency Department. Am. J. Emerg. Med. 2021, 43, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Ciacchini, B.; Tonioli, F.; Marciano, C.; Faticato, M.G.; Borali, E.; Pini Prato, A.; Felici, E. Reluctance to seek pediatric care during the COVID-19 pandemic and the risks of delayed diagnosis. Ital. J. Pediatr. 2020, 46, 87. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, M.; Barbi, E.; Apicella, A.; Marchetti, F.; Cardinale, F.; Trobia, G. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child. Adolesc. Health 2020, 4, e10–e11. [Google Scholar] [CrossRef] [PubMed]
- Parasole, R.; Stellato, P.; Conter, V.; De Matteo, A.; D’Amato, L.; Colombini, A.; Pecoraro, C.; Bencivenga, C.; Raimondo, M.; Silvestri, S.; et al. Collateral effects of COVID-19 pandemic in pediatric hematooncology: Fatalities caused by diagnostic delay. Pediatr. Blood Cancer. 2020, 67, e28482. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr. Allergy Asthma Rep. 2022, 22, 53–60. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, M.L.; Venekamp, R.P.; van der Ent, C.K.; Schilder, A.; Sanders, E.A.; Damoiseaux, R.A.; Bogaert, D.; Uiterwaal, C.S.; Smit, H.A.; Bruijning-Verhagen, P. Impact of early daycare on healthcare resource use related to upper respiratory tract infections during childhood: Prospective WHISTLER cohort study. BMC Med. 2014, 12, 107. [Google Scholar] [CrossRef]
- Chiappini, E.; Venturini, E.; Principi, N.; Longhi, R.; Tovo, P.-A.; Becherucci, P.; Bonsignori, F.; Esposito, S.; Festini, F.; Galli, L.; et al. Update of the 2009 Italian Pediatric Society Guidelines about management of fever in children. Clin. Ther. 2012, 34, 1648–1653.e3. [Google Scholar] [CrossRef]
- Davis, T. NICE guideline: Feverish illness in children—Assessment and initial management in children younger than 5 years. Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 232–235. [Google Scholar] [CrossRef]
- Nicolini, G.; Sperotto, F.; Esposito, S. Combating the rise of antibiotic resistance in children. Minerva Pediatr. 2014, 66, 31–39. [Google Scholar]
- Abshire, T.C.; Reeves, J.D. Anemia of acute inflammation in children. J. Pediatr. 1983, 103, 868–871. [Google Scholar] [CrossRef]
- Jansson, L.T.; Kling, S.; Dallman, P.R. Anemia in children with acute infections seen in a primary care pediatric outpatient clinic. Pediatr. Infect. Dis. 1986, 5, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, A.; Tarissi de Jacobis, I.; Rigante, D.; Rimini, A.; Malorni, W.; Corsello, G.; Bossi, G.; Buonuomo, S.; Cardinale, F.; Cortis, E.; et al. Kawasaki disease: Guidelines of the Italian Society of Pediatrics, part I—Definition, epidemiology, etiopathogenesis, clinical expression and management of the acute phase. Ital. J. Pediatr. 2018, 44, 102. [Google Scholar] [CrossRef] [PubMed]
