Clinical Features and Management of Skull Base Fractures in the Pediatric Population: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia-Rodriguez, J.A.; Thomas, R.E. Office management of mild head injury in children and adolescents. Can. Fam. Physician 2014, 60, 523–531.e294–e303. [Google Scholar]
- Geyer, K.; Meller, K.; Kulpan, C.; Mowery, B.D. Traumatic brain injury in children: Acute care management. Pediatr. Nurs. 2013, 39, 283–289. [Google Scholar]
- Alexiou, G.A.; Sfakianos, G.; Prodromou, N. Pediatric head trauma. J. Emerg. Trauma Shock 2011, 4, 403–408. [Google Scholar] [CrossRef]
- Adirim, T.A.; Wright, J.L.; Lee, E.; Lomax, T.A.; Chamberlain, J.M. Injury surveillance in a pediatric emergency department. Am. J. Emerg. Med. 1999, 17, 499–503. [Google Scholar] [CrossRef]
- Chen, C.; Peng, J.; Sribnick, E.A.; Zhu, M.; Xiang, H. Trend of Age-Adjusted Rates of Pediatric Traumatic Brain Injury in U.S. Emergency Departments from 2006 to 2013. Int. J. Environ. Res. Public Health 2018, 15, 1171. [Google Scholar]
- Araki, T.; Yokota, H.; Morita, A. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management. Neurol. Med. Chir. 2017, 57, 82–93. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Koo, A.B.; David, W.B.; Lee, V.; Zogg, C.K.; Kundishora, A.J.; Hong, C.; Reeves, B.C.; Sarkozy, M.; Kahle, K.T.; et al. Post-traumatic seizures following pediatric traumatic brain injury. Clin. Neurol. Neurosurg. 2021, 203, 106556. [Google Scholar] [CrossRef]
- Chadwick, L.; Roth, E.; Minich, N.M.; Taylor, H.G.; Bigler, E.D.; Cohen, D.M.; Bacevice, A.; Mihalov, L.K.; Bangert, B.A.; Zumberge, N.A.; et al. Cognitive Outcomes in Children with Mild Traumatic Brain Injury: An Examination Using the National Institutes of Health Toolbox Cognition Battery. J. Neurotrauma 2021, 38, 2590–2599. [Google Scholar] [CrossRef]
- Baugnon, K.L.; Hudgins, P.A. Skull base fractures and their complications. Neuroimaging Clin. N. Am. 2014, 24, 439–465. [Google Scholar] [CrossRef] [PubMed]
- Wamkpah, N.S.; Kallogjeri, D.; Snyder-Warwick, A.K.; Buss, J.L.; Durakovic, N. Incidence and Management of Facial Paralysis After Skull Base Trauma, an Administrative Database Study. Otol. Neurotol. 2022, 43, e1180–e1186. [Google Scholar] [CrossRef]
- Astafyeva, L.; Sidneva, Y.; Badmaeva, I.; Kalinin, P.; Latyshev, S.; Marshintsev, A. Permanent central diabetes insipidus after traumatic brain injury. Case report and literature review. Zhurnal Vopr. Neirokhirurgii Imeni N. N. Burdenko 2022, 86, 112–118. [Google Scholar] [CrossRef]
- Grigorian, A.; Dolich, M.; Lekawa, M.; Fujitani, R.M.; Kabutey, N.-K.; Kuza, C.M.; Bashir, R.; Nahmias, J.M. Analysis of blunt cerebrovascular injury in pediatric trauma. J. Trauma Acute Care Surg. 2019, 87, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Ugalde, I.T.; Claiborne, M.K.; Cardenas-Turanzas, M.; Shah, M.N.; Langabeer, J.R., 2nd; Patel, R. Risk Factors in Pediatric Blunt Cervical Vascular Injury and Significance of Seatbelt Sign. West. J. Emerg. Med. 2018, 19, 961–969. [Google Scholar] [CrossRef]
