Chronic Kidney Disease and Growth Failure in Children
Abstract
:1. Chronic Kidney Disease in Children
2. Growth Failure in Children with CKD
3. Management of Children with Growth Failure and CKD
4. Clinical Practice Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ardissino, G.; Daccò, V.; Testa, S.; Bonaudo, R.; Claris-Appiani, A.; Taioli, E.; Marra, G.; Edefonti, A.; Sereni, F. ItalKid Project. Epidemiology of chronic renal failure in children: Data from the ItalKid project. Pediatrics 2003, 111, e382–e387. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.S.; Bilous, R.W.; Coresh, J. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar]
- Levin, A.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. Executive summary of the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Known knowns and known unknowns. Kidney Int. 2024, 105, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Warady, B.A.; Chadha, V. Chronic kidney disease in children: The global perspective. Pediatr. Nephrol. 2007, 22, 1999–2009. [Google Scholar] [CrossRef]
- Massengill, S.F.; Ferris, M. Chronic Kidney Disease in Children and Adolescents. Pediatr. Rev. 2014, 35, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Wit, M.; Clayton, P.E.; Rogol, A.D.; Savage, M.O.; Saenger, P.H.; Cohen, P. Idiopathic short stature: Definition, epidemiology, and diagnostic evaluation. Growth Horm. IGF Res. 2008, 18, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Fine, R.N.; Ho, M.; Tejani, A. North American Pediatric Renal Trasplant Cooperative Study (NAPRTCS). The contribution of renal transplantation to final adult height: A report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr. Nephrol. 2001, 16, 951–956. [Google Scholar] [CrossRef]
- Salević, P.; Radović, P.; Milić, N.; Bogdanović, R.; Paripović, D.; Paripović, A.; Golubović, E.; Milosević, B.; Mulić, B.; Peco-Antić, A. Growth in children with chronic kidney disease: 13 years follow up study. J. Nephrol. 2014, 27, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Englund, M.S.; Tydén, G.; Wikstad, I.; Berg, U.B. Growth impairment at renal transplantation—A determinant of growth and final height. Pediatr. Transplant. 2003, 7, 192–199. [Google Scholar] [CrossRef]
- Tönshoff, B.; Veldhuis, J.; Heinrich, U.; Mehels, O. Deconvolution Analysis of Spontaneous Nocturnal Growth Hormone Secretion in Prepubertal Children with Preterminal Chronic Renal Failure and with End-Stage Renal Disease. Pediatr. Res. 1995, 37, 86–93. [Google Scholar] [CrossRef]
- Phillips, L.S.; Fusco, A.C.; Unterman, T.G.; del Greco, F. Somatomedin inhibitor in uremia. J. Clin. Endocrinol. Metab. 1984, 59, 764–772. [Google Scholar] [CrossRef]
- Blum, W.F.; Ranke, M.B.; Kietzmann, K.; Tönshoff, B.; Mehls, O. Growth hormone resistance and inhibition of somatomedin activity by excess of insulin-like growth factor binding protein in uraemia. Pediatr. Nephrol. 1991, 5, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Ford, Z.K.; Dourson, A.J.; Liu, X.; Lu, P.; Green, K.J.; Hudgins, R.C.; Jankowski, M.P. Systemic growth hormone deficiency causes mechanical and thermal hypersensitivity during early postnatal development. IBRO Rep. 2019, 6, 111–121. [Google Scholar] [CrossRef]
- Cobo, A.; López, J.M.; Carbajo, E.; Santos, F.; Alvarez, J.; Fernández, M.; Weruaga, A. Growth plate cartilage formation and resorption are differentially depressed in growth retarded uremic rats. J. Am. Soc. Nephrol. 1999, 10, 971–979. [Google Scholar] [CrossRef]
- Breur, G.J.; VanEnkevort, B.A.; Farnum, C.E.; Wilsman, N.J. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J. Orthop. Res. 1991, 9, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Furth, S.L.; Stablein, D.; Fine, R.N.; Powe, N.R.; Fivush, B.A. Adverse clinical outcomes associated with short stature at dialysis initiation: A report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics 2002, 109, 909–913. [Google Scholar] [CrossRef]
- Claramunt, D.; Gil-Peña, H.; Fuente, R.; García-López, E.; Frías, O.H.; Ordoñez, F.A.; Rodríguez-Suárez, J.; Santos, F. Effects of growth hormone treatment on growth plate, bone and mineral metabolism of young rats with uremia induced by adenine. Pediatr. Res. 2017, 82, 888. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.C.; Ridout, D.; Cantor, T.; Rees, L. Parathyroid hormone and growth in children with chronic renal failure. Kidney Int. 2005, 67, 2338–2345. [Google Scholar] [CrossRef]
