Relationship between Body Mass Index and Health-Related Physical Fitness Components in HIV-Diagnosed Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Participants’ Characteristics
2.3. Health-Related Physical Fitness
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Association between BMI and Physical Fitness Components (Correlation, Simple and Multilinear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arpadi, S.; Shiau, S.; Strehlau, R.; Martens, L.; Patel, F.; Coovadia, A.; Abrams, E.J.; Kuhn, L. Metabolic abnormalities and body composition of HIV-infected children on Lopinavir or Nevirapinebased antiretroviral therapy. Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 258–264. [Google Scholar] [CrossRef]
- Dirajlal-Fargo, S.; Jacobson, D.L.; Yu, W.; Mirza, A.; Geffner, M.E.; McComsey, G.A.; Jao, J. Longitudinal changes in body fat and metabolic complications in young people with perinatally acquired HIV. HIV Med. 2023, 25, 233–244. [Google Scholar] [CrossRef]
- Shiau, S.; Yin, M.T.; Strehlau, R.; Patel, F.; Mbete, N.; Kuhn, L.; Coovadia, A.; Arpadi, S.M. Decreased bone turnover in HIV-infected children on antiretroviral therapy. Arch. Osteoporos. 2018, 13, 40. [Google Scholar] [CrossRef]
- Arpadi, S.M.; Thurman, C.B.; Patel, F.; Kaufman, J.J.; Strehlau, R.; Burke, M.; Shiau, S.; Coovadia, A.; Yin, M.T. Bone Quality Measured Using Calcaneal Quantitative Ultrasonography Is Reduced Among Children with HIV in Johannesburg, South Africa. J. Pediatr. 2019, 215, 267–271.e262. [Google Scholar] [CrossRef]
- Mukwasi-Kahari, C.; Rehman, A.M.; Ó Breasail, M.; Rukuni, R.; Madanhire, T.; Chipanga, J.; Stranix-Chibanda, L.; Micklesfield, L.K.; Ferrand, R.A.; Ward, K.A.; et al. Impaired Bone Architecture in Peripubertal Children With HIV, Despite Treatment With Antiretroviral Therapy: A Cross-Sectional Study From Zimbabwe. J. Bone Miner. Res. 2023, 38, 248–260. [Google Scholar] [CrossRef]
- Somarriba, G.; Lopez-Mitnik, G.; Ludwig, D.A.; Neri, D.; Schaefer, N.; Lipshultz, S.E.; Scott, G.B.; Miller, T.L. Physical fitness in children infected with the human immunodeficiency virus: Associations with highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 2013, 29, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Metgud, D.C.; Chheda, R.J. Muscle strength, flexibility and cardiorespiratory endurance in children with human immunodeficiency virus on antiretroviral therapy: A case control study. Sri Lanka J. Child Health 2022, 51, 560–564. [Google Scholar] [CrossRef]
- Cohen, S.; Innes, S.; Geelen, S.P.M.; Wells, J.C.K.; Smit, C.; Wolfs, T.F.W.; van Eck-Smit, B.L.F.; Kuijpers, T.W.; Reiss, P.; Scherpbier, H.J.; et al. Long-Term Changes of Subcutaneous Fat Mass in HIV-Infected Children on Antiretroviral Therapy: A Retrospective Analysis of Longitudinal Data from Two Pediatric HIV-Cohorts. PLoS ONE 2015, 13, e0120927, Correction in PLoS ONE 2018, 13, e0190726. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, B.; Sainz, T.; Díaz, L.; Mellado, M.J.; Navarro, M.L.; Rojo, P.; González-Tomé, M.I.; Prieto, L.; Martínez, J.; de José, M.I.; et al. Low Bone Mineral Density in Vertically HIV-infected Children and Adolescents: Risk Factors and the Role of T-cell Activation and Senescence. Pediatr. Infect. Dis. J. 2017, 36, 578–583. [Google Scholar] [CrossRef]