- Barba, P.; Stramiello, J.A.; Nardone, Z.; Walsh-Blackmore, S.; Nation, J.; Ignacio, R.; Magit, A. Pediatric basilar skull fractures from multi-level falls: A systematic review and retrospective analysis. Int. J. Pediatr. Otorhinolaryngol. 2022, 162, 111291. [Google Scholar] [CrossRef] [PubMed]
- Bressan, S.; Eapen, N.; Phillips, N.; Gilhotra, Y.; Kochar, A.; Dalton, S.; Cheek, J.A.; Furyk, J.; Neutze, J.; Williams, A.; et al. PECARN algorithms for minor head trauma: Risk stratification estimates from a prospective PREDICT cohort study. Acad. Emerg. Med. 2021, 28, 1124–1133. [Google Scholar] [CrossRef]
- Dunnick, J.; Gesteland, P. Isolated Increased Intracranial Pressure and Unilateral Papilledema in an Infant with Traumatic Brain Injury and Nondepressed Basilar Skull Fracture. Pediatr. Emerg. Care 2019, 35, e198–e200. [Google Scholar] [CrossRef]
- Garcia, T.A.; McGetrick, B.A.; Janik, J.S. Spectrum of ocular injuries in children with major trauma. J. Trauma 2005, 59, 169–174. [Google Scholar] [CrossRef]
- Kadish, H.A.; Schunk, J.E. Pediatric basilar skull fracture: Do children with normal neurologic findings and no intracranial injury require hospitalization? Ann. Emerg. Med. 1995, 26, 37–41. [Google Scholar] [CrossRef]
- Kopelman, T.R.; Berardoni, N.E.; O’Neill, P.J.; Hedayati, P.; Vail, S.J.; Pieri, P.G.; Feiz-Erfan, I.; Pressman, M.A. Risk factors for blunt cerebrovascular injury in children: Do they mimic those seen in adults? J. Trauma 2011, 71, 559–564, 559–564; discussion 564. [Google Scholar] [CrossRef]
- Leibu, S.; Rosenthal, G.; Shoshan, Y.; Benifla, M. Clinical Significance of Long-Term Follow-Up of Children with Posttraumatic Skull Base Fracture. World Neurosurg. 2017, 103, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Leraas, H.J.; Kuchibhatla, M.; Nag, U.P.; Kim, J.; Ezekian, B.; Reed, C.R.; Rice, H.E.; Tracy, E.T.; Adibe, O.O. Cervical seatbelt sign is not associated with blunt cerebrovascular injury in children: A review of the national trauma databank. Am. J. Surg. 2019, 218, 100–105. [Google Scholar] [CrossRef]
- Liu-Shindo, M.; Hawkins, D.B. Basilar skull fractures in children. Int. J. Pediatr. Otorhinolaryngol. 1989, 17, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Magit, A.; Stramiello, J.A.; Good, R.; Nation, J. Pediatric Basilar Skull Fracture Mechanisms and Trends from 2007 to 2018. Otolaryngol. Head Neck Surg. 2021, 164, 1307–1313. [Google Scholar] [CrossRef]
- Mallicote, M.U.; Isani, M.A.; Golden, J.; Ford, H.R.; Upperman, J.S.; Gayer, C.P. Screening for blunt cerebrovascular injuries in pediatric trauma patients. J. Pediatr. Surg. 2019, 54, 1861–1865. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, B.A.; Orosco, R.K.; Chang, D.C.; Salazar, F.R.; Talamini, M.A.; Maturo, S.; Magit, A. Outcomes of isolated basilar skull fracture: Readmission, meningitis, and cerebrospinal fluid leak. Otolaryngol. Head Neck Surg. 2013, 149, 931–939. [Google Scholar] [CrossRef]
