A Higher Adherence to the ALINFA Nutritional Intervention Is Effective for Improving Dietary Patterns in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Intervention
2.2. Study Measures
2.2.1. Anthropometry and Body Composition
2.2.2. Biochemical Measurements
2.2.3. Lifestyle Habits Assessment
2.2.4. Dietary Intake Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanna, S.K. Understanding the Impact of Globalization on Food Preferences, Dietary Patterns, and Health. Ecol. Food Nutr. 2016, 55, 339–340. [Google Scholar] [CrossRef]
- Corkins, M.R.; Daniels, S.R.; de Ferranti, S.D.; Golden, N.H.; Kim, J.H.; Magge, S.N.; Schwarzenberg, S.J. Nutrition in Children and Adolescents. Med. Clin. N. Am. 2016, 100, 1217–1235. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Molina-Montes, E.; Soto-Méndez, M.J.; Madrigal, C.; Hernández-Ruiz, Á.; Valero, T.; Lara Villoslada, F.; Leis, R.; Martínez de Victoria, E.; Moreno, J.M.; et al. Clustering of Dietary Patterns and Lifestyles Among Spanish Children in the EsNuPI Study. Nutrients 2020, 12, 2536. [Google Scholar] [CrossRef]
- Wright, S.M.; Aronne, L.J. Causes of obesity. Abdom. Radiol. 2012, 37, 730–732. [Google Scholar] [CrossRef]
- Rolls, B.J. The Supersizing of America. Nutr. Today 2003, 38, 42–53. [Google Scholar] [CrossRef]
- Sadeghirad, B.; Duhaney, T.; Motaghipisheh, S.; Campbell, N.R.C.; Johnston, B.C. Influence of unhealthy food and beverage marketing on children’s dietary intake and preference: A systematic review and meta-analysis of randomized trials. Obes. Rev. 2016, 17, 945–959. [Google Scholar] [CrossRef]
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Estudio ALADINO: Estudio Sobre Alimentación, Actividad Física, Desarrollo Infantil y Obesidad en España. 2019. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/nutricion/observatorio/Informe_Aladino_2019.pdf (accessed on 29 May 2023).
- Beckerman, J.P.; Alike, Q.; Lovin, E.; Tamez, M.; Mattei, J. The Development and Public Health Implications of Food Preferences in Children. Front. Nutr. 2017, 4, 66. [Google Scholar] [CrossRef]
- Rosi, A.; Paolella, G.; Biasini, B.; Scazzina, F.; SINU Working Group on Nutritional Surveillance in Adolescents. Dietary habits of adolescents living in North America, Europe or Oceania: A review on fruit, vegetable and legume consumption, sodium intake, and adherence to the Mediterranean Diet. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 544–560. [Google Scholar] [CrossRef]
- Liu, J.; Lee, Y.; Micha, R.; Li, Y.; Mozaffarian, D. Trends in junk food consumption among US children and adults, 2001–2018. Am. J. Clin. Nutr. 2021, 114, 1039–1048. [Google Scholar] [CrossRef]
- Herrera-Ramos, E.; Tomaino, L.; Sánchez-Villegas, A.; Ribas-Barba, L.; Gómez, S.F.; Wärnberg, J.; Osés, M.; González-Gross, M.; Gusi, N.; Aznar, S.; et al. Trends in Adherence to the Mediterranean Diet in Spanish Children and Adolescents across Two Decades. Nutrients 2023, 15, 2348. [Google Scholar] [CrossRef]
- Alles, M.S.; Eussen, S.R.B.M.; van der Beek, E.M. Nutritional Challenges and Opportunities during the Weaning Period and in Young Childhood. Ann. Nutr. Metab. 2014, 64, 284–293. [Google Scholar] [CrossRef]
- De Cosmi, V.; Scaglioni, S.; Agostoni, C. Early Taste Experiences and Later Food Choices. Nutrients 2017, 9, 107. [Google Scholar] [CrossRef]
- Mahmood, L.; Flores-Barrantes, P.; Moreno, L.A.; Manios, Y.; Gonzalez-Gil, E.M. The Influence of Parental Dietary Behaviors and Practices on Children’s Eating Habits. Nutrients 2021, 13, 1138. [Google Scholar] [CrossRef]
- Rasheed, M. Promoting nutritional education in primary school children. Br. J. Nurs. 2023, 32, S14–S18. [Google Scholar] [CrossRef]
- Arabbadvi, Z.; Khoshnood, Z.; Foroughameri, G.; Mazallahi, M. Education as an effective strategy to promote nutritional knowledge, attitudes, and behaviors in street children. BMC Public Health 2023, 23, 989. [Google Scholar] [CrossRef]
- Domínguez Rodríguez, A.; Cebolla i Marti, A.; Navarro, J.; Baños Rivera, R.M. Nutritional education knowledge of teachers and nutritionists in four European countries. Nutr. Hosp. 2022, 40, 136–143. [Google Scholar] [CrossRef]
- Harvard T.H. Chan School of Public Health. Kid’s Healthy Eating Plate; Harvard T.H. Chan School of Public Health: Boston, MA, USA, 2015. [Google Scholar]
- Aranceta-Bartrina, J.; Partearroyo, T.; López-Sobaler, A.M.; Ortega, R.M.; Varela-Moreiras, G.; Serra-Majem, L.; Pérez-Rodrigo, C.; Collaborative Group for the Dietary Guidelines for the Spanish Population (SENC). Updating the Food-Based Dietary Guidelines for the Spanish Population: The Spanish Society of Community Nutrition (SENC) Proposal. Nutrients 2019, 11, 2675. [Google Scholar] [CrossRef]
- Sociedad Española de Nutrición Comunitaria. Pirámide de la Alimentación Saludable Para Población Escolar, Adolescente y Juvenil. 2016. Available online: https://www.nutricioncomunitaria.org/es/noticia/se-presentan-las-nuevas-guias-alimentarias-para-la-poblacion-espanola-elaboradas-por-la-senc-con-la (accessed on 4 July 2023).