- Innes, S.; van der Laan, L.; Anderson, P.L.; Cotton, M.; Denti, P. Can We Improve Stavudine’s Safety Profile in Children? Pharmacokinetics of Intracellular Stavudine Triphosphate with Reduced Dosing. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kanjanavanit, S.; Chotecharoentanan, T.; Sricharoen, N.; Ounchanum, P.; Suntarattiwong, P.; Pornpaisalsakul, K.; Puthanakit, T.; et al. Impact of Vitamin D and Calcium Supplementation on Bone Mineral Density and Bone Metabolism Among Thai Adolescents With Perinatally Acquired Human Immunodeficiency Virus (HIV) Infection: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 73, 1555–1564. [Google Scholar] [CrossRef]
- de Lima, L.R.A.; Silva, D.A.S.; da Silva, K.S.; Pelegrini, A.; Back, I.d.C.; Petroski, E.L. Aerobic Fitness and Moderate to Vigorous Physical Activity in Children and Adolescents Living with HIV. Pediatr. Exerc. Sci. 2017, 29, 377–387. [Google Scholar] [CrossRef]
- Miller, T.L.; Somarriba, G.; Kinnamon, D.D.; Weinberg, G.A.; Friedman, L.B.; Scott, G.B. The effect of a structured exercise program on nutrition and fitness outcomes in human immunodeficiency virus-infected children. AIDS Res. Hum. Retroviruses 2010, 26, 313–319. [Google Scholar] [CrossRef]
- Potterton, J.; Strehlau, R.; Shiau, S.; Comley-White, N.; Kuhn, L.; Arpadi, S. Muscle strength in young children perinatally infected with HIV who were initiated on antiretroviral therapy early. SAJCH S. Afr. J. Child Health 2021, 15, 107–111. [Google Scholar] [CrossRef]
- Chirindza, N.; Leach, L.; Mangona, L.; Nhaca, G.; Daca, T.; Prista, A. Body composition, physical fitness and physical activity in Mozambican children and adolescents living with HIV. PLoS ONE 2022, 17, e0275963. [Google Scholar] [CrossRef]
- de Castro, J.A.C.; de Lima, T.R.; Silva, D.A.S. Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review. Int. J. Environ. Res. Public Health 2024, 21, 541. [Google Scholar] [CrossRef]
- de Castro, J.A.C.; de Lima, L.R.A.; Silva, D.A.S. Accuracy of octa-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in children and adolescents with HIV: Comparison with dual energy X-ray absorptiometry and air displacement plethysmography. J. Hum. Nutr. Diet. 2018, 31, 276–285. [Google Scholar] [CrossRef]
- de Lima, L.R.A.; Back, I.C.; Nunes, E.A.; Silva, D.A.S.; Petroski, E.L. Aerobic fitness and physical activity are inversely associated with body fat, dyslipidemia and inflammatory mediators in children and adolescents living with HIV. J. Sports Sci. 2019, 37, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, C.Z.; Patin, R.V.; Machado, D.M.; Szejnfeld, V.L.; Succi, R.C.; Oliveira, F.L. Body composition in prepubertal, HIV-infected children: A comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Nutr. Clin. Pr. 2013, 28, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.; Yin, M.T.; Strehlau, R.; Burke, M.; Patel, F.; Kuhn, L.; Coovadia, A.; Norris, S.A.; Arpadi, S.M. Deficits in Bone Architecture and Strength in Children Living With HIV on Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2020, 84, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.B.D.; Nogueira, T.F.; Vargas, D.M. Height adjustment reduces occurrence of low bone mineral density in children and adolescents with HIV. Rev. Assoc. Med. Bras. 2021, 67, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Rukuni, R.; Rehman, A.M.; Mukwasi-Kahari, C.; Madanhire, T.; Kowo-Nyakoko, F.; McHugh, G.; Filteau, S.; Chipanga, J.; Simms, V.; Mujuru, H.; et al. Effect of HIV infection on growth and bone density in peripubertal children in the era of antiretroviral therapy: A cross-sectional study in Zimbabwe. Lancet Child Adolesc. Health 2021, 5, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Rego, C.V.; Potterton, J.L. Motor function, muscle strength and health-related quality of life of children perinatally infected with HIV. S. Afr. J. Physiother. 2022, 78, 1812. [Google Scholar] [CrossRef]