- Perheentupa, U.; Kinnunen, I.; Grénman, R.; Aitasalo, K.; Karhu, J.O.; Mäkitie, A.A. Post-traumatic morbidity is frequent in children with frontobasilar fractures. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Perheentupa, U.; Kinnunen, I.; Grénman, R.; Aitasalo, K.; Mäkitie, A.A. Management and outcome of pediatric skull base fractures. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Hewes, H.; Fenton, S.F.; Russell, K.; Hansen, K.; Brockmeyer, D.L.; Robison, J. Ten-Year Analysis of Complications Related to Simple Basilar Skull Fractures in Children Presenting to a Trauma Center. Pediatr. Emerg. Care 2024, 40, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Gotor, C.; Gorría, N.; Oscoz, M.; Llano, K.; Rodríguez-de la Fuente, P.; Aguilera-Albesa, S. Posttraumatic Delayed Jugular Foramen Syndrome in a Toddler. Neuropediatrics 2021, 52, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Tunik, M.G.; Powell, E.C.; Mahajan, P.; Schunk, J.E.; Jacobs, E.; Miskin, M.; Zuspan, S.J.; Wootton-Gorges, S.; Atabaki, S.M.; Hoyle, J.D.; et al. Clinical Presentations and Outcomes of Children with Basilar Skull Fractures After Blunt Head Trauma. Ann. Emerg. Med. 2016, 68, 431–440.e1. [Google Scholar] [CrossRef]
- Yildirim, A.; Gurelik, M.; Gumus, C.; Kunt, T. Fracture of skull base with delayed multiple cranial nerve palsies. Pediatr. Emerg. Care 2005, 21, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhao, Z.; Zhou, Y.; Chen, X.; Li, Y.; Liu, X.; Lu, H.; Zhang, Y.; Zhang, J. High-dose glucocorticoid aggravates TBI-associated corticosteroid insufficiency by inducing hypothalamic neuronal apoptosis. Brain Res. 2013, 1541, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Author | Study Design | Indications for Study Inclusion | Demographic Information of Pediatric Patients with BSF | Mean/Median Age of Pediatric Patients with BSF | Incidence of Pediatric Basilar Skull Fractures |
---|---|---|---|---|---|
Astafyeva et al., 2022 [11] | Case report | N/A | N/A | N/A | N/A |
Barba et al., 2022 [14] | Case–control study | Pediatric patients presenting with a multi-level fall | Male: 109/180 (60.5%) Female: 71/180 (39.4%) | Median age: 3.62 years | After multi-level fall: 180/4315 (4.2%) |
Bressan et al., 2021 [15] | Case–control study | Pediatric patients presenting to the ED | N/A | N/A | N/A |
Dunnick et al., 2019 [16] | Case report | N/A | N/A | N/A | N/A |
Garcia et al., 2005 [17] | Case–control study | Pediatric patients with ocular and adnexal injuries | Male: 4573/7065 (64.0%) Female: 2492/7065 (36.0%) | Mean age: 7.45 years | 7065/96,879 (7.3%) |
Grigorian et al., 2019 [12] | Case–control study | Pediatric patients involved in a blunt trauma mechanism | N/A | N/A | Amongst pediatric trauma patients: Skull base fracture and no BCVI: 4891/60,040 (7.1%) Skull base fracture and BCVI: 58/109 (53.2%) |
Kadish et al., 1995 [18] | Case–control study | Pediatric patients presenting to ED with a basilar skull fracture | Male: 147/239 (62%) Female: 92/239 (38%) | Median age: 7 years | N/A |
Kopelman et al., 2011 [19] | Case–control study | Pediatric blunt trauma patients | N/A | N/A | N/A |
Leibu et al., 2017 [20] | Case–control study | Pediatric patients with skull base fracture | Male: 153/196 (78.1%) Female: 43/196 (21.9%) | Median age: 5 years Mean age: 6.4 years | N/A |