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef]
- Velázquez-López, L.; Santiago-Díaz, G.; Nava-Hernández, J.; Muñoz-Torres, A.V.; Medina-Bravo, P.; Torres-Tamayo, M. Mediterranean-style diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC Pediatr. 2014, 14, 175. [Google Scholar] [CrossRef]
- Blancas-Sánchez, I.M.; Del Rosal Jurado, M.; Aparicio-Martínez, P.; Quintana Navarro, G.; Vaquero-Abellan, M.; Castro Jiménez, R.A.; Fonseca Pozo, F.J. A Mediterranean-Diet-Based Nutritional Intervention for Children with Prediabetes in a Rural Town: A Pilot Randomized Controlled Trial. Nutrients 2022, 14, 3614. [Google Scholar] [CrossRef]
- Ojeda-Rodríguez, A.; Zazpe, I.; Morell-Azanza, L.; Chueca, M.; Azcona-Sanjulian, M.; Marti, A. Improved Diet Quality and Nutrient Adequacy in Children and Adolescents with Abdominal Obesity after a Lifestyle Intervention. Nutrients 2018, 10, 1500. [Google Scholar] [CrossRef]
- Feng, Q.; Fan, S.; Wu, Y.; Zhou, D.; Zhao, R.; Liu, M.; Song, Y. Adherence to the dietary approaches to stop hypertension diet and risk of stroke. Medicine 2018, 97, e12450. [Google Scholar] [CrossRef]
- Mertens, E.; Markey, O.; Geleijnse, J.M.; Lovegrove, J.A.; Givens, D.I. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: Evidence from the Caerphilly Prospective Study. Eur. J. Nutr. 2018, 57, 1245–1258. [Google Scholar] [CrossRef]
- Murimi, M.W.; Moyeda-Carabaza, A.F.; Nguyen, B.; Saha, S.; Amin, R.; Njike, V. Factors that contribute to effective nutrition education interventions in children: A systematic review. Nutr. Rev. 2018, 76, 553–580. [Google Scholar] [CrossRef]
- Medeiros, G.C.B.S.; Azevedo, K.P.M.; Garcia, D.; Oliveira Segundo, V.H.; Mata, Á.N.S.; Fernandes, A.K.P.; Santos, R.P.D.; Trindade, D.D.B.B.; Moreno, I.M.; Guillén Martínez, D.; et al. Effect of School-Based Food and Nutrition Education Interventions on the Food Consumption of Adolescents: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 10522. [Google Scholar] [CrossRef]
- Dike, I.C.; Ebizie, E.N.; Chukwuone, C.A.; Ejiofor, N.J.; Anowai, C.C.; Ogbonnaya, E.K.; Ugwu, E.I.; Nkechinyere, U.S.; Chigbu, E.F.; Ezeaku, M.N.; et al. Effect of community-based nutritional counseling intervention on children’s eating habits. Medicine 2021, 100, e26563. [Google Scholar] [CrossRef]
- DeCosta, P.; Møller, P.; Frøst, M.B.; Olsen, A. Changing children’s eating behaviour—A review of experimental research. Appetite 2017, 113, 327–357. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- World Health Organization. BMI Z-Score. 2007. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 26 June 2023).
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, B.; Ribel, U.; Raun, K.; Golozoubova, V.; Pacini, G. Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: Introduction of a new, simpler method. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1195–R1201. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, M.; Ravens-Sieberer, U. Questionnaire for Measuring Health-Related Quality of Life in Children and Adolescent. Manual. 2000. Available online: https://www.kindl.org/english/questionnaires/implementation-manual/ (accessed on 29 May 2023).