- Manzano, S.; Bailey, B.; Gervaix, A.; Cousineau, J.; Delvin, E.; Girodias, J.B. Markers for bacterial infection in children with fever without source. Arch. Dis. Child. 2011, 96, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Yo, C.H.; Hsieh, P.S.; Lee, S.H.; Wu, J.Y.; Chang, S.S.; Tasi, K.C.; Lee, C.C. Comparison of the test characteristics of procalcitonin to C-reactive protein and leukocytosis for the detection of serious bacterial infections in children presenting with fever without source: A systematic review and meta-analysis. Ann. Emerg. Med. 2012, 60, 591–600. [Google Scholar] [CrossRef]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.; Wang, L.; Zhu, Y.; Ho, B.; Ding, J.L. The response of ferritin to LPS and acute phase of Pseudomonas infection. J. Endotoxin Res. 2005, 11, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Kluger, M.J.; Rothenburg, B.A. Fever and reduced iron: Their interaction as a host defense response to bacterial infection. Science 1979, 203, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Huang, J.; Dai, D.; Feng, Y.; Liu, L.; Nie, S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis. 2020, 7, ofaa250. [Google Scholar] [CrossRef]
- Srivastava, G.; Chhavi, N.; Goel, A. Validation of Serum Aminotransferases Levels to Define Severe Dengue Fever in Children. Pediatr. Gastroenterol. Hepatol. Nutr. 2018, 21, 289–296. [Google Scholar] [CrossRef]
- Tezer, H.; Sucakli, I.A.; Sayli, T.R.; Celikel, E.; Yakut, I.; Kara, A.; Tunc, B.; Ergonul, O. Crimean-Congo hemorrhagic fever in children. J. Clin. Virol. 2010, 48, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Özdem, S.; Tanır, G.; Öz, F.N.; Yalçınkaya, R.; Cinni, R.G.; Savaş Şen, Z.; Aydın, N.N.; Kaman, A.; Polat, M.; Aydın Teke, T. Bacteremic and Nonbacteremic Brucellosis in Children in Turkey. J. Trop. Pediatr. 2022, 68, fmab114. [Google Scholar] [CrossRef] [PubMed]
- Rohani, P.; Imanzadeh, F.; Sayyari, A.; Kazemi Aghdam, M.; Shiari, R. Persistent elevation of aspartate aminotransferase in a child after incomplete Kawasaki disease: A case report and literature review. BMC Pediatr. 2020, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Farhana, A.; Lappin, S.L. Biochemistry, Lactate Dehydrogenase. [Updated 2023]; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, T.; Guo, W.; Ling, Y.; Tian, J.; Xu, Y. Clinical characteristics of refractory mycoplasma pneumoniae pneumonia in children treated with glucocorticoid pulse therapy. BMC Infect. Dis. 2021, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Griffin, G.; Shenoi, S.; Hughes, G.C. Hemophagocytic lymphohistiocytosis: An update on pathogenesis, diagnosis, and therapy. Best. Pract. Res. Clin. Rheumatol. 2020, 34, 101515. [Google Scholar] [CrossRef] [PubMed]