Leraas et al., 2019 [21] | Case–control study | Blunt trauma patients | N/A | N/A | N/A |
Liu-Shindo and Hawkins, 1989 [22] | Case–control study | Pediatric patients with skull base fracture | Male: 43/62 (69.4%) Female: 19/62 (30.6%) | N/A | N/A |
Magit et al., 2021 [23] | Case–control study | Pediatric patients with skull base fracture | Male: 478/729 (65.6%) Female: 251/729 (34.4%) Non-Hispanic White: 32.2% Hispanic/Latino: 45.3% Asian: 3.7% African American: 0.7% Native American: 0/% Native Hawaiin/Pacific Islander: 0.5% Other/unreported: 13.3% | Mean age: 6.78 years | N/A |
Mallicote et al., 2019 [24] | Case–control study | Pediatric blunt trauma patients | N/A | N/A | N/A |
McCutcheon et al., 2013 [25] | Case–control study | Patients with isolated basilar skull fracture | Male: 2486/3563 (69.8%) Female: 1077/3563 (30.2%) White: 1325/3563 (37.9%) Hispanic: 1550/3563 (44.3%) Black: 228/3563 (6.5%) Asian or Pacific Islander: 181/3563 (5.2%) Native American/other: 214/3563 (6.1%) | Mean age: 8 years Median age: 8 years | N/A |
Perheentupa et al., 2012 [26] | Case–control study | Pediatric patients with fracture of the frontal skull base | Male: 11/20 (55%) Female: 9/20 (45%) | Mean age: 12.8 years | 0.0006–0.002% |
Perheentupa et al., 2010 [27] | Case–control study | Pediatric patients with skull base fracture | Male: 37/63 (58.7%) Female: 26/63 (41.3%) | Mean age: 10.7 years | 0.0001–0.0013% |
Ryan et al., 2024 [28] | Case–control study | Pediatric trauma patients with simple basilar skull fracture | Male: 107/174 (61.5%) Female: 67/174 (14.1%) African American: 1/174 (0.6%) Asian: 2/174 (1.2%) White: 146/174 (83.9%) Hispanic: 6/174 (3.4%) Other: 19/174 (10.9%) | Median: 3.2 years | N/A |
Toledo-Goto et al., 2021 [29] | Case report | N/A | N/A | N/A | N/A |
Tunik et al., 2016 [30] | Case–control study | Pediatric patients with blunt head trauma | Male: 330/525 (62.9%) Female: 195/525 (37.1%) | N/A | 558/42,958 (1.3%) |
Ugalde et al., 2018 [13] | Case–control study | Pediatric trauma patients who underwent computed tomography angiography (CTA) | Male: 246/375 (65.6%) Female: 129/375 (39.4%) White: 193/375 (51.6%) Non-White: 181/375 (48.4%) | N/A | Amongst pediatric trauma patients who underwent CTA imaging: 127/375 (33.9%) |
Yildirim et al., 2005 [31] | Case report | N/A | N/A | N/A | N/A |
Author | Mechanism of Injury of BSF | Fracture Classification | Diagnostic Method of Evaluation | Physical Exam Findings | Concomitant Intracranial Injury |
---|---|---|---|---|---|
Astafyeva et al., 2022 [11] | Traffic accident | Skull base fracture passing through the sella turcica | CT | Initial GCS: 6 | Acute severe TBI, subarachnoid hemorrhage |
Barba et al., 2022 [14] | Fall < 6 feet: 104/80 (57.8%); Fall > 6 feet and <15 feet: 29/180 (16.1%); Fall > 15 feet: 47/180 (26.1%) | Temporal bone fracture: 109/180 (60.6%); Non-temporal bone fracture: 71/180 (39.4%) | CT | Hemotympanum: 72/180 (40%); Battle’s sign: 6/180 (3.3%); Raccoon sign: 42/180 (23.3%) Initial GCS: 14–15 (83%) | Intracranial bleed: 65/180 (36.1%) |
Bressan et al., 2021 [15] | N/A | N/A | N/A | Battle’s sign, racoon eyes, CSF otorrhea, CSF rhinorrhea Initial GCS: 14–15 | Clinically important TBI |
