Clinical Characteristics and Whole Exome Sequencing Analysis in Serbian Cases of Clubfoot Deformity—Single Center Study
Abstract
:1. Introduction
2. Methodology
2.1. Study Design and Participants
2.2. Clinical and Demographic Characteristics
2.3. Genetic Analysis
2.4. Diagnostic Protocol for Clubfoot
2.5. Treatment Protocol for Clubfoot
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hefti, F.; Brunner, R.; Freuler, F.; Hasler, C.; Jundt, G. (Eds.) Pediatric Orthopedics in Practice; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Herring, J.A. (Ed.) Tachdjian’s Pediatric Orthopaedics, 5th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2014. [Google Scholar]
- Cady, R.; Hennessey, T.A.; Schwend, R.M. Diagnosis and Treatment of Idiopathic Congenital Clubfoot. Pediatrics 2022, 149, e2021055555. [Google Scholar] [CrossRef] [PubMed]
- Esbjörnsson, A.C.; Johansson, A.; Andriesse, H.; Wallander, H. Epidemiology of clubfoot in Sweden from 2016 to 2019: A national register study. PLoS ONE 2021, 16, e0260336. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, B.; Luximon, A.; Al-Jumaily, A.; Balasankar, S.K.; Naik, G.R. Ponseti method in the management of clubfoot under 2 years of age: A systematic review. PLoS ONE 2017, 12, e0178299. [Google Scholar] [CrossRef] [PubMed]
- Quiggle, A.; Charng, W.L.; Antunes, L.; Nikolov, M.; Bledsoe, X.; Hecht, J.T.; Dobbs, M.B.; Gurnett, C.A. Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion. Clin. Orthop. Relat. Res. 2022, 480, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Yolaçan, H.; Güler, S.; Özmanevra, R. Clubfoot from past to the present: A bibliometric analysis with global productivity and research trends. Medicine 2023, 102, e32803. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.M.; Capper, B.; Lavy, C. Clubfoot treatment in 2015: A global perspective. BMJ Glob. Health 2018, 3, e000852. [Google Scholar] [CrossRef] [PubMed]
- Alasbali, M.S.; Altammami, A.F.; Alharbi, A.A.; Aljurfi, M.M.; Alhumaidan, A.I.; AlKhudhair, M.R.; Almuslmani, W.B.; Alkhalife, Y.I. Assessing awareness and knowledge level of clubfoot among a rural city population in Saudi Arabixsa: A cross-sectional study. J. Fam. Med. Prim. Care 2023, 12, 55–61. [Google Scholar]
- Dobbs, M.B.; Gurnett, C.A. Update on clubfoot: Etiology and treatment. Clin. Orthop. Relat. Res. 2009, 467, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Merrill, L.J.; Gurnett, C.A.; Siegel, M.; Sonavane, S.; Dobbs, M.B. Vascular abnormalities correlate with decreased soft tissue volumes in idiopathic clubfoot. Clin. Orthop. Relat. Res. 2011, 469, 1442–1449. [Google Scholar] [CrossRef]
- Beals, R.K. Club foot in the Maori: A genetic study of 50 kindreds. N. Z. Med. J. 1978, 88, 144–146. [Google Scholar]
- Chung, C.S.; Nemechek, R.W.; Larsen, I.J.; Ching, G.H. Genetic and epidemiological studies of clubfoot in Hawaii: General and medical considerations. Hum. Hered. 1969, 19, 321–342. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.C.; Nhi, H.M.; Nam, V.Q.; Thanh do, V.; Romitti, P.; Morcuende, J.A. Descriptive epidemiology of clubfoot in Vietnam: A clinic-based study. Iowa Orthop. J. 2012, 32, 120–124. [Google Scholar] [PubMed]
- Moon, D.K.; Gurnett, C.A.; Aferol, H.; Siegel, M.J.; Commean, P.K.; Dobbs, M.B. Soft-tissue abnormalities associated with treatment-resistant and treatment-responsive clubfoot: Findings of MRI analysis. J. Bone Jt. Surg. Am. 2014, 96, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Sadler, B.; Gurnett, C.A.; Dobbs, M.B. The genetics of isolated and syndromic clubfoot. J. Child. Orthop. 2019, 13, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Gurnett, C.A.; Boehm, S.; Connolly, A.; Reimschisel, T.; Dobbs, M.B. Impact of congenital talipes equinovarus etiology on treatment outcomes. Dev. Med. Child Neurol. 2008, 50, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.N.; Yang, D.; Zheng, J.L.; Spiegel, D.A. Clubfoot and the Ponseti Method: A Bibliometric Analysis. JB JS Open Access 2023, 8, e23.00005. [Google Scholar] [CrossRef] [PubMed]