- Bar-Or, O.; Rowland, T.W. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas: Manejo da Infecção Pelo HIV em Crianças e Adolescentes Módulo 1-Diagnóstico, Manejo e Acompanhamento de Crianças Expostas ao HIV; Ministério da Saúde: Brasília, Brasil, 2023; p. 57. [Google Scholar]
- Nalwanga, D.; Musiime, V. Children living with HIV: A narrative review of recent advances in pediatric HIV research and their implications for clinical practice. Ther. Adv. Infect. Dis. 2022, 9, 20499361221077544. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines: Updated Recommendations on HIV Prevention, Infant Diagnosis, Antiretroviral Initiation and Monitoring; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Consolidated Guidelines on HIV, Viral Hepatitis and STI Prevention, Diagnosis, Treatment and Care for Key Populations; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Miller, T.L.; Awnetwant, E.L.; Evans, S.; Morris, V.M.; Vazquez, I.M.; McIntosh, K. Gastrostomy tube supplementation for HIV-infected children. Pediatrics 1995, 96, 696–702. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Henderson, R.A.; Perman, J.A.; Hutton, N.; Livingston, R.A.; Yolken, R.H. Longitudinal assessment of growth in children born to mothers with human-immunodeficiency-virus infection. Arch. Pediatr. Adolesc. Med. 1995, 149, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.L.; Orav, E.J.; Colan, S.D.; Lipshultz, S.E. Nutritional status and cardiac mass and function in children infected with the human immunodeficiency virus. Am. J. Clin. Nutr. 1997, 66, 660–664. [Google Scholar] [CrossRef]
- Alves, C.A.S.; Augustemak De Lima, L.R.; Franco Moreno, Y.M.; Santos Silva, D.A. Anthropometric indicators as discriminators of high body fat in children and adolescents with HIV: Comparison with reference methods. Minerva Pediatr. 2023, 75, 828–835. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Tanner, J.M. Growth at Adolescence; Blackwell Scientific Publications: Oxford, UK, 1962. [Google Scholar]
- Selik, R.M.; Mokotoff, E.D.; Branson, B.; Owen, S.M.; Whitmore, S.; Hall, H.I. Revised surveillance case definition for HIV infection—United States, 2014. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2014, 63, 1–10. [Google Scholar]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- da Silva, R.C.; Malina, R.M. Level of physical activity in adolescents from Niterói, Rio de Janeiro, Brazil. Cad. Saúde Pública 2000, 16, 1091–1097. [Google Scholar] [PubMed]
- Kowalski, K.C.; Crocker, P.R.E.; Donen, R.M. The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. Coll. Kinesiol. Univ. Sask. 2004, 87, 1–38. [Google Scholar]
- Chinapaw, M.J.M.; Mokkink, L.B.; van Poppel, M.N.M.; van Mechelen, W.; Terwee, C.B. Physical Activity Questionnaires for Youth. Sports Med. 2010, 40, 539–563. [Google Scholar] [CrossRef] [PubMed]
- de Castro, J.A.C.; de Lima, L.R.A.; Larouche, R.; Tremblay, M.S.; Silva, D.A.S. Physical Activity Questionnaire for Children: Validity and Cut-Points to Identify Sufficient Levels of Moderate- to Vigorous-Intensity Physical Activity Among Children and Adolescents Diagnosed With HIV. Pediatr. Exerc. Sci. 2023, 36, 30–36. [Google Scholar] [CrossRef]
- Cole, T.J. The development of growth references and growth charts. Ann. Hum. Biol. 2012, 39, 382–394. [Google Scholar] [CrossRef]
- World Health Organization, W. Growth Reference Data for 5–19 Years: BMI-for-Age (5–19 Years); World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 26 September 2023).