Dunnick et al., 2019 [16] | Fall from height (3.5 feet) | Right occipital fracture | CT | Grade 2 right optic nerve papilledema Initial GCS: 14 | Increased intracranial pressure |
Garcia et al., 2005 [17] | N/A | N/A | N/A | N/A | N/A |
Grigorian et al., 2019 [12] | N/A | N/A | N/A | Median GCS: 9 | N/A |
Kadish et al., 1995 [18] | Fall < 5 feet: 47/239 (20%); Fall > 5 feet: 49/239 (20%); Motor vehicle accident: 47/239 (20%); Pedestrian versus vehicle: 34/239 (14%); Bicycle: 27/239 (11%) | N/A | CT: 51/239 (21%); PE: 94/239 (29.3%); CT + PE: 94/239 (39.3%) | Hemotympanum: 122/239 (51%); Battle’s sign: 26/239 (10.9%) Initial GCS: 15 (60%), <15 (40%) | Contusions, Subarachnoid hemorrhages, Intracerebral hemorrhages, Pneumocephalus, Epidural hemorrhages, Subdural hemorrhages |
Kopelman et al., 2011 [19] | N/A | N/A | N/A | Initial GCS: ≤8 (31%) | N/A |
Leibu et al., 2017 [20] | Fall from height: 143/196 (73%); Motor vehicle accident: 34/196 (17%); Other (falling heavy object, physical violence): 19/196, (10%) | Temporal bone fracture: 112/196 (57%); Frontal base (anterior): 62/196 (32%); Occiput (posterior): 13/196, (7%) | N/A | Initial GCS: 14–15 (87%) | None: 86/196 (43.9%); Bleeding (e.g., EDH, SDH): 60/196 (30.6%); Pneumocephalus: 37/196 (18.9%); Edema: 1/196 (0.5%); Mixed: 32/196 (16.3%) |
Leraas et al., 2019 [21] | N/A | N/A | N/A | Mean GCS: 6 | N/A |
Liu-Shindo and Hawkins, 1989 [22] | Struck by vehicle: 26/62 (40%); Falls: 17/62 (27%); Vehicle accident: 14/62 (23%) | Temporal bone fracture: 30/57 (52.6%); Occipital bone fracture: 4/57 (7.0%); No fracture on scans: 14/57 (24.6%) | CT: 15/57 (26.3%); Plain Film: 22/57 (38.6%); CT + Plain Film: 20/57 (35.1%) | Hemotympanum: 36/62 (58.1%); Blood in ear: 29/62 (46.8%); Hearing loss: 21/62 (33.9%); Tympanic membrane perforation: 16/62 (25.8%); Vestibular symptoms: 5/62 (8.1%); Battle’s sign: 0/62 (0%) | Intracranial hemorrhage: 8/62 (12.9%) |
Magit et al., 2021 [23] | Multilevel fall: 261/729 (35.8%); Unhelmeted rider: 136/729 (18.7%); Pedestrian versus vehicle: 56/729 (7.7%); Motor vehicle accident restrained: 48/729 (6.6%); Single-level fall: 46/729 (6.3%); Sport injury: 42/729 (5.8%) | N/A | N/A | N/A | N/A |
Mallicote et al., 2019 [24] | N/A | N/A | N/A | Initial GCS: ≤6 | N/A |
McCutcheon et al., 2013 [25] | N/A | N/A | N/A | N/A | No intracranial injury: 1744/3563 (49%); Laceration or contusion: 356/3563 (10.0%); Hematoma: 1110/3563 (31.2%); Unspecified hematoma: 353/3563 (9.9%) |
Perheentupa et al., 2012 [26] | Road traffic accident: 9/20, (45%); Hit by heavy object: 4/20 (20%); Violence: 3/20 (15%); Fall from height: 2/20 (10%); Fall to the ground: 2/20 (10%) | Anterior skull base fracture: 15/20 (75%); Orbital roof fracture: 8/20 (40%); Fracture of posterior wall of the frontal sinus: 4/20 (45%); Sphenoid sinus fracture: 8/20 (40%); Injury of cribriform plate: 8/20 (40%); Injury of middle part of skull base: 5/20 (25%) | CT | Altered consciousness or unconscious: 15/20 (75%) Mean GCS: 10 | Brain contusion: 12/20 (60%); Pneumocephalus: 11/20 (55%); Subarachnoid bleeding: 10/20 (50%); Intracranial hematoma: 6/20 (30%); Subdural bleeding: 4/20 (20%); Intracranial edema: 3/20 (15%) |