- Fernández-López, J.A.; Fernández Fidalgo, M.; Cieza, A.; Ravens-Sieberer, U. Medición de la calidad de vida en niños y adolescentes: Comprobación preliminar de la validez y fiabilidad de la versión española del cuestionario KINDL. Aten. Primaria 2004, 33, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Rajmil, L.; Serra-Sutton, V.; Fernandez-Lopez, J.A.; Berra, S.; Aymerich, M.; Cieza, A.; Ferrer, M.; Bullinger, M.; Ravens-Sieberer, U. Versión española del cuestionario alemán de calidad de vida relacionada con la salud en población infantil y de adolescentes: El Kindl. An. Pediatr. 2004, 60, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Crocker, P.R.; Bailey, D.A.; Faulkner, R.A.; Kowalski, K.C.; McGrath, R. Measuring general levels of physical activity: Preliminary evidence for the Physical Activity Questionnaire for Older Children. Med. Sci. Sports Exerc. 1997, 29, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.C.; Crocker, P.R.E.; Faulkner, R.A. Validation of the Physical Activity Questionnaire for Older Children. Pediatr. Exerc. Sci. 1997, 9, 174–186. [Google Scholar] [CrossRef]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child. Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Martínez, A.; Maneschy, I.; Moreno, L.A.; Bueno-Lozano, G.; De Miguel-Etayo, P.; Flores-Rojas, K.; Jurado-Castro, J.M.; de Lamas, C.; Vázquez-Cobela, R.; Martinez-Lacruz, R.; et al. Reliability and Validation of the Child Eating Behavior Questionnaire in 3- to 6-Year-Old Spanish Children. Front. Psychol. 2022, 13, 705912. [Google Scholar] [CrossRef]
- Sharma, H. Statistical significance or clinical significance? A researcher’s dilemma for appropriate interpretation of research results. Saudi J. Anaesth. 2021, 15, 431. [Google Scholar] [CrossRef]
- Monty, C.E.; Handu, D.J.; Chmel, L.M. Nutrition Education Intervention among Children Decreased Body Mass Index and Increased Test Scores in Nutrition Knowledge, Behavior, and Intention. J. Am. Diet. Assoc. 2008, 108, A97. [Google Scholar] [CrossRef]
- Scherr, R.E.; Linnell, J.D.; Dharmar, M.; Beccarelli, L.M.; Bergman, J.J.; Briggs, M.; Brian, K.M.; Feenstra, G.; Hillhouse, J.C.; Keen, C.L.; et al. A Multicomponent, School-Based Intervention, the Shaping Healthy Choices Program, Improves Nutrition-Related Outcomes. J. Nutr. Educ. Behav. 2017, 49, 368–379.e1. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Pérez, A.; Asigbee, F.M.; Landry, M.J.; Vandyousefi, S.; Ghaddar, R.; Hoover, A.; Jeans, M.; Nikah, K.; Fischer, B.; et al. School-based gardening, cooking and nutrition intervention increased vegetable intake but did not reduce BMI: Texas sprouts—A cluster randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 18. [Google Scholar] [CrossRef]
- World Health Organization. BMI Z-Score. 2007. Available online: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age (accessed on 29 May 2023).
- Altman, M.; Cahill Holland, J.; Lundeen, D.; Kolko, R.P.; Stein, R.I.; Saelens, B.E.; Welch, R.R.; Perri, M.G.; Schechtman, K.B.; Epstein, L.H.; et al. Reduction in Food Away from Home Is Associated with Improved Child Relative Weight and Body Composition Outcomes and This Relation Is Mediated by Changes in Diet Quality. J. Acad. Nutr. Diet. 2015, 115, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Earthman, C.P.; Pichard, C.; Coss-Bu, J.A. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Eloranta, A.M.; Sallinen, T.; Viitasalo, A.; Lintu, N.; Väistö, J.; Jalkanen, H.; Tompuri, T.T.; Soininen, S.; Haapala, E.A.; Kiiskinen, S.; et al. The effects of a 2-year physical activity and dietary intervention on plasma lipid concentrations in children: The PANIC Study. Eur. J. Nutr. 2021, 60, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Cadario, F.; Prodam, F.; Pasqualicchio, S.; Bellone, S.; Bonsignori, I.; Demarchi, I.; Monzani, A.; Bona, G. Lipid profile and nutritional intake in children and adolescents with Type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J. Endocrinol. Invest. 2012, 35, 160–168. [Google Scholar] [PubMed]