- Schmitt, C.P.; Ardissino, G.; Testa, S.; Claris-Appiani, A.; Mehls, O. Growth in children with chronic renal failure on intermittent versus daily calcitriol. Pediatr. Nephrol. 2003, 18, 440–444. [Google Scholar] [CrossRef]
- Kuizon, B.D.; Goodman, W.G.; Juppner, H.; Boechat, I.; Nelson, P.; Gales, B.; Salusky, I.B. Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Kidney Int. 1998, 53, 205–211. [Google Scholar] [CrossRef]
- Groothoff, J.W.; Offringa, M.; Van Eck-Smit, B.L.; Gruppen, M.P.; Van De Kar, N.J.; Wolff, E.D.; Lilien, M.R.; Davin, J.C.; Heymans, H.S.; Dekker, F.W. Severe bone disease and low bone mineral density after juvenile renal failure. Kidney Int. 2003, 63, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Okazaki, R.; Shibata, M.; Hasegawa, Y.; Satoh, K.; Tajima, T.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Yamashita, T.; et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 2002, 87, 4957–4960. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Leee, K.H.; éPark, E.; Park, Y.S.; Kang, H.G.; Ahn, Y.H.; Ha, I.S.; Kim, S.H.; Cho, H.; Han, M.H.; et al. Mineral bone doisorder in children with chronic kidney disease: Data from KNOW-Ped CDK (Korean cohort study outcome in patients with pediatric chronic kidney disease) study. Front. Pediatr. 2023, 11, 994979. [Google Scholar]
- Wesseling, K.; Bakkaloglu, S.; Salusky, I. Chronic kidney disease mineral and bone disorder in children. Pediatr. Nephrol. 2008, 23, 195–207. [Google Scholar] [CrossRef]
- Schmidt, A.; Luger, A.; Horl, W.H. Sexual hormone abnormalities in male patients with renal failure. Nephrol. Dial Transplant. 2002, 17, 368–371. [Google Scholar] [CrossRef]
- Dunkel, L.; Raivio, T.; Laine, J.; Holmberg, C. Circulating luteinizing hormone receptor inhibitor (s) in boys with chronic renal failure. Kidney Int. 1997, 51, 777–784. [Google Scholar] [CrossRef]
- Drube, J.; Wan, M.; Bonthuis, M.; Wuhl, E.; Bacchetta, J.; Santos, F.; Grenda, R.; Edefonti, A.; Harambat, J.; Shroff, R.; et al. European Society for Paediatric Nephrology Chronic Kidney Disease Mineral and Bone Disorders, Dialysis, and Transplantation Working Goups. Nat. Rev. Nephrol. 2019, 15, 577–589. [Google Scholar] [CrossRef]
- Rees, L.; Mak, R.H. Nutrition and growth in children with chronic kidney disease. Nat. Rev. Nephrol. 2011, 7, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lee, H.J.; Choi, H.J.; Ahn, Y.H.; Han, K.H.; Cho, H.; Shin, J.I.; Lee, J.H.; Park, Y.S.; Ha, I.S.; et al. Incidence of and risk factors for short stature in children with chronic kidney disease results from the KNOW-Ped CKD. Pediatr. Nephrol. 2021, 36, 2857–2864. [Google Scholar] [CrossRef]
- Ascenzi, F.; Barberi, L.; Dobrowolny, G.; Villa Nova Bacurau, A.; Nicoletti, C.; Rizzuto, E.; Rosenthal, N.; Scicchitano, B.M.; Musarò., A. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 2019, 18, e12954. [Google Scholar] [CrossRef]
- Backeljauw, P.; Cappa, M.; Kiess, W.; Law, L.; Cookson, C.; Sert, C.; Whalen, J.; Dattani, M.T. Impact of short stature on quality of life: A systematic literature review. Growth Horm IGF Res. 2021, 57–58, 101392. [Google Scholar] [CrossRef] [PubMed]
- Haffner, D. Strategies for Optimizing Growth in Children with Chronic Kidney Disease. Front. Pediatr. 2020, 8, 399. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, M.; Terzic, J.; Menouer, S.; Dheu, C.; Seuge, L.; Zalosczic, A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol. Dial Transplant. 2010, 25, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Tejani, A.; Fine, R.; Alexander, S.; Harmon, W.; Stablein, D. Factors predictive of sustained growth in children after renal transplantation. The North American Pediatric Renal Transplant Cooperative Study. J. Pediatr. 1993, 122, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Tsampalieros, A.; Knoll, G.A.; Molnar, A.O.; Fergusson, N.; Fergusson, D.A. Corticosteroid Use and Growth After Pediatric Solid Organ Transplantation: A Systematic Review and Meta-Analysis. Transplantation 2017, 101, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M.; Kogon, A.J.; Kumar, J.; Sethna, C.B.; Hammad, H.T.; Christos, P.J.; Mahan, J.D.; Greenbaum, L.A.; Woroniecki, R. Approach to growth hormone therapy in children with chronic kidney disease varies across North America: The Midwest Pediatric Nephrology Consortium report. BMC Nephrol. 2017, 18, 181. [Google Scholar] [CrossRef] [PubMed]