- A’t Hoen, L.A.; Bogaert, G.; Radmayr, C.; Dogan, H.S.; Nijman, R.J.M.; Quaedackers, J.; Rawashdeh, Y.F.; Silay, M.S.; Tekgul, S.; Bhatt, N.R.; et al. Update of the EAU/ESPU guidelines on urinary tract infections in children. J. Pediatr. Urol. 2021, 17, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Roblin, X.; Cavaille, A.; Clavel, L.; Paul, S. Intérêt des biomarqueurs dans la prise en charge des MICI [Biomarkers in inflammatory bowel diseases]. Presse Med. 2014, 43, 66–73. (In French) [Google Scholar] [CrossRef]
- Demirbaş, F.; Çaltepe, G.; Comba, A.; Abbasguliyev, H.; Uyar, N.Y.; Kalaycı, A.G. Fecal calprotectin in children with familial Mediterranean fever in the attack-free period. Pediatr. Int. 2019, 61, 1140–1145. [Google Scholar] [CrossRef]
Variables (N = 220) | |
---|---|
Sex | |
| 92 (41.8%) |
| 128 (58.2%) |
Age of admission (years) | 4.73 ± 4.3 |
Ethnicity | |
| 209 (95%) |
| 11 (5%) |
Year of hospitalization | |
| 55 (25%) |
| 40 (18.2%) |
| 33 (15%) |
| 31 (14.1%) |
| 29 (13.2%) |
| 32 (14.5%) |
Month of hospitalization | |
| 24 (10.9%) |
| 14 (6.4%) |
| 14 (6.4%) |
| 22 (10%) |
| 18 (8.2%) |
| 22 (10%) |
| 21 (9.5%) |
| 26 (11.8%) |
| 14 (6.4%) |
| 13 (5.9%) |
| 13 (5.9%) |
| 19 (8.6%) |
Days of fever | 7.15 (4–30) |
Days of hospitalization | 9.15 (3–44) |
Laboratory Parameters (n.v.) | T1 (±SD) | T2 (±SD) |
---|---|---|
White Blood Cells (5000–15,000 mmc) | 13,577 (±7510) | 9308 (±4060) |
| 62% | 42% |
| 31% | 50% |
| 5.5% | 5% |
| 1.5% | 3% |
Hb (11.5–13.5 g/dL) | 11.8 (±1.15) | 11.4 (±1.4) |
PLT (250,000–550,000 mmc) | 322,703 (±144,038) | 424,254 (±201,508) |
CRP (0–0.5 mg/dL) | 5.13 (±5.8) | 1.47 (±3) |
ESR (2–15 mm/h) | 59.2 (±33.8) | 49.1 (±33.3) |
Procalcitonin (<0.1 ng/mL) | 3.53 (±14) | 0.31 (±1) |
Ferritin (15–400 ng/mL) | 2039.5 (±7075.3) | 222.3 (±144.9) |
Fibrinogen (200–400 mg/dL) | 494 (±182.9) | 365 (±99.2) |
Triglycerides (50–160 mg/dL) | 153 (±50) | 237 (±161.3) |
D-dimer (0–500 ng/mL) | 3192.6 (±8239.5) | 797 (±1167.5) |
GOT (0–42 U/L) | 54.9 (±85.2) | 51.8 (±179.9) |
GPT (0–50 U/L) | 41 (±78.7) | 36.4 (±51.3) |
GGT (0–50 U/L) | 26.3 (±56.7) | 37.7 (±72.7) |
Sodium (134–145 mmol/L) | 135.9 (±3.7) | 137.3 (±3.7) |
LDH (135–225 U/L) | 625.5 (±353.8) | 519.2 (±233.4) |
T Troponin (<14 pg/mL) | 21.8 (±32.8) | 23.5 (±43.9) |
Pro-BNP (0–125 pg/mL) | 1813.6 (±3059.2) | 109 (±79.5) |
Lipase (8–57 U/L) | 33.5 (±49.4) | - |
Amylase (0–100 U/L) | 55.8 (±39.9) | - |
Iron (40–160 ug/dL) | 27.4 (±20.3) | - |
Myoglobin (23–72 ng/mL) | 1380.8 (±4220.4) | - |