- de Lima, L.R.A.; Silva, D.A.S.; do Nascimento Salvador, P.C.; Alves Junior, C.A.S.; Martins, P.C.; de Castro, J.A.C.; Guglielmo, L.G.A.; Petroski, E.L. Prediction of peak VO2 in Children and Adolescents With HIV From an Incremental Cycle Ergometer Test. Res. Q. Exerc. Sport 2019, 90, 163–171. [Google Scholar] [CrossRef]
- Stephens, T.; Craig, C.; Ferris, B. The Canadian Physical Activity, Fitness, and Lifestyle Approach (CPAFLA). Can. J. Public Health 2003, 7, 39. [Google Scholar]
- Thomas, E.; Petrigna, L.; Tabacchi, G.; Teixeira, E.; Pajaujiene, S.; Sturm, D.J.; Sahin, F.N.; Gómez-López, M.; Pausic, J.; Paoli, A.; et al. Percentile values of the standing broad jump in children and adolescents aged 6–18 years old. Eur. J. Transl. Myol. 2020, 30, 9050. [Google Scholar] [CrossRef]
- Welk, G.J.; Meredith, M.D. Fitnessgram/Activitygram Reference Guide, 3rd. ed.; Cooper Institute: Dallas, TX, USA, 2008. [Google Scholar]
- Meredith, M.D.; Welk, G. Fitnessgram and Activitygram Test Administration Manual-Updated, 4th ed.; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Kolimechkov, S.; Petrov, L.; Alexandrova, A. Alpha-fit test battery norms for children and adolescents from 5 to 18 years of age obtained by a linear interpolation of existing European physical fitness references. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 1–14. [Google Scholar]
- Canadian Society for Exercise Physiology. CSEP-PATH Physical Activity Training for Health; Canadian Society for Exercise Physiology: Ottawa, ON, Canada, 2019. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 2015, 5, 754. [Google Scholar] [CrossRef]
- Clasey, J.L.; Easley, E.A.; Murphy, M.O.; Kiessling, S.G.; Stromberg, A.; Schadler, A.; Huang, H.; Bauer, J.A. Body mass index percentiles versus body composition assessments: Challenges for disease risk classifications in children. Front. Pediatr. 2023, 11, 1112920. [Google Scholar] [CrossRef]
- Palchetti, C.Z.; Szejnfeld, V.L.; Succi, R.C.d.M.; Patin, R.V.; Teixeira, P.F.; Machado, D.M.; Oliveira, F.L.C. Impaired bone mineral accrual in prepubertal HIV-infected children: A cohort study. Braz. J. Infect. Dis. 2015, 19, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kosalaraksa, P.; Kurniati, N.; Prasitsuebsai, W.; Sophonphan, J.; Sohn, A.H.; Ananworanich, J.; Puthanakit, T.; et al. Adverse bone health and abnormal bone turnover among perinatally HIV-infected Asian adolescents with virological suppression. HIV Med. 2017, 18, 235–244. [Google Scholar] [CrossRef]
- Natukunda, E.; Szubert, A.; Otike, C.; Namyalo, I.; Nambi, E.; Bamford, A.; Doerholt, K.; Gibb, D.M.; Musiime, V.; Musoke, P. Bone mineral density among children living with HIV failing first-line anti-retroviral therapy in Uganda: A sub-study of the CHAPAS-4 trial. PLoS ONE 2023, 18, e0288877. [Google Scholar] [CrossRef]