- Ponseti, I.V. Treatment of congenital club foot. J. Bone Jt. Surg. Am. 1992, 74, 448–454. [Google Scholar] [CrossRef]
- Shack, N.; Eastwood, D.M. Early results of a physiotherapist-delivered Ponseti service for the management of idiopathic congenital talipes equinovarus foot deformity. J. Bone Jt. Surg. Br. 2006, 88, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Lochmiller, C.; Johnston, D.; Scott, A.; Risman, M.; Hecht, J.T. Genetic epidemiology study of idiopathic talipes equinovarus. Am. J. Med. Genet. 1998, 79, 90–96. [Google Scholar] [CrossRef]
- Hootnick, D.R.; Levinsohn, E.M.; Crider, R.J.; Packard, D.S., Jr. Congenital arterial malformations associated with clubfoot: A report of two cases. Clin. Orthop. Relat. Res. 1982, 167, 160–163. [Google Scholar] [CrossRef]
- Dunn, P.M. Congenital postural deformities: Perinatal associations. Proc. R. Soc. Med. 1972, 65, 735–738. [Google Scholar]
- Bonnell, J.; Cruess, R.L. Anomalous insertion of the soleus muscle as a cause of fixed equinus deformity: A case report. J. Bone Jt. Surg. Am. 1969, 51, 999–1000. [Google Scholar] [CrossRef]
- Gurnett, C.A.; Alaee, F.; Kruse, L.M.; Desruisseau, D.M.; Hecht, J.T.; Wise, C.A.; Bowcock, A.M.; Dobbs, M.B. Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am. J. Hum. Genet. 2008, 83, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Greider, T.D.; Siff, S.J.; Gerson, P.; Donovan, M.M. Arteriography in clubfoot. J. Bone Jt. Surg. 1982, 64, 837–840. [Google Scholar] [CrossRef]
- Kitziger, K.; Wilkins, K. Absent posterior tibial artery in an infant with talipes varus. J. Pediatr. Orthop. 1991, 11, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Song, H.R.; Carrol, N.C.; Neyt, J.; Carter, J.M.; Han, J.; D’Amato, C.R. Clubfoot analysis with three –dimensional foot models. J. Pediatr. Orthop. B 1999, 8, 5–11. [Google Scholar] [PubMed]
- Philip, J.; Silver, R.K.; Wilson, R.D.; Thom, E.A.; Zachary, J.M.; Mohide, P.; Mahoney, M.J.; Simpson, J.L.; Platt, L.D.; Pergament, E.; et al. Late first-trimester invasive prenatal diagnosis: Results of an international randomized trial. Obstet. Gynecol. 2004, 103, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Tredwell, S.J.; Wilson, D.; Wilmink, M.A. Review of the effect of early amniocentesis on foot deformity in the neonate. J. Pediatr. Orthop. 2001, 21, 636–641. [Google Scholar] [CrossRef]
- Alvarado, D.M.; Aferol, H.; McCall, K.; Huang, J.B.; Techy, M.; Buchan, J.; Cady, J.; Gonzales, P.R.; Dobbs, M.B.; Gurnett, C.A. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am. J. Hum. Genet. 2010, 87, 154–160. [Google Scholar] [CrossRef]
- Logan, M.; Tabin, C.J. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science 1999, 283, 1736–1739. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A.; Haid, T.; Werner, I.; Federolf, P. Leg Dominance Effects on Postural Control When Performing Challenging Balance Exercises. Brain Sci. 2020, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.P.; Jiao, X.B.; Wu, S.K.; Ji, Z.Q.; Liu, W.T.; Chen, X.; Wang, H.H. Balance, Proprioception, and Gross Motor Development of Chinese Children Aged 3 to 6 Years. J. Mot. Behav. 2018, 50, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, G.; Bettuzzi, C.; Abati, C.N.; Cucca, G.; Zanardi, A.; Lampasi, M. The influence of laterality, sex and family history on clubfoot severity. J. Child. Orthop. 2020, 14, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Maessen, S.E.; Ahlsson, F.; Lundgren, M.; Cutfield, W.S.; Derraik, J.G.B. Maternal smoking early in pregnancy is associated with increased risk of short stature and obesity in adult daughters. Sci. Rep. 2019, 9, 4290. [Google Scholar] [CrossRef]
- Seo, G.H.; Kim, T.; Choi, I.H.; Park, J.Y.; Lee, J.; Kim, S.; Won, D.G.; Oh, A.; Lee, Y.; Choi, J.; et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin. Genet. 2020, 98, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Available online: https://www.calculator.net/sample-size-calculator.html?type=1&cl=80&ci=5&pp=46&ps=60&x=Calculate (accessed on 10 October 2023).