- Mainieri, F.; La Bella, S.; Chiarelli, F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines 2023, 11, 809. [Google Scholar] [CrossRef]
- Soliman, A.T.; Yasin, M.; Kassem, A. Leptin in pediatrics: A hormone from adipocyte that wheels several functions in children. Indian. J. Endocrinol. Metab. 2012, 16 (Suppl. S3), S577–S587. [Google Scholar] [CrossRef]
- Martos-Moreno, G.A.; Barrios, V.; Argente, J. Normative data for adiponectin, resistin, interleukin 6, and leptin/receptor ratio in a healthy Spanish pediatric population: Relationship with sex steroids. Eur. J. Endocrinol. 2006, 155, 429–434. [Google Scholar] [CrossRef]
- Martos-Moreno, G.A.; Kopchick, J.J.; Argente, J. Adipoquinas en el niño sano y con obesidad. An. Pediatr. 2013, 78, 189.e1–189.e15. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Riestra, P.; García-Anguita, A.; López-Simón, L.; Cano, B.; de Oya, I.; de Oya, M.; Garcés, C. Leptin and adiponectin levels in pubertal children: Relationship with anthropometric variables and body composition. Clin. Chem. Lab. Med. 2010, 48, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.F.; Englaro, P.; Hanitsch, S.; Juul, A.; Hertel, N.T.; Müller, J.; Skakkebaek, N.E.; Heiman, M.L.; Birkett, M.; Attanasio, A.M.; et al. Plasma Leptin Levels in Healthy Children and Adolescents: Dependence on Body Mass Index, Body Fat Mass, Gender, Pubertal Stage, and Testosterone. J. Clin. Endocrinol. Metab. 1997, 82, 2904–2910. [Google Scholar] [PubMed]
- Lahoz, C.; Castillo, E.; Mostaza, J.M.; de Dios, O.; Salinero-Fort, M.A.; González-Alegre, T.; García-Iglesias, F.; Estirado, E.; Laguna, F.; Sanchez, V.; et al. Relationship of the Adherence to a Mediterranean Diet and Its Main Components with CRP Levels in the Spanish Population. Nutrients 2018, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Arouca, A.B.; Meirhaeghe, A.; Dallongeville, J.; Moreno, L.A.; Lourenço, G.J.; Marcos, A.; Huybrechts, I.; Manios, Y.; Lambrinou, C.P.; Gottrand, F.; et al. Interplay between the Mediterranean diet and C-reactive protein genetic polymorphisms towards inflammation in adolescents. Clin. Nutr. 2020, 39, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; de Dios, O.; Jois, A.; Gavela-Pérez, T.; Gorgojo, L.; Martín-Moreno, J.M.; Soriano-Guillen, L.; Garcés, C. Vegetable and Fruit Intakes Are Associated with hs-CRP Levels in Pre-Pubertal Girls. Nutrients 2017, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Vales-Villamarín, C.; de Dios, O.; Pérez-Nadador, I.; Gavela-Pérez, T.; Soriano-Guillén, L.; Garcés, C. Leptin Concentrations Determine the Association between High-Sensitivity C-Reactive Protein Levels and Body Mass Index in Prepubertal Children. Nutrients 2023, 15, 2388. [Google Scholar] [CrossRef] [PubMed]
- Pérez Solís, D.; Díaz Martín, J.J.; Álvarez Caro, F.; Suárez Tomás, I.; Suárez Menéndez, E.; Riaño Galán, I. Efectividad de una intervención escolar contra la obesidad. An. Pediatr. 2015, 83, 19–25. [Google Scholar] [CrossRef]
- Coelho, D.B.; Lopes, L.M.P.; de Oliveira, E.C.; Becker, L.K.; de Paula Costa, G.; Hermsdorff, H.H.M.; Drummond e Silva, F.G.; de Castro Pinto, K.M.; Talvani, A.; Carraro, J.C.C. Baseline Diet Quality Is Related to Changes in the Body Composition and Inflammatory Markers: An Intervention Study Based on Resistance Training and Nutritional Advice. Biomed. Res. Int. 2021, 2021, 6681823. [Google Scholar] [CrossRef]