Perheentupa et al., 2010 [27] | Road traffic accident: 24/63 (38.1%); Falling from height: 20/63 (31.7%); Falling to the ground: 6/63 (9.5%); Violence: 5/63 (7.9%) | Temporal bone fracture: 40/63 (63.5%); Sphenoethmoidal complex injury: 26/63 (41.3%); Orbit injury: 22/63 (34.9%); Occipital bone fracture: 10/63 (15.9%); Parietal bone fracture: 7/63 (11.1%); Frontobasal fracture: 14/63 (22.2%) | CT: 57/63 (90.5%); PE: 6/63 (9.5%); X-ray: 2/63 (3.2%) | Unconscious when primarily met: 22/63 (34.9%); Altered consciousness or intubated and consequently sedated: 36/63 (57.1%); Hemotympanum: 39/63 (61.9%); Hearing loss: 30/63 (47.6%); External auditory canal bleeding: 29/63 (46.0%); Tympanic membrane perforation: 6/63 (9.5%); Epistaxis: 13/63 (20.6%); Raccoon Eye: 21/63 (33.3%); Vertigo: 10/63 (15.9%) Mean GCS: 13 | Brain contusion/hematoma: 15/27 (55.6%); Subdural hematoma: 8/27 (29.6%); Edema and cerebral bleeding: 2/27 (7.4%); Epidural hematoma: 1/27 (3.7%); Subarachnoid hematoma: 1/27 (3.7%) |
Ryan et al., 2024 [28] | N/A | Anterior fossa fracture: 38/174 (21.8%); Middle fossa fracture: 57/174 (32.8%); Posterior fossa fracture: 79/174 (45.4%) | CT | Initial GCS: 15 | Delayed intracranial hemorrhage: 0/174 (0%) |
Toledo-Goto et al., 2021 [29] | Hit by a motor vehicle | Bilateral skull base fracture (involving left petrous bone) | CT | Right temporoparietal hematoma of the scalp, contusion with incisive wound on left ear, bilateral blood otorrhea, epistaxis Initial GCS: 11 | N/A |
Tunik et al., 2016 [30] | Fall from elevation: 123/525 (23.4%); Occupant in motor vehicle crash: 90/525 (17.1%); Pedestrian struck by moving vehicle: 59/525 (11.2%); Assault: 37/525 (7.0%); Object struck head, accidental: 34/525 (6.5%); Other wheeled transport crash: 30/525 (5.7%); Bike rider struck by automobile: 25/525 (4.8%); Bike crash or fall from bike while riding: 18/525 (3.4%) | N/A | CT: 162/525 (30.9%); PE: 292/558 (52.3%); CT + PE: 104/525 (19.8%) | Hemotympanum: 203/363 (55.9%); Racoon eye: 82/363 (22.6%); Battle’s sign: 35/363 (9.6%) Initial GCS: 15 (60%), <13 (32%) | Pneumocephalus: 145/525 (27.6%); Subarachnoid hemorrhage: 70/525 (13.3%); Cerebral hemorrhage/intracerebral hematoma: 67/525 (12.8%); Subdural hematoma: 66/525 (12.5%); Cerebral contusion: 64/525 (12.2%); Cerebral edema: 48/525 (9.1%) |
Ugalde et al., 2018 [13] | N/A | N/A | N/A | Initial GCS: >8 (66%), ≤8 (33%) | N/A |
Yildirim et al., 2005 [31] | Fall from roof of house | Temporal bone fracture (involving tip of petrous pyramid) | CT | Otorrhea with hemorrhage in the left ear, hematoma of scalp on the left temporoparietal location Initial GCS: 9 | N/A |
Author | Incidence and Duration of Cranial Nerve Injury | Incidence and Duration of CSF Leakage and Meningitis | Other Complications | Management | Prognosis/Survivability |
---|---|---|---|---|---|
Astafyeva et al., 2022 [11] | N/A | CSF leak present | Central diabetes insipidus, amaurosis, left-sided hemiparesis | Oral therapy with desmopressin, elevation of depressed fracture | N/A |