- Stone, P.; Martis, W.; Crawford, H. Idiopathic congenital talipes equinovarus; not always an isolated anomaly. A review of long-term outcomes. J. Matern.-Fetal Neonatal Med. 2018, 31, 2693–2698. [Google Scholar] [CrossRef] [PubMed]
- Kruse, L.M.; Dobbs, M.B.; Gurnett, C.A. Polygenic threshold model with sex dimorphism in clubfoot inheritance: The Carter effect. J. Bone Jt. Surg. Am. 2008, 90, 2688–2694. [Google Scholar] [CrossRef]
- Canavese, F.; Dimeglio, A. Clinical examination and classification systems of congenital clubfoot: A narrative review. Ann. Transl. Med. 2021, 9, 1097. [Google Scholar] [CrossRef]
- Lampasi, M.; Trisolino, G.; Abati, C.N.; Bosco, A.; Marchesini Reggiani, L.; Racano, C.; Stilli, S. Evolution of clubfoot deformity and muscle abnormality in the Ponseti method: Evaluation with the Dimeglio score. Int. Orthop. 2016, 40, 2199–2205. [Google Scholar] [CrossRef] [PubMed]
- Dreise, M.; Elkins, C.; Muhumuza, M.F.; Musoke, H.; Smythe, T. Exploring Bracing Adherence in Ponseti Treatment of Clubfoot: A Comparative Study of Factors and Outcomes in Uganda. Int. J. Environ. Res. Public Health 2023, 20, 6396. [Google Scholar] [CrossRef]
- Butt, M.N.; Perveen, W.; Ciongradi, C.I.; Alexe, D.I.; Marryam, M.; Khalid, L.; Dobreci, D.L.; Sârbu, I. Outcomes of the Ponseti Technique in Different Types of Clubfoot-A Single Center Retrospective Analysis. Children 2023, 10, 1340. [Google Scholar] [CrossRef]
- Adegbehingbe, O.O.; Oginni, L.M.; Ogundele, O.J.; Ariyibi, A.L.; Abiola, P.O.; Ojo, O.D. Ponseti clubfoot management: Changing surgical trends in Nigeria. Iowa Orthop. J. 2010, 30, 7–14. [Google Scholar]
- Pavone, V.; Chisari, E.; Vescio, A.; Lucenti, L.; Sessa, G.; Testa, G. The etiology of idiopathic congenital talipes equinovarus: A systematic review. J. Orthop. Surg. Res. 2018, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Basit, S.; Khoshhal, K.I. Genetics of clubfoot; recent progress and future perspectives. Eur. J. Med. Genet. 2018, 61, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.M.; Ragusa, G.; Di Carlo, V.; Faletra, F.; Di Stazio, M.; Racano, C.; Trisolino, G.; Cappellani, S.; De Pellegrin, M.; d‘Addetta, I.; et al. What Is the Exact Contribution of PITX1 and TBX4 Genes in Clubfoot Development? An Italian Study. Genes 2022, 13, 1958. [Google Scholar] [CrossRef]
- Lamande, S.R.; Yuan, Y.; Gresshoff, I.L.; Rowley, L.; Belluoccio, D.; Kaluarachchi, K.; Little, C.B.; Botzenhart, E.; Zerres, K.; Amor, D.J.; et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 2011, 43, 1142–1146. [Google Scholar] [CrossRef]
- Landouré, G.; Zdebik, A.A.; Martinez, T.L.; Burnett, B.G.; Stanescu, H.C.; Inada, H.; Shi, Y.; Taye, A.A.; Kong, L.; Munns, C.H.; et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat. Genet. 2010, 42, 170–174. [Google Scholar] [CrossRef]
- Deng, H.X.; Klein, C.J.; Yan, J.; Shi, Y.; Wu, Y.; Fecto, F.; Yau, H.J.; Yang, Y.; Zhai, H.; Siddique, N.; et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat. Genet. 2010, 42, 165–169. [Google Scholar] [CrossRef]