- Zazpe, I.; Estruch, R.; Toledo, E.; Sánchez-Taínta, A.; Corella, D.; Bulló, M.; Fiol, M.; Iglesias, P.; Gómez-Gracia, E.; Arós, F.; et al. Predictors of adherence to a Mediterranean-type diet in the PREDIMED trial. Eur. J. Nutr. 2010, 49, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Downer, M.K.; Gea, A.; Stampfer, M.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Estruch, R.; Fitó, M.; Gómez-Gracia, E.; et al. Predictors of short- and long-term adherence with a Mediterranean-type diet intervention: The PREDIMED randomized trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Te Velde, S.J.; Brug, J.; Wind, M.; Hildonen, C.; Bjelland, M.; Pérez-Rodrigo, C.; Klepp, K.I. Effects of a comprehensive fruit- and vegetable-promoting school-based intervention in three European countries: The Pro Children Study. Br. J. Nutr. 2008, 99, 893–903. [Google Scholar] [CrossRef] [PubMed]
- De Bock, F.; Breitenstein, L.; Fischer, J.E. Positive impact of a pre-school-based nutritional intervention on children’s fruit and vegetable intake: Results of a cluster-randomized trial. Public. Health Nutr. 2012, 15, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.N.; Markham, C.; Ranjit, N.; Bounds, G.; Chow, J.; Sharma, S.V. Long-term impact of a school-based nutrition intervention on home nutrition environment and family fruit and vegetable intake: A two-year follow-up study. Prev. Med. Rep. 2020, 20, 101247. [Google Scholar] [CrossRef] [PubMed]
- Martíncrespo-Blanco, M.; Varillas-Delgado, D.; Blanco-Abril, S.; Cid-Exposito, M.; Robledo-Martín, J. Effectiveness of an Intervention Programme on Adherence to the Mediterranean Diet in a Preschool Child: A Randomised Controlled Trial. Nutrients 2022, 14, 1536. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Martínez-Vizcaíno, V.; Amaro-Gahete, F.J.; Medrano, M.; Pascual-Morena, C.; Álvarez-Bueno, C.; Mesas, A.E. Nut consumption and academic performance among adolescents: The EHDLA study. Eur. J. Nutr. 2023, 62, 289–298. [Google Scholar] [CrossRef] [PubMed]
- López Sobaler, A.M.; Cuadrado Soto, E.; Peral Suárez, Á.; Aparicio, A.; Ortega, R.M. Importancia del desayuno en la mejora nutricional y sanitaria de la población. Nutr. Hosp. 2018, 35, 3–6. [Google Scholar] [CrossRef]
- Lee, R.M.; Giles, C.M.; Cradock, A.L.; Emmons, K.M.; Okechukwu, C.; Kenney, E.L.; Thayer, J.; Gortmaker, S.L. Impact of the Out-of-School Nutrition and Physical Activity (OSNAP) Group Randomized Controlled Trial on Children’s Food, Beverage, and Calorie Consumption among Snacks Served. J. Acad. Nutr. Diet. 2018, 118, 1425–1437. [Google Scholar] [CrossRef]
- Lauria, F.; Dello Russo, M.; Formisano, A.; De Henauw, S.; Hebestreit, A.; Hunsberger, M.; Krogh, V.; Intemann, T.; Lissner, L.; Molnar, D.; et al. Ultra-processed foods consumption and diet quality of European children, adolescents and adults: Results from the I.Family study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef]
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors Influencing Children’s Eating Behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Romanos-Nanclares, A.; Zazpe, I.; Santiago, S.; Marín, L.; Rico-Campà, A.; Martín-Calvo, N. Influence of Parental Healthy-Eating Attitudes and Nutritional Knowledge on Nutritional Adequacy and Diet Quality among Preschoolers: The SENDO Project. Nutrients 2018, 10, 1875. [Google Scholar] [CrossRef] [PubMed]