- Cappa, M.; Maghnie, M.; Carbone, V.; Chioma, L.; Errichiello, C.; Giavoli, C.; Giordano, M.; Guazzarotti, L.; Klain, A.; Montini, G.; et al. Summary of Expert Opinion on the Management of Children with Chronic Kidney Disease and Growth Failure with Human Growth Hormone. Front. Endocrinol. 2020, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Moreno, M.L.; Neto, A.; Ariceta, G.; Vara, J.; Alonso, A.; Bueno, A.; Afonso, A.C.; Correia, A.J.; Muley, R.; et al. Improvement in growth after 1 year of growth hormone therapy in well-nourished infants with growth retardation secondary to chronic renal failure: Results of a multicenter, controlled, randomized, open clinical trial. Clin. J. Am. Soc. Nephrol. 2010, 5, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Franke, D.; Zivicnjak, M.; Ehrich, J.H. Growth hormone treatment of renal growth failure during infancy and early childhood. Pediatr. Nephrol. 2009, 24, 1093–1096. [Google Scholar] [CrossRef]
- Bizzarri, C.; Lonero, A.; Delvecchio, M.; Cavallo, L.; Faienza, M.F.; Giordano, M.; Dello Strologo, L.; Cappa, M. Growth hormone treatment improves final height and nutritional status of children with chronic kidney disease and growth deceleration. J. Endocrinol. Investig. 2018, 41, 325–331. [Google Scholar] [CrossRef]
- Hodson, E.M.; Willis, N.S.; Craig, J.C. Growth hormone for children with chronic kidney disease. Cochrane Database Syst. Rev. 2012, 2, CD003264. [Google Scholar] [CrossRef] [PubMed]
- Haffner, D.; Schaefer, F.; Nissel, R.; Wühl, E.; Tönshoff, B.; Mehls, O. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. N. Engl. J. Med. 2000, 343, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.; Aziz, M.; Adragna, M.; Monteverde, M.; Belgorosky, A. Near-adult height in male kidney transplant recipients started on growth hormone treatment in late puberty. Pediatr. Nephrol. 2018, 33, 175–180. [Google Scholar] [CrossRef]
- Nissel, R.; Lindberg, A.; Mehls, O.; Haffner, D. Pfizer International Growth Database (KIGS) International Board. Factors predicting the near-final height in growth hormone-treated children and adolescents with chronic kidney disease. J. Clin. Endocrinol. Metab. 2008, 93, 1359–1365. [Google Scholar] [CrossRef]
Glomerular function baseline < 45 mL/mm/1.73 m2 |
Proteinuria (Up:Uc > 0.2) |
Hypertension |
Anemia |
Hyperparathyroidism |
Vitamin D insufficiency and deficiency |
Hypocalcemia |
Hyperphosphatemia |
Metabolic acidosis |
Goal | Maintain Normal Body Mass and Body Composition; Minimize Comorbidities Associated; Slow Progression of Kidney Damage |
---|---|
Achieve good long-term outcomes: | Improve the quality of life; optimize growth |
Nutritional assessment: | Body weight for age, height, and height velocity; body mass index normalized protein catabolic rate; protein energy-wasting criteria include evolving body lean mass, biochemistry, diet, and linear growth |
Management strategy: | Energy intake same as normal children; nasogastric and gastric tube (PEG), if necessary |
Nutrition: | High-carbohydrate content in supplements |
Electrolyte balance: | Tubular disorders commonly needing electrolyte supplementation; a low salt diet while hypertension is present; salt supplementation in tubular disorders and high fluid intake in polyuria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todisco, T.; Ubertini, G.M.; Bizzarri, C.; Loche, S.; Cappa, M. Chronic Kidney Disease and Growth Failure in Children. Children 2024, 11, 808. https://doi.org/10.3390/children11070808
Todisco T, Ubertini GM, Bizzarri C, Loche S, Cappa M. Chronic Kidney Disease and Growth Failure in Children. Children. 2024; 11(7):808. https://doi.org/10.3390/children11070808
Chicago/Turabian StyleTodisco, Tommaso, Grazia Maria Ubertini, Carla Bizzarri, Sandro Loche, and Marco Cappa. 2024. "Chronic Kidney Disease and Growth Failure in Children" Children 11, no. 7: 808. https://doi.org/10.3390/children11070808
APA StyleTodisco, T., Ubertini, G. M., Bizzarri, C., Loche, S., & Cappa, M. (2024). Chronic Kidney Disease and Growth Failure in Children. Children, 11(7), 808. https://doi.org/10.3390/children11070808