- Zimoń, M.; Baets, J.; Auer-Grumbach, M.; Berciano, J.; Garcia, A.; Lopez-Laso, E.; Merlini, L.; Hilton-Jones, D.; McEntagart, M.; Crosby, A.H.; et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 2010, 133 Pt 6, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.D.; Hernandez, N.; Ottman, R.; Ionita-Laza, I.; Clark, L.N. Essential Tremor in a Charcot-Marie-Tooth Type 2C Kindred Does Not Segregate with the TRPV4 R269H Mutation. Case Rep. Neurol. 2014, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Echaniz-Laguna, A.; Dubourg, O.; Carlier, P.; Carlier, R.Y.; Sabouraud, P.; Péréon, Y.; Chapon, F.; Thauvin-Robinet, C.; Laforêt, P.; Eymard, B.; et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology 2014, 82, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Auer-Grumbach, M.; Olschewski, A.; Papić, L.; Kremer, H.; McEntagart, M.E.; Uhrig, S.; Fischer, C.; Fröhlich, E.; Bálint, Z.; Tang, B.; et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat. Genet. 2010, 42, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.J.; Shi, Y.; Fecto, F.; Donaghy, M.; Nicholson, G.; McEntagart, M.E.; Crosby, A.H.; Wu, Y.; Lou, H.; McEvoy, K.M.; et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot-Marie-Tooth neuropathies. Neurology 2011, 76, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Fecto, F.; Shi, Y.; Huda, R.; Martina, M.; Siddique, T.; Deng, H.X. Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J. Biol. Chem. 2011, 286, 17281–17291. [Google Scholar] [CrossRef]
- Takahashi, N.; Hamada-Nakahara, S.; Itoh, Y.; Takemura, K.; Shimada, A.; Ueda, Y.; Kitamata, M.; Matsuoka, R.; Hanawa-Suetsugu, K.; Senju, Y.; et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P2. Nat. Commun. 2014, 5, 4994. [Google Scholar] [CrossRef] [PubMed]
- Girisha, K.M.; Bidchol, A.M.; Graul-Neumann, L.; Gupta, A.; Hehr, U.; Lessel, D.; Nader, S.; Shah, H.; Wickert, J.; Kutsche, K. Phenotype and genotype in patients with Larsen syndrome: Clinical homogeneity and allelic heterogeneity in seven patients. BMC Med. Genet. 2016, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, S.; Alyahya, A.; Aldhalaan, H. Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) With Language Impairment Accompanied by Developmental Disability Caused by Forkhead Box Protein 1 (FOXP1) Exon Deletion: A Case Report. Cureus 2021, 13, e20595. [Google Scholar] [CrossRef]
- Lin, S.Z.; Zhou, X.Y.; Wang, W.Q.; Jiang, K. Autism with dysphasia accompanied by mental retardation caused by FOXP1 exon deletion: A case report. World J. Clin. Cases 2021, 9, 6858–6866. [Google Scholar] [CrossRef]
- Cesaroni, C.A.; Pollazzon, M.; Mancini, C.; Rizzi, S.; Cappelletti, C.; Pizzi, S.; Frattini, D.; Spagnoli, C.; Caraffi, S.G.; Zuntini, R.; et al. Case report: Expanding the phenotype of FOXP1-related intellectual disability syndrome and hyperkinetic movement disorder in differential diagnosis with epileptic seizures. Front. Neurol. 2023, 14, 1207176. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Gbekie, C.; Siper, P.M.; Srivastava, S.; Saland, J.M.; Sethuram, S.; Tang, L.; Drapeau, E.; Frank, Y.; Buxbaum, J.D.; et al. FOXP1 syndrome: A review of the literature and practice parameters for medical assessment and monitoring. J. Neurodev. Disord. 2021, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, B.W.; van der Kooi, A.J.; van Spaendonck-Zwarts, K.Y.; Verhamme, C.; Baas, F.; de Visser, M. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies. Orphanet J. Rare Dis. 2014, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Ballout, R.A.; Dickerson, C.; Wick, M.J.; Al-Sweel, N.; Openshaw, A.S.; Srivastava, S.; Swanson, L.C.; Bramswig, N.C.; Kuechler, A.; Hong, B.; et al. Int22h1/Int22h2-mediated Xq28 duplication syndrome: De novo duplications, prenatal diagnoses, and additional phenotypic features. Hum. Mutat. 2020, 41, 1238–1249. [Google Scholar] [CrossRef]
- Ballout, R.A.; El-Hattab, A.W. The int22h1/int22h2-Mediated Xq28 Duplication Syndrome: An Intersection between Neurodevelopment, Immunology, and Cancer. Genes 2021, 12, 860. [Google Scholar] [CrossRef]
Variables | Total N = 50 | Positive (with Genetic Variant/s) N = 7 | Negative (without Genetic Variant/s) N = 43 | p * Positive/Negative | |
---|---|---|---|---|---|
Gender, N (%) | Male | 31 (62%) | 4 (57.14%) | 27 (62.79%) | 1.000 |
Female | 19 (38%) | 3 (42.86%) | 16 (37.21%) | ||
Age, (MV ± SD) | 8.82 ± 4.27 | 5.14 ± 1.68 | 9.42 ± 4.27 | ||
Dominant foot, N (%) | Right | 33 (66%) | 7 (100%) | 26 (60.47%) | 0.080 |
Left | 17 (34%) | 0 (0) | 17 (39.53%) | ||
Affected foot, N (%) | One foot | 13 (26%) | 0 (0) | 13 (30.23%) | 0.168 |
Both feet | 37 (74%) | 7 (100%) | 30 (69.77%) | ||
Deformity degree, N (%) | I | 9 (18%) | 0 (0) | 9 (20.93%) | 0.270 |
II | 17 (34%) | 3 (42.86%) | 14 (32.56%) | ||
III | 14 (28%) | 1 (14.29%) | 13 (30.23%) | ||
IV | 10 (20%) | 3 (42.86%) | 7 (16.28%) | ||
Treatment, N (%) | Ponseti method | 14 (28%) | 1 (14.29%) | 13 (30.23%) | 0.657 |
Ponseti method and surgery | 36 (72%) | 6 (85.71%) | 30 (69.77%) | ||
Neuromuscular disorders, N (%) | Yes | 21 (42%) | 5 (71.43%) | 16 (37.21%) | 0.115 |
No | 29 (58%) | 2 (28.57%) | 27 (62.79%) | ||
Clubfoot family history, N (%) | Positive | 10 (20%) | 4 (57.14%) | 6 (13.95%) | 0.023 |
Negative | 40 (80%) | 3 (42.86%) | 37 (86.05%) | ||
Maternal smoking, N (%) | Yes | 16 (32%) | 1 (14.29%) | 15 (34.88%) | 0.406 |
No | 34 (68%) | 6 (85.71%) | 28 (65.12%) |
Variables | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 |
---|---|---|---|---|---|---|---|
Gender | Male | Male | Male | Female | Male | Male | Female |
Age * (years) | 8 | 4 | 6 | 6 | 3 | 5 | 4 |
Dominant foot | Right | Right | Right | Right | Right | Left | Right |
Affected foot | Both feet | Both feet | Both feet | Both feet | Both feet | Both feet | Both feet |
Degree | II | III | II | III | III | II | III |
Treatment | Ponseti method and Surgery | Ponseti method | Ponseti method and Surgery | Ponseti method and Surgery | Ponseti method and Surgery | Ponseti method and Surgery | Ponseti method and Surgery |