- Lally, P.; van Jaarsveld, C.H.M.; Potts, H.W.W.; Wardle, J. How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol. 2010, 40, 998–1009. [Google Scholar] [CrossRef]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Tay, C.W.; Chin, Y.S.; Lee, S.T.; Khouw, I.; Poh, B.K. Association of Eating Behavior with Nutritional Status and Body Composition in Primary School–Aged Children. Asia Pac. J. Public Health 2016, 28 (Suppl. S5), 47S–58S. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Ho-Urriola, J.A.; González, A.; Smalley, S.V.; Domínguez-Vásquez, P.; Cataldo, R.; Obregón, A.M.; Amador, P.; Weisstaub, G.; Hodgson, M.I. Association between eating behavior scores and obesity in Chilean children. Nutr. J. 2011, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Tinker, L.F.; Rosal, M.C.; Young, A.F.; Perri, M.G.; Patterson, R.E.; Van Horn, L.; Assaf, A.R.; Bowen, D.J.; Ockene, J.; Hays, J.; et al. Predictors of Dietary Change and Maintenance in the Women’s Health Initiative Dietary Modification Trial. J. Am. Diet. Assoc. 2007, 107, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.; Liao, M.; Allegrante, J.P.; Mosca, L. Low Social Support Level is Associated with Non-Adherence to Diet at 1 Year in the Family Intervention Trial for Heart Health (FIT Heart). J. Nutr. Educ. Behav. 2010, 42, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Women’s Health Initiative Study Group. Dietary adherence in the women’s health initiative dietary modification trial. J. Am. Diet. Assoc. 2004, 104, 654–658. [Google Scholar] [CrossRef]
- Mousavi, H.; Karandish, M.; Jamshidnezhad, A.; Hadianfard, A.M. Determining the effective factors in predicting diet adherence using an intelligent model. Sci. Rep. 2022, 12, 12340. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Lykou, A.; Kastorini, C.M.; Saranti Papasaranti, E.; Petralias, A.; Veloudaki, A.; Linos, A.; DIATROFI Program Research Team. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public. Health Nutr. 2016, 19, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Juton, C.; Berruezo, P.; Rajmil, L.; Lerin, C.; Fíto, M.; Homs, C.; Según, G.; Gómez, S.F.; Schröder, H. Prospective Association between Adherence to the Mediterranean Diet and Health-Related Quality of Life in Spanish Children. Nutrients 2022, 14, 5304. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Tristan Asensi, M.; Pagliai, G.; Lotti, S.; Martini, D.; Colombini, B.; Sofi, F. Consumption of Ultra-Processed Foods Is Inversely Associated with Adherence to the Mediterranean Diet: A Cross-Sectional Study. Nutrients 2022, 14, 2073. [Google Scholar] [CrossRef] [PubMed]
- Zapata, M.E.; Cediel, G.; Arrieta, E.; Rovirosa, A.; Carmuega, E.; Monteiro, C.A. Ultra-processed foods consumption and diet quality among preschool children and women of reproductive age from Argentina. Public. Health Nutr. 2022, 26, 2304–2313. [Google Scholar] [CrossRef]
- Doglikuu, B.I.D.; Abubakari, A.; Yaseri, M.; Shakibazadeh, E.; Djazayery, A.; Mirzaei, K. Association of household socioeconomic status, neighborhood support system and adherence to dietary recommendation among persons with T2DM, a facility-based cross-sectional study in Ghana. BMC Public Health 2021, 21, 911. [Google Scholar] [CrossRef]
Mean 8 Weeks | Week 1–2 | Week 3–4 | Week 5–6 | Week 7–8 | p Value | |
---|---|---|---|---|---|---|
LA (n = 24) | ||||||
Kilocalories (%) | 67.32 ± 7.71 | 69.26 ± 8.96 | 66.94 ± 12.49 | 67.68 ± 7.79 | 65.40 ± 10.94 | 0.381 |
Carbohydrates (%) | 67.65 ± 7.19 | 69.77 ± 7.57 | 68.10 ± 12.57 | 67.39 ± 8.13 | 65.30 ± 11.16 | 0.298 |
Protein (%) | 68.57 ± 8.61 | 70.28 ± 10.18 | 68.16 ± 12.55 | 68.76 ± 8.34 | 67.07 ± 11.88 | 0.533 |
Fat (%) | 66.20 ± 10.20 | 68.16 ± 11.69 | 64.83 ± 14.09 | 66.52 ± 10.99 | 65.28 ± 13.04 | 0.521 |
HA (n = 20) | ||||||
Kilocalories (%) | 85.02 ± 7.98 | 85.40 ± 9.07 | 82.98 ± 10.99 | 85.70 ± 8.28 | 85.98 ± 8.18 | 0.268 |
Carbohydrates (%) | 84.87 ± 9.33 | 85.17 ± 10.99 | 82.94 ± 12.25 | 85.38 ± 9.73 | 86.00 ± 9.24 | 0.383 |
Protein (%) | 86.51 ± 6.99 | 87.15 ± 8.26 | 85.06 ± 9.72 | 86.70 ± 7.86 | 87.15 ± 7.84 | 0.584 |
Fat (%) | 83.89 ± 7.71 a,b | 84.70 ± 8.43 a,b | 80.08 ± 12.76 a | 85.41 ± 7.78 b | 85.37 ± 8.08 a,b | 0.029 a,b |
LA (n = 24) | HA (n = 20) | Baseline Differences p Value c | Change between Groups p Value d | |||||