Causes | Number | Percentage (%) |
---|---|---|
Infectious | ||
| 62 | 39.24% |
| 54 | 34.17% |
| 22 | 13.92% |
| 15 | 9.49% |
| 3 | 1.89% |
| 2 | 1.26% |
Rheumatological | ||
| 18 | 36.7% |
| 6 | 12.24% |
| 3 | 6% |
| 3 | 6% |
| 13 | 26.53% |
| 3 | 6% |
| 3 | 6% |
Hematological | ||
| 3 | 75% |
| 1 | 25% |
Others | ||
| 5 | 62.5% |
| 3 | 37.5% |
Variables | I Etiology | NI Etiology | p-Value |
---|---|---|---|
Sex | |||
| 68 (43%) | 24 (38.7%) | |
| 90 (57%) | 38 (61.3%) | 0.558 |
Age of admission (years) | 4.29 (±3.9) | 5.85 (±5) | 0.030 |
Ethnicity | |||
| 149 (94.3%) | 69 (96.8%) | |
| 9 (5.7%) | 2 (3.2%) | 0.449 |
Year of hospitalization | |||
| 45 (28.5%) | 10 (16.1%) | |
| 33 (20.9%) | 7 (11.3%) | |
| 21 (13.3%) | 12 (19.4%) | |
| 21 (13.3%) | 10 (16.1%) | |
| 18 (11.4%) | 11 (17.7%) | |
| 20 (12.7%) | 12 (19.4%) | 0.107 |
Month of hospitalization | |||
| 17 (10.8%) | 7 (11.3%) | |
| 9 (5.7%) | 5 (8.1%) | |
| 11 (7%) | 3 (4.8%) | |
| 19 (12%) | 3 (4.8%) | |
| 12 (7.6%) | 6 (9.7%) | |
| 13 (8.2%) | 9 (14.5%) | |
| 14 (8.9%) | 7 (11.3%) | |
| 24 (15.2%) | 2 (3.2%) | |
| 11 (7%) | 3 (4.8%) | |
| 8 (5.1%) | 5 (8.1%) | |
| 7 (4.4%) | 6 (9.7%) | |
| 13 (8.2%) | 6 (9.7%) | 0.241 |
Family history for periodic fever | 2 (1.3%) | 6 (9.7%) | 0.003 |
Days of fever | 6.77 (±3.44) | 8.13 (±4.1) | 0.023 |
Days of hospitalization | 8.09 (±4.7) | 11.85 (±7.3) | 0.000 |
Laboratory Parameters (n.v.) | I Etiology (±SD) | NI Etiology (±SD) | p-Value |
---|---|---|---|
White Blood Cells (5000–15,000 mmc) | 13,735 (±7625) | 13,178 (±7255) | 0.615 |
| 60.8% | 65.67% | 0.059 |
| 32.6% | 26.8% | 0.021 |
| 5.4% | 5.5% | 0.526 |
| 1,2% | 2% | 0.012 |
Hb (11.5–13.5 g/dL) | 11.9 (±1.3) | 11.3 (±1.7) | 0.011 |
PLT (250,000–550,000 mmc) | 308,000 (±109,509) | 359,935 (±203,741) | 0.061 |
CRP (0–0.5 mg/dL) | 4 (±4.6) | 7.9 (±7.5) | 0.000 |
ESR (2–15 mm/h) | 48.7 (±30.6) | 69.1 (±34.5) | 0.058 |
Procalcitonin (<0.1 ng/mL) | 2.8 (±15.3) | 4.8 (±11,5) | 0.579 |
Ferritin (15–400 ng/mL) | 292.3 (±342.2) | 3121.1 (±8905.9) | 0.161 |
Fibrinogen (200–400 mg/dL) | 477.6 (±233.2) | 504.2 (±147.5) | 0.659 |
Triglycerides (50–160 mg/dL) | 143.9 (±60.2) | 159 (±43.9) | 0.501 |
D-dimer (0–500 ng/mL) | 724 (±902.7) | 7512.7 (±13,622.2) | 0.393 |
GOT (0–42 U/L) | 53.5 (±83.6) | 58.2 (±89.9) | 0.724 |
GPT (0–50 U/L) | 37.9 (±71.9) | 48.9 (±93.5) | 0.408 |
GGT (0–50 U/L) | 18.3 (±29.4) | 46.6 (±93.7) | 0.024 |
Sodium (134–145 mmol/L) | 136.4 (±3.6) | 134.7 (±3.6) | 0.004 |
LDH (135–225 U/L) | 628 (±277.1) | 620.5 (±473.9) | 0.919 |
T Troponin (<14 pg/mL) | 20.4 (±28.7) | 22.6 (±37) | 0.906 |
Pro-BNP (0–125 pg/mL) | 947.8 (±1657.6) | 2354.7 (±3688.2) | 0.370 |
Lipase (8–57 U/L) | 27 (±29.6) | 50.7 (±79.5) | 0.089 |