- Rowe, P.; Koller, A.; Sharma, S. Physiology, Bone Remodeling. In StatPearls; StatPearls Publishing LLC.: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Gregson, C.L.; Hartley, A.; Majonga, E.; McHugh, G.; Crabtree, N.; Rukuni, R.; Bandason, T.; Mukwasi-Kahari, C.; Ward, K.A.; Mujuru, H.; et al. Older age at initiation of antiretroviral therapy predicts low bone mineral density in children with perinatally-infected HIV in Zimbabwe. Bone 2019, 125, 96–102. [Google Scholar] [CrossRef]
- Ervin, R.B.; Fryar, C.D.; Wang, C.Y.; Miller, I.M.; Ogden, C.L. Strength and body weight in US children and adolescents. Pediatrics 2014, 134, e782–e789. [Google Scholar] [CrossRef] [PubMed]
- Alaniz-Arcos, J.L.; Ortiz-Cornejo, M.E.; Larios-Tinoco, J.O.; Klünder-Klünder, M.; Vidal-Mitzi, K.; Gutiérrez-Camacho, C. Differences in the absolute muscle strength and power of children and adolescents with overweight or obesity: A systematic review. BMC Pediatr. 2023, 23, 474. [Google Scholar] [CrossRef] [PubMed]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.N.M.; Roseboom, T.J.; Gemke, R. Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies. Sports Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef]
- Manzano-Carrasco, S.; Garcia-Unanue, J.; Haapala, E.A.; Felipe, J.L.; Gallardo, L.; Lopez-Fernandez, J. Relationships of BMI, muscle-to-fat ratio, and handgrip strength-to-BMI ratio to physical fitness in Spanish children and adolescents. Eur. J. Pediatr. 2023, 182, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.R.A.D.; Back, I.d.C.; Beck, C.C.; Caramelli, B. Exercise Improves Cardiovascular Risk Factors, Fitness, and Quality of Life in Hiv+ Children and Adolescents: Pilot Study. Int. J. Cardiovasc. Sci. 2017, 30, 171–176. [Google Scholar] [CrossRef]
- Pate, R.; Oria, M.; Pillsbury, L. Health-related fitness measures for youth: Flexibility. In Fitness Measures and Health Outcomes in Youth; National Academies Press (USA): Cambridge, MA, USA, 2012. [Google Scholar]
Variables | Study I | Study II | Total |
---|---|---|---|
(n = 65) (75.6%) | (n = 21) (24.4%) | (n = 86) | |
Mean (SD) | Mean (SD) | Mean (SD) | |
Age (years) | 11.71 (2.08) | 10.62 (2.42) | 11.44 (2.20) |
Height (cm) | 147.34 (13.08) | 143.18 (13.28) | 146.32 (13.17) |
Body mass (kg) | 39.85 (11.37) | 40.05 (13.75) | 39.90 (11.91) |
BMI (kg/m2) | 17.94 (2.66) | 18.97 (4.05) | 18.19 (3.06) |
Fat-free mass (kg) | 32.95 (9.31) | 30.90 (8.41) | 32.44 (9.09) |
Fat mass (kg) | 6.91 (4.34) | 9.19 (6.99) | 7.47 (5.17) |
Fat mass (%) | 16.73 (7.18) | 20.70 (9.84) * | 17.71 (8.05) |
BMC (g) | 1182.93 (445.69) * | 938.02 (337.55) | 1109.46 (428.94) |
BMD (g/cm2) | 0.84 (0.12) * | 0.74 (0.14) | 0.81 (0.13) |
VO2peak (mL∙kg−1∙min−1) | 39.11 (6.86) * | 33.86 (8.87) | 37.97 (7.60) |