---|---|---|---|---|---|---|---|---|
Basal | Post- Intervention | p Value a | Basal | Post- Intervention | p Value b | |||
Anthropometry | ||||||||
Weight (kg) | 33.21 ± 7.63 | 33.03 ± 7.65 | 0.355 | 37.38 ± 12.17 | 36.91 ± 11.59 | 0.140 | 0.174 | 0.423 |
Height (m) | 1.38 ± 0.10 | 1.39 ± 0.10 | <0.001 | 1.40 ± 0.13 | 1.41 ± 0.14 | <0.001 | 0.489 | 0.877 |
BMI (kg/m2) | 17.05 (3.05) | 16.62 (3.48) | 0.002 | 17.50 (6.95) | 16.82 (5.09) | 0.019 | 0.556 | 0.617 |
BMI z-score | −0.20 (0.82) | −0.23 (0.71) | <0.001 | −0.28 (1.98) | −0.39 (1.59) | 0.021 | 0.832 | 0.737 |
Waist (cm) | 58.16 (5.65) | 58.50 (8.80) | 0.219 | 60.87 (11.67) | 58.30 (9.19) | 0.089 | 0.211 | 0.416 |
SBP (mmHg) | 102.00 (9.50) | 105.25 (10.50) | 0.159 | 101.50 (14.00) | 100.50 (17.00) | 0.360 | 0.433 | 0.870 |
DBP (mmHg) | 68.22 ± 10.08 | 70.63 ± 9.98 | 0.036 | 65.95 (11.18) | 64.66 (9.39) | 0.966 | 0.493 | 0.254 |
Body composition | ||||||||
Fat mass (kg) | 6.09 (4.00) | 6.65 (4.10) | 0.528 | 7.10 (9.00) | 6.45 (6.50) | 0.002 | 0.671 | 0.030 |
Lean mass (kg) | 25.25 (9.40) | 25.15 (8.40) | 0.647 | 27.75 (8.45) | 27.20 (9.15) | 0.104 | 0.322 | 0.487 |
Muscular mass (kg) | 23.95 (8.90) | 23.95 (8.05) | 0.616 | 26.15 (8.00) | 25.60 (8.60) | 0.096 | 0.316 | 0.517 |
Total water (kg) | 19.65 (7.15) | 18.45 (6.50) | 0.440 | 20.35 (6.20) | 19.80 (6.65) | 0.107 | 0.571 | 0.732 |
Biochemistry | ||||||||
Glucose (mg/dL) | 91.81 ± 6.25 | 90.22 ± 10.79 | 0.529 | 93.64 ± 6.94 | 92.38 ± 6.71 | 0.597 | 0.441 | 0.929 |
Insulin (µIU/mL) | 9.71 ± 4.95 | 14.18 ± 17.07 | 0.249 | 11.01 ± 5.18 | 10.87 ± 5.55 | 0.883 | 0.479 | 0.744 |
HOMA-IR | 1.61 (2.03) | 1.58 (2.12) | 0.829 | 1.62 (2.94) | 1.26 (2.83) | 0.818 | 0.784 | 0.766 |
TC (mg/dL) | 172.89 ± 28.69 | 170.32 ± 27.33 | 0.583 | 174.53 ± 24.98 | 167.77 ± 17.12 | 0.142 | 0.868 | 0.532 |
HDL-c (mg/dL) | 63.46 ± 8.11 | 65.10 ± 8.27 | 0.113 | 60.77 ± 11.29 | 60.31 ± 11.95 | 0.770 | 0.439 | 0.236 |
LDL-c (mg/dL) | 98.17 ± 24.69 | 91.91 ± 22.98 | 0.144 | 104.01 ± 25.47 | 96.51 ± 22.84 | 0.036 | 0.522 | 0.827 |
TNF-α (pg/mL) | 5.06 ± 1.09 | 4.96 ± 1.83 | 0.795 | 5.37 ± 1.67 | 5.26 ± 1.54 | 0.723 | 0.531 | 0.981 |
Leptin (ng/mL) | 0.82 (1.53) | 0.72 (0.70) | 0.046 | 1.43 (3.55) | 0.96 (1.59) | 0.055 | 0.258 | 0.618 |
CRP (mg/dL) | 0.67 (0.58) | 0.32 (0.72) | 0.744 | 0.54 (2.10) | 0.36 (1.55) | 0.023 | 0.808 | 0.075 |
Questionnaires | ||||||||
KINDL | 87.50 (9.72) | 91.67 (8.33) | 0.105 | 91.67 (8.33) | 90.28 (8.33) | 0.639 | 0.227 | 0.352 |
PAQ-C | 2.98 ± 0.60 | 3.20 ± 0.47 | 0.120 | 3.25 ± 0.59 | 3.22 ± 0.58 | 0.830 | 0.140 | 0.210 |
KIDMED | 6.13 ± 1.90 | 8.62 ± 2.22 | <0.001 | 8.15 ± 2.03 | 9.80 ± 1.51 | <0.001 | 0.001 | 0.054 |
LA (n = 24) | HA (n = 20) | |||||||
---|---|---|---|---|---|---|---|---|
Basal | Post-Intervention | p Value a | Basal | Post- Intervention | p Value b | Baseline Differences p Value c | Change between Groups p Value d | |
Takes a fruit or fruit juice every day (+1) | 70.83% | 87.50% | 0.103 | 90.00% | 95.00% | 0.317 | 0.117 | 0.128 |
Has a second fruit every day (+1) | 29.17% | 54.17% | 0.014 | 60.00% | 85.00% | 0.083 | 0.040 | 1.000 |
Has fresh or cooked vegetables regularly once a day (+1) | 75.00% | 95.83% | 0.025 | 80.00% | 95.00% | 0.317 | 0.694 | 0.945 |
Has fresh or cooked vegetables more than once a day (+1) | 33.33% | 58.33% | 0.014 | 55.00% | 75.00% | 0.564 | 0.694 | 1.000 |
Consumes fish regularly (at least 2–3/week) (+1) | 54.17% | 79.17% | 0.058 | 75.00% | 95.00% | 0.157 | 0.149 | 0.323 |
Goes >1/week to a fast-food restaurant (hamburger) (−1) | 16.67% | 4.35% | 0.083 | 15.00% | 0% | 0.083 | 0.153 | 1.000 |
Likes pulses and eats them >1/week (+1) | 75.00% | 91.67% | 0.157 | 90.00% | 100% | 0.157 | 0.880 | 0.199 |
Consumes pasta or rice almost every day (5+/week) (+1) | 4.17% | 8.33% | 0.564 | 10.00% | 5.00% | 0.564 | 0.199 | 0.662 |