Barba et al., 2022 [14] | Facial nerve injury: 19/180 (10.6%) | CSF leak: 7/180 (3.9%) | Hearing loss: 22/180 (12.2%); Vertigo: 3/180 (1.7%) | N/A | N/A |
Bressan et al., 2021 [15] | N/A | N/A | N/A | Craniotomy, elevation of depressed fracture | N/A |
Dunnick et al., 2019 [16] | N/A | N/A | Vomiting | Anti-emetics, acetazolamide 10 mg/kg orally twice a day | Return to baseline after 2 months |
Garcia et al., 2005 [17] | N/A | N/A | Eye injury | N/A | N/A |
Grigorian et al., 2019 [12] | N/A | N/A | Blunt cerebrovascular injury | N/A | N/A |
Kadish et al., 1995 [18] | N/A | CSF leak: 46/239 (19%) | N/A | N/A | N/A |
Kopelman et al., 2011 [19] | N/A | N/A | Blunt cerebrovascular injury | N/A | N/A |
Leibu et al., 2017 [20] | Facial nerve palsy and oculomotor palsy present On discharge: 8/196 (4%) On follow-up: 11/124 (9%) | CSF leak: 54/196 (27.6%); Meningitis: 2/54 patients with CSF leak (3.7%) | Vomiting: 36/196 (18.4%); Loss of consciousness: 27/196 (13.8%); Hearing loss: on discharge, 8/196 (4%); on follow-up, 20/196 (16%) | Treatment for CSF leak: Conservative (47/54, 88.9%) Continuous drainage (3/54, 5.6%) Continuous drainage + operation (4/54, 5.6%) | Mean duration of hospitalization: 5.4 days Majority of patients recovered uneventfully |
Leraas et al., 2019 [21] | N/A | N/A | Carotid artery injury | N/A | N/A |
Liu-Shindo and Hawkins, 1989 [22] | Facial paralysis: 8/62 (12.9%); delayed onset in 5 cases 6 completely resolved in less than 3 months | CSF otorrhea: 16/62 (25.8%) CSF rhinorrhea: 1/62 (1.6%) Meningitis: 2/62 (3.2%) | Coma: 3/62 (4.8%) | 4/62 (6.5%): treated with antibiotics; 8/62 (12.95%): corticosteroids; 1/61 (1.6%): surgical decompression of the facial nerve; 1/61 (1.6%): frontal sinus obliteration and repair of anterior fossa dura | 1/62 (1.6%): died due to massive intracranial hemorrhage 3/62 (4.8%): transferred to chronic care facilities in a comatose state |
Magit et al., 2021 [23] | N/A | N/A | N/A | N/A | N/A |
Mallicote et al., 2019 [24] | N/A | N/A | Blunt cerebrovascular injury | N/A | N/A |
McCutcheon et al., 2013 [25] | N/A | CSF leak: 2.33% Meningitis among patients without CSF leak: 0.4% Meningitis among patients with CSF leak not requiring repair: 1.9% Meningitis among patients with CSF leak requiring repair: 4.3% | N/A | N/A | N/A |
Perheentupa et al., 2012 [26] | Olfactory nerve dysfunction: 2/20 (10%) | CSF leak: 5/20 (25%) | Opthalmic problems (ptosis, diplopia, telecanthus, enophthalmos): 8/20 (40%) Permanent neurological problems: 5/20 (25%) | 12/20 (50%): treated surgically 13/20 (65%): treated in the ICU | Mean length of hospital stay: 17 days; 16/20 (80%): discharged home; 3/20 (15%): transferred to another institution; 1/20 (5%): died after 1 week of intensive care treatment |