Peak heart rate (bpm) | 168.70 (14.57) | 176.89 (12.66) * | 170.59 (14.50) |
Handgrip strength (kg) | 39.92 (19.14) | 31.57 (14.19) | 37.88 (18.34) |
Stand broad jump (cm) | NI | 116.92 (31.07) | - |
Abdominal endurance (reps/min) | 17.65 (14.68) | 27.19 (10.70) | 19.98 (14.36) |
Modified push-ups (reps/min) | NI | 24.62 (10.05) | - |
Sit-to-reach flexibility (cm) | NI | 23.02 (5.20) | - |
PAQ-c score | 2.44 (0.77) | 2.57 (0.79) | 2.47 (0.77) |
CD4 count (cells/uL) | 857.63 (367.73) | 1020.67 (410.28) | 897.44 (382.61) |
CD8 count (cells/uL) | 1185.11 (547.86) | 1039.33 (427.94) | 1149.51 (522.54) |
CD4/CD8 ratio | 0.84 (0.42) | 1.06 (0.41) * | 0.89 (0.43) |
Time of ART (years) | - | 7.81 (4.56) | - |
Sex | n (%) | n (%) | n (%) |
Females | 35 (53.8) | 11 (52.4) | 46 (53.5) |
Males | 30 (46.2) | 10 (47.6) | 40 (46.5) |
BMI (WHO grow charts) | |||
Thinness | 2 (3.1) | 0 (0.0) | 2 (2.3) |
Eutrophic | 55 (84.6) | 16 (76.2) | 71 (82.6) |
Overweight | 8 (12.3) | 4 (19.0) | 12 (13.9) |
Obesity | 0 (0.0) | 1 (4.8) | 1 (1.2) |
Physical activity level | |||
Met PA guidelines | 36 (55.4) | 16 (76.2) | 52 (60.5) |
Did not meet PA guidelines | 29 (44.6) | 5 (23.8) | 34 (39.5) |
Viral load (copies/mL) | |||
TND or LDL (≤20 or ≤40) | 44 (67.7%) | 20 (95.2%) | 64 (74.4%) |
41–1000 | 9 (13.8%) + | 1 (4.8%) | 10 (11.6%) |
>1000 | 12 (18.5%) + | 0 (0.0%) | 12 (14.0%) |
CD4 count (cells/uL) | |||
<200 | 2 (3.1%) | 0 (0.0%) | 2 (2.3%) |
200–499 | 7 (10.8%) | 2 (9.5%) | 9 (10.5%) |
≥500 | 56 (86.2%) | 19 (90.5%) | 75 (87.2%) |
ART use | |||
ART with PI | 39 (60.0%) + | 6 (28.6%) | 45 (52.3%) |
ART without PI | 15 (23.1%) | 15 (71.4%) | 30 (34.9%) |
Without ART | 11 (16.9%) + | 0 (0.0%) | 11 (12.8%) |
Characteristic | BMI Eutrophic (n = 71) (85.5%) | BMI Overweight (n = 12) (14.5%) | p-Value a |
---|---|---|---|
Age (years) | 11.44 (2.20) | 11.50 (2.54) | 0.875 |
Height (cm) | 145.39 (13.30) | 152.32 (12.58) | 0.096 |
Body mass (kg) | 37.70 (10.11) | 52.76 (12.01) | <0.01 |
BMI (kg/m2) | 17.43 (2.13) | 22.39 (2.20) | <0.01 |
Fat-free mass (kg) | 31.49 (8.49) | 38.58 (10.93) | 0.012 |
Fat mass (kg) | 6.19 (3.15) | 14.18 (5.98) | <0.01 |
Fat mass (%) | 16.09 (5.92) | 26.97 (8.76) | <0.01 |
BMC (g) | 1072.93 (393.18) | 1358.91 (620.71) | 0.066 |
BMD (g/cm2) | 0.80 (0.13) | 0.86 (0.17) | 0.202 |
VO2peak (mL.kg−1∙min−1) | 38.74 (7.09) | 32.55 (6.38) | 0.001 |
Peak heart rate (bpm) | 170.05 (14.87) | 175.27 (12.72) | 0.276 |
Handgrip strength (kg) | 36.65 (17.85) | 47.00 (21.19) | 0.085 |
Stand broad jump (cm) | 121.87 (33.11) | 99.75 (19.87) | 0.248 |
Abdominal endurance (reps/min) | 20.31 (15.13) | 18.58 (11.35) | 0.928 |
Modified push-ups (reps/min) | 27.25 (8.83) | 14.25 (10.15) | 0.019 |
Sit-to-reach flexibility (cm) | 23.71 (5.03) | 22.50 (4.88) | 0.670 |