Amylase (0–100 U/L) | 52.8 (±34.8) | 64.3 (±51.1) | 0.225 |
Iron (40–160 ug/dL) | 25.7 (±15.6) | 32.2 (±30) | 0.211 |
Myoglobin (23–72 ng/mL) | 3363.5 (±6685) | 59 (±76.8) | 0.396 |
Laboratory Parameters (n.v.) | I Etiology (±SD) | NI Etiology (±SD) | p-Value |
---|---|---|---|
White Blood Cells (5000–15,000 mmc) | 9051.4 (±3993.7) | 9897.3 (±4183.7) | 0.181 |
| 39.7% | 45.9% | 0.007 |
| 52% | 45.7% | 0.004 |
| 5.4% | 5.4% | 0.926 |
| 2.9% | 2.9% | 0.974 |
Hb (11.5–13.5 g/dl) | 11.6 (±1.4) | 11 (±1.4) | 0.023 |
PLT (250,000–550,000 mmc) | 383,894 (±160,883) | 516,693 (±250,648) | 0.000 |
CRP (0–0.5 mg/dL) | 1.4 (±3.3) | 1.6 (±2.2) | 0.579 |
ESR (2–15 mm/h) | 42 (±31.9) | 58.1 (±33.4) | 0.085 |
Procalcitonin (<0.1 ng/mL) | 0.4 (±1.3) | 0.1 (±0.3) | 0.320 |
Ferritin (15–400 ng/mL) | 137 (±77.3) | 277.1 (±153.6) | 0.009 |
Fibrinogen (200–400 mg/dL) | 371.3 (±100.5) | 362.6 (±102.3) | 0.863 |
Triglycerides (50–160 mg/dL) | 161.7 (±72.6) | 265.2 (±177.6) | 0.067 |
D-dimer (0–500 ng/mL) | 1146 | 727.4 (±1291.3) | 0.782 |
GOT (0–42 U/L) | 58.9 (±212.3) | 33.9 (±18.7) | 0.290 |
GPT (0–50 U/L) | 33.9 (±53.6) | 42.5 (±45.3) | 0.392 |
GGT (0–50 U/L) | 23 (±25.6) | 67.4 (±116.7) | 0.038 |
Sodium (134–145 mmol/L) | 137.5 (±4) | 137 (±2.9) | 0.549 |
LDH (135–225 U/L) | 557.6 (±232.7) | 447 (±221.4) | 0.053 |
Pro-BNP (0–125 pg/mL) | 81 | 113 (±85) | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzise, M.; D’Amico, F.; La Barbera, G.; Cassone, C.M.; Patafi, S.; Lombardo, F.; Aversa, T.; Wasniewska, M.G.; Salzano, G.; Morace, C. Retrospective Analysis of Fever in Pediatric Age: Our Experience over the Last 5 Years. Children 2024, 11, 539. https://doi.org/10.3390/children11050539
Valenzise M, D’Amico F, La Barbera G, Cassone CM, Patafi S, Lombardo F, Aversa T, Wasniewska MG, Salzano G, Morace C. Retrospective Analysis of Fever in Pediatric Age: Our Experience over the Last 5 Years. Children. 2024; 11(5):539. https://doi.org/10.3390/children11050539
Chicago/Turabian StyleValenzise, Mariella, Federica D’Amico, Giulia La Barbera, Carlo Maria Cassone, Silvia Patafi, Fortunato Lombardo, Tommaso Aversa, Malgorzata Gabriela Wasniewska, Giuseppina Salzano, and Carmela Morace. 2024. "Retrospective Analysis of Fever in Pediatric Age: Our Experience over the Last 5 Years" Children 11, no. 5: 539. https://doi.org/10.3390/children11050539
APA StyleValenzise, M., D’Amico, F., La Barbera, G., Cassone, C. M., Patafi, S., Lombardo, F., Aversa, T., Wasniewska, M. G., Salzano, G., & Morace, C. (2024). Retrospective Analysis of Fever in Pediatric Age: Our Experience over the Last 5 Years. Children, 11(5), 539. https://doi.org/10.3390/children11050539