Neuromuscular disorders | Charcot–Marie–Tooth type Ia | Hereditary motor and sensory neuropathy type IIc | FOXP1-related disorder | Larsen syndrome | Larsen syndrome | TPRV4-related disorder | Xq28 duplication syndrome |
Clubfoot family history | Positive | Negative | Negative | Positive | Positive | Negative | Positive |
Maternal smoking | No | No | No | No | No | No | Yes |
Patient ID | P19 | P31 | P33 | P37 | P38 | P40 | P49 |
---|---|---|---|---|---|---|---|
Gene | COX10, CDRT15, HS3ST3B1, PMP22, TEKT3, TVP23C-CDRT4, CDRT4, TVP23C | TRPV4 | FOXP1 | FLNB | TRPV4 | F8, FUNDC2, CMC4, MTCP1, BRCC3, VBP1, RAB39B, CLIC2 | |
Gene Transcript | NC_000017.10 | NM_021625.5 | NM_001349338.3 | NM_001457.4 | NM_021625.5 | NC_000023.10 | |
Nucleotide Change | g.(?_14095306)_ (15466797_?)dup | c.806G>A | c.1723-2A>C | c.2055G>C | c.1315T>A | g.(?_154128141)_ (154563736_?)dup | |
Variant type | Duplication | Missense | Splice | Missense | Missense | Duplication | |
Zygosity | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | |
Protein Transcript | NA | NP_067638.3 | NP_001336267.1 | NP_001448.2 | NP_067638.3 | NA | |
Amino Acid Change | NA | p.Arg269His | NA | p.Gln685His | p.Tyr439Asn | NA | |
Pathogenic | Pathogenic | Likely pathogenic | Likely pathogenic | VUS | Pathogenic | ||
Population Data (%) 1 | 0.023 | 0 | 0 | 0 | <0.001 | 0.006 | |
Disorder | Charcot–Marie–Tooth disease, Type 1A | Hereditary motor and sensory neuropathy, Type IIc | FOXP1-related disorder | Larsen syndrome | TRPV4-related disorder | Chromosome Xq28 duplication syndrome | |
OMIM ID | 118220 | 606071 | 605515 | 150250 | 605427 | 300815 | |
Mode of inheritance | Autosomal dominant | Autosomal dominant | Autosomal dominant | Autosomal dominant | Autosomal dominant | X-linked dominant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanovic, F.; Ducic, S.; Jankovic, M.; Sindjic-Antunovic, S.; Dubljanin-Raspopović, E.; Aleksic, M.; Djuricic, G.; Nikolic, D. Clinical Characteristics and Whole Exome Sequencing Analysis in Serbian Cases of Clubfoot Deformity—Single Center Study. Children 2024, 11, 647. https://doi.org/10.3390/children11060647
Milanovic F, Ducic S, Jankovic M, Sindjic-Antunovic S, Dubljanin-Raspopović E, Aleksic M, Djuricic G, Nikolic D. Clinical Characteristics and Whole Exome Sequencing Analysis in Serbian Cases of Clubfoot Deformity—Single Center Study. Children. 2024; 11(6):647. https://doi.org/10.3390/children11060647
Chicago/Turabian StyleMilanovic, Filip, Sinisa Ducic, Milena Jankovic, Sanja Sindjic-Antunovic, Emilija Dubljanin-Raspopović, Milica Aleksic, Goran Djuricic, and Dejan Nikolic. 2024. "Clinical Characteristics and Whole Exome Sequencing Analysis in Serbian Cases of Clubfoot Deformity—Single Center Study" Children 11, no. 6: 647. https://doi.org/10.3390/children11060647
APA StyleMilanovic, F., Ducic, S., Jankovic, M., Sindjic-Antunovic, S., Dubljanin-Raspopović, E., Aleksic, M., Djuricic, G., & Nikolic, D. (2024). Clinical Characteristics and Whole Exome Sequencing Analysis in Serbian Cases of Clubfoot Deformity—Single Center Study. Children, 11(6), 647. https://doi.org/10.3390/children11060647