PAQ-c score | 2.48 (0.77) | 2.20 (0.74) | 0.292 |
CD4 count (cells/uL) | 899.89 (387.56) | 827.50 (381.33) | 0.400 |
CD8 count (cells/uL) | 1151.82 (542.65) | 1115.08 (456.62) | 0.959 |
CD4/CD8 ratio | 0.89 (0.41) | 0.89 (0.57) | 0.971 |
Time of ART (years) | 7.69 (4.59) | 7.50 (5.45) | 0.944 |
Physical Fitness Component | BMI Eutrophic n (%) | BMI Overweight n (%) | Total n | X2 | df |
---|---|---|---|---|---|
Fat mass (%) | |||||
Normal | 67 (95.7) | 2 (16.7) | 69 | 42.24 | 1 |
High | 3 (4.3) | 10 (83.3) | 13 | ||
BMD (g/cm2) | |||||
Normal | 47 (82.5) | 0 (0.0) | 47 | 0.58 | 1 |
Low | 10 (17.5) | 8 (100.0) | 18 | ||
VO2peak (mL∙kg−1∙min−1) | |||||
Adequate | 40 (58.8) | 3 (25.0) | 43 | 3.43 | 1 |
Low | 28 (41.2) | 9 (75.0) | 37 | ||
Handgrip strength (kg) | |||||
Adequate | 18 (25.4) | 7 (58.3) | 25 | 3.85 | 1 |
Low | 53 (74.6) | 5 (41.7) | 58 | ||
Stand broad jump (cm) | |||||
Adequate | 5 (31.2) | 0 (0.0) | 5 | 0.42 | 1 |
Low | 11 (68.8) | 4 (100.0) | 15 | ||
Abdominal endurance (reps/min) | |||||
Adequate | 43 (60.6) | 7 (58.3) | 50 | <0.01 | 1 |
Low | 28 (39.4) | 5 (41.7) | 33 | ||
Modified push-ups (reps/min) | |||||
Adequate | 15 (93.8) | 3 (75.0) | 19 | 0.03 | 1 |
Low | 1 (6.2) | 1 (25.0) | 2 | ||
Sit-to-reach flexibility (cm) | |||||
Adequate | 7 (43.8) | 1 (25.0) | 8 | 0.01 | 1 |
Low | 9 (56.2) | 3 (75.0) | 13 |
BMI | FFM | FM% | BMC | BMD | VO2peak | HGS | SBJ | AbdE | MPU | |
---|---|---|---|---|---|---|---|---|---|---|
BMI | 1.000 | |||||||||
FFM | 0.758 ** | 1.000 | ||||||||
FM% | 0.827 *** | 0.385 | 1.000 | |||||||
BMC | 0.771 *** | 0.924 *** | 0.443 | 1.000 | ||||||
BMD | 0.728 ** | 0.908 *** | 0.360 | 0.981 *** | 1.000 | |||||
VO2peak | −0.424 | −0.348 | −0.595 * | −0.453 | −0.408 | 1.000 | ||||
HGS | 0.576 ** | 0.711 ** | 0.237 | 0.760 ** | 0.785 *** | −0.190 | 1.000 | |||
SBJ | −0.104 | 0.283 | −0.474 * | 0.205 | 0.308 | 0.110 | 0.410 | 1.000 | ||
AbdE | −0.128 | 0.085 | −0.510 * | −0.025 | 0.048 | 0.726 ** | 0.314 | 0.407 | 1.000 | |
MPU | −0.304 | −0.054 | −0.595 ** | −0.162 | −0.092 | 0.513 * | 0.215 | 0.487 * | 0.824 *** | 1.000 |
STRF | −0.308 | 0.004 | −0.388 | −0.152 | −0.120 | 0.240 | 0.033 | 0.467 * | 0.183 | 0.018 |
β (95%CI) | β p-Value | β st | R2 Adjusted | p-Value | RMSE | F | VIF | |
---|---|---|---|---|---|---|---|---|
Fat−free mass (kg) | ||||||||
Simple regression | 1.98 (1.51; 2.46) | <0.001 | 0.67 | 0.44 | <0.001 | 6.78 | 68.28 | |
Multiple regression a | 1.34 (0.93; 1.75) | <0.001 | 0.45 | 0.71 | <0.001 | 4.90 | 52.44 | 1.44 |
Fat mass (%) | ||||||||
Simple regression | 1.73 (1.30; 2.16) | <0.001 | 0.66 | 0.43 | <0.001 | 6.07 | 64.46 | |
Multiple regression a | 1.81 (1.36; 2.25) | <0.001 | 0.69 | 0.57 | <0.001 | 5.25 | 29.29 | 1.44 |
Bone mineral content (g) | ||||||||
Simple regression | 88.40 (61.27; 115.54) | <0.001 | 0.63 | 0.37 | <0.001 | 339.30 | 42.26 | |