Has cereals or grains (bread, pasta, etc) for breakfast (+1) | 70.83% | 91.67% | 0.025 | 80.00% | 95.00% | 0.045 | 0.455 | 0.946 |
Consumes nuts regularly (at least 2–3/week) (+1) | 33.33% | 62.50% | 0.019 | 50.00% | 85.00% | 0.014 | 0.484 | 0.908 |
Uses olive oil at home (+1) | 100% | 100% | 1.000 | 100% | 100% | 1.000 | 0.263 | 1.000 |
Skips breakfast (−1) | 4.17% | 4.17% | 1.000 | 5.00% | 5.00% | 1.000 | 0.895 | 0.356 |
Has a dairy product for breakfast (yogurt, milk…) (+1) | 95.83% | 91.67% | 0.564 | 100% | 95.00% | 0.317 | 0.356 | 0.356 |
Has commercially pastries for breakfast (−1) | 41.67% | 12.50% | 0.020 | 45.00% | 0% | 0.008 | 0.824 | 0.356 |
Takes two yoghurts and/or some cheese (40 g) daily (+1) | 50.00% | 58.33% | 0.489 | 55.00% | 75.00% | 0.103 | 0.741 | 0.743 |
Takes sweets and candy several times every day (−1) | 4.17% | 4.17% | 1.000 | 0% | 0% | 1.000 | 0.356 | 0.356 |
CEBQ Scales | LA (n = 24) | HA (n = 20) | Baseline Differences p Value c | Change between Groups p Value d | ||||
---|---|---|---|---|---|---|---|---|
Basal | Post- Intervention | p Value a | Basal | Post- Intervention | p Value b | |||
Enjoyment of food | 3.17 ± 0.98 | 3.05 ± 0.90 | 0.273 | 3.53 ± 0.73 | 3.64 ± 0.78 | 0.144 | 0.185 | 0.058 |
Food responsiveness | 1.80 (1.50) | 2.00 (1.18) | 0.164 | 2.10 (0.90) | 2.00 (1.40) | 0.717 | 0.321 | 0.788 |
Emotional overeating | 1.75 (1.00) | 2.00 (0.88) | 0.205 | 1.88 (1.00) | 2.00 (0.75) | 0.499 | 0.404 | 0.178 |
Desire to drink | 2.33 (1.34) | 2.00 (0.83) | 0.413 | 1.67 (1.00) | 1.67 (1.00) | 0.195 | 0.058 | 0.970 |
Satiety responsiveness | 2.98 ± 0.72 | 2.92 ± 0.55 | 0.542 | 2.60 ± 0.49 | 2.49 ± 0.65 | 0.336 | 0.054 | 0.617 |
Slowness in eating | 2.69 ± 0.88 | 2.82 ± 0.79 | 0.090 | 2.16 ± 0.76 | 2.17 ± 0.78 | 1.000 | 0.042 | 0.324 |
Emotional undereating | 2.43 ± 0.72 | 2.46 ± 0.79 | 0.822 | 1.93 ± 0.67 | 1.99 ± 0.67 | 0.696 | 0.023 | 0.872 |
Fussiness | 2.98 ± 0.92 | 2.96 ± 0.85 | 0.880 | 2.57 ± 0.76 | 2.65 ± 0.67 | 0.439 | 0.125 | 0.497 |
Adherence to ALINFA Diet (%) | |||
---|---|---|---|
β Coefficient | p Value | 95% Conf. Interval | |
KIDMED total score | 1.75 | 0.005 | 0.536–2.959 |
KIDMED 2. Has a second piece of fruit every day | 7.12 | 0.047 | 0.086–14.166 |
KIDMED 3. Has fresh or cooked vegetables more than once a day | 10.38 | 0.007 | 2.821–17.932 |
KIDMED 5. Consumes fish regularly (at least 2–3/week) | 9.52 | 0.001 | 3.676–15.378 |
KIDMED 13. Has a dairy product for breakfast (yogurt, milk…) | 19.55 | <0.001 | 10.795–28.303 |
KIDMED 15. Takes two yoghurts and/or some cheese (40 g) daily | 5.76 | 0.003 | 0.632–10.889 |
KIDMED 16. Takes sweets and candy several times every day | −12.50 | <0.001 | −20.696–−4.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Bolea, N.; Andueza, N.; Cuervo, M.; Navas-Carretero, S. A Higher Adherence to the ALINFA Nutritional Intervention Is Effective for Improving Dietary Patterns in Children. Children 2024, 11, 559. https://doi.org/10.3390/children11050559
Vázquez-Bolea N, Andueza N, Cuervo M, Navas-Carretero S. A Higher Adherence to the ALINFA Nutritional Intervention Is Effective for Improving Dietary Patterns in Children. Children. 2024; 11(5):559. https://doi.org/10.3390/children11050559
Chicago/Turabian StyleVázquez-Bolea, Natalia, Naroa Andueza, Marta Cuervo, and Santiago Navas-Carretero. 2024. "A Higher Adherence to the ALINFA Nutritional Intervention Is Effective for Improving Dietary Patterns in Children" Children 11, no. 5: 559. https://doi.org/10.3390/children11050559
APA StyleVázquez-Bolea, N., Andueza, N., Cuervo, M., & Navas-Carretero, S. (2024). A Higher Adherence to the ALINFA Nutritional Intervention Is Effective for Improving Dietary Patterns in Children. Children, 11(5), 559. https://doi.org/10.3390/children11050559