Perheentupa et al., 2010 [27] | Facial nerve palsy: 3/63 (4.8%), 1 permanent Optic nerve deficiency: 4/63 (6.3%), all permanent Abducens nerve deficiency: 3/63 (4.8%), all temporary Olfactory nerve deficiency: 2/63 (3.2%), all permanent | CSF leak: 7/63 (11.1%) Meningitis: 1/63 (1.6%) | Permanent neurological deficits: 10/63 (15.9%) | 16/63 (25.4%): treated operatively 47/63 (74.6%): treated conservatively 40/47 (81.1%) had prophylactic antibiotic therapy | Mean hospital stay: 10.4 days 1 patient (1.5%) died after 1 week 54/63 (85.7%) were discharged home 8/63 (12.7%) were discharged to another institution for inpatient rehabilitation |
Ryan et al., 2024 [28] | Facial nerve injury: 2/174 (1.2%) | CSF leak: 3/174 (1.7%) Meningitis: 0/174 (0%) | Otitis media: 2/174 (1.2%); Severe nausea/vomiting: 10/174 (5.7%) | 10/174 (5.7%) received IV fluids due to vomiting/dehydration | Deaths: 0/174 (0%); Hospitalization for >24 h: 30/174 (17.2%); Return to hospital within 3 weeks of original injury: 8/174 (4.5%) |
Toledo-Goto et al., 2021 [29] | Delayed lower cranial nerve palsy; glossopharyngeal nerve palsy; vagus nerve palsy; facial nerve palsy (all resolved by 3 months post-admission) | N/A | Hearing loss | Steroids and physical therapy | Near full recovery by 3 months |
Tunik et al., 2016 [30] | Cranial nerve involvement: 22/457 (4.8%) | CSF otorrhea: 32/363 (8.9%)CSF rhinorrhea: 18/363 (5.0%) | N/A | 22% (72/324) Neurosurgery | 5.7% (32/558) of patients died; 76/558 (13.7%) patients were intubated for at least 24 h |
Ugalde et al., 2018 [13] | N/A | N/A | Blunt cerebral vascular injury | Aspirin, anticoagulation, surgery/invasive intervention | N/A |
Yildirim et al., 2005 [31] | Delayed lower cranial nerve palsy: glossopharyngeal nerve palsy; facial nerve palsy; vagus nerve palsy (all improved after a month) | N/A | Sensorineural hearing loss | Narcotics and benzodiazepines for initial treatment Steroids after onset of cranial nerve palsies | Most of the cranial nerve palsies resolved after a month |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, G.; Xavier, J.; Reisert, H.; Goynatsky, M.; Keymakh, M.; Buckner-Wolfson, E.; Kim, T.; Fatemi, R.; Alavi, S.A.N.; Pasuizaca, A.; et al. Clinical Features and Management of Skull Base Fractures in the Pediatric Population: A Systematic Review. Children 2024, 11, 564. https://doi.org/10.3390/children11050564
Jung G, Xavier J, Reisert H, Goynatsky M, Keymakh M, Buckner-Wolfson E, Kim T, Fatemi R, Alavi SAN, Pasuizaca A, et al. Clinical Features and Management of Skull Base Fractures in the Pediatric Population: A Systematic Review. Children. 2024; 11(5):564. https://doi.org/10.3390/children11050564
Chicago/Turabian StyleJung, Geena, Jorden Xavier, Hailey Reisert, Matthew Goynatsky, Margaret Keymakh, Emery Buckner-Wolfson, Timothy Kim, Ryan Fatemi, Seyed Ahmad Naseri Alavi, Andres Pasuizaca, and et al. 2024. "Clinical Features and Management of Skull Base Fractures in the Pediatric Population: A Systematic Review" Children 11, no. 5: 564. https://doi.org/10.3390/children11050564
APA StyleJung, G., Xavier, J., Reisert, H., Goynatsky, M., Keymakh, M., Buckner-Wolfson, E., Kim, T., Fatemi, R., Alavi, S. A. N., Pasuizaca, A., Shah, P., Liriano, G., & Kobets, A. J. (2024). Clinical Features and Management of Skull Base Fractures in the Pediatric Population: A Systematic Review. Children, 11(5), 564. https://doi.org/10.3390/children11050564