Multiple regression a | 58.63 (36.35; 80.90) | <0.001 | 0.42 | 0.70 | <0.001 | 236.50 | 40.47 | 1.42 |
Bone mineral density (g/cm2) | ||||||||
Simple regression | 0.02 (0.02; 0.03) | <0.001 | 0.59 | 0.33 | <0.001 | 0.11 | 34.44 | |
Multiple regression a | 0.02 (0.01; 0.02) | <0.001 | 0.38 | 0.72 | <0.001 | 0.07 | 45.53 | 1.42 |
VO2peak (mL∙kg−1∙min−1) | ||||||||
Simple regression | −0.89 (−1.40; −0.38) | 0.001 | −0.36 | 0.12 | 0.001 | 7.13 | 12.18 | |
Multiple regression a | −0.53 (−1.06; −0.01) | 0.047 | −0.03 | 0.33 | <0.001 | 6.20 | 11.30 | 1.43 |
Handgrip strength (kg) | ||||||||
Simple regression | 2.99 (1.87; 4.12) | <0.001 | 0.01 | 0.24 | <0.001 | 15.97 | 28.01 | |
Multiple regression a | 1.76 (0.70; 2.83) | 0.001 | 0.29 | 0.52 | <0.001 | 12.67 | 24.24 | 1.43 |
Stand broad jump (cm) | ||||||||
Simple regression | −0.70 (−4.37; 2.97) | 0.694 | −0.07 | −0.04 | 0.694 | 31.74 | 0.16 | |
Multiple regression a | −1.89 (−5.37; 1.59) | 0.267 | −0.19 | 0.35 | 0.015 | 25.01 | 4.62 | 1.55 |
Abdominal endurance (reps/min) | ||||||||
Simple regression | 0.67 (−0.33; 1.68) | 0.188 | 0.01 | 0.01 | 0.188 | 14.30 | 1.76 | |
Multiple regression a | −0.22 (−1.29; 0.86) | 0.688 | −0.05 | 0.21 | <0.001 | 12.80 | 6.50 | 1.43 |
Modified push-ups (reps/min) | ||||||||
Simple regression | −0.79 (−1.92; 0.33) | 0.158 | −0.24 | 0.05 | 0.158 | 9.77 | 2.16 | |
Multiple regression a | −0.96 (−2.22; 0.31) | 0.129 | −0.29 | 0.18 | 0.099 | 9.11 | 2.44 | 1.55 |
Sit-to-reach flexibility (cm) | ||||||||
Simple regression | 0.30 (−0.90; 0.29) | 0.302 | −0.18 | 0.01 | 0.302 | 5.18 | 1.13 | |
Multiple regression a | −0.54 (−1.26; 0.18) | 0.133 | −0.32 | 0.01 | 0.411 | 5.19 | 1.01 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, J.A.C.; de Lima, L.R.A.; Silva, D.A.S. Relationship between Body Mass Index and Health-Related Physical Fitness Components in HIV-Diagnosed Children and Adolescents. Children 2024, 11, 938. https://doi.org/10.3390/children11080938
de Castro JAC, de Lima LRA, Silva DAS. Relationship between Body Mass Index and Health-Related Physical Fitness Components in HIV-Diagnosed Children and Adolescents. Children. 2024; 11(8):938. https://doi.org/10.3390/children11080938
Chicago/Turabian Stylede Castro, João Antônio Chula, Luiz Rodrigo Augustemak de Lima, and Diego Augusto Santos Silva. 2024. "Relationship between Body Mass Index and Health-Related Physical Fitness Components in HIV-Diagnosed Children and Adolescents" Children 11, no. 8: 938. https://doi.org/10.3390/children11080938
APA Stylede Castro, J. A. C., de Lima, L. R. A., & Silva, D. A. S. (2024). Relationship between Body Mass Index and Health-Related Physical Fitness Components in HIV-Diagnosed Children and Adolescents. Children, 11(8), 938. https://doi.org/10.3390/children11080938