The Predictive Value of Amplitude-Integrated Electroencephalography for the Neurodevelopmental Outcomes of Preterm Newborns at 12 Months Corrected Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. aEEG Monitoring
2.3. aEEG Analysis
2.4. Assessment of Neurodevelopment
2.5. Collection of Clinical Data
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Predictive Value of the Burdjalov Total Scores
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aEEG | amplitude-integrated electroencephalography |
BPD | bronchopulmonary dysplasia |
NEC | necrotizing enterocolitis |
NICU | Neonatal Intensive Care Unit |
PDA | patent ductus arteriosus |
PNA | postnatal age |
PVL | periventricular leukomalacia |
VLBW | very low birth weight |
References
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.E.; Hintz, S.R. Early neurodevelopmental outcomes of extremely preterm infants. Semin. Perinatol. 2016, 40, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Survival of the Tiniest|NICHD—Eunice Kennedy Shriver National Institute of Child Health and Human Development. Available online: https://www.nichd.nih.gov/about/org/od/directors_corner/prev_updates/preterm-births-Feb2022 (accessed on 2 February 2022).
- Natalucci, G.; Hagmann, C.; Bernet, V.; Bucher, H.U.; Rousson, V.; Latal, B. Impact of perinatal factors on continuous early monitoring of brain electrocortical activity in very preterm newborns by amplitude-integrated EEG. Pediatr. Res. 2014, 75, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Soubasi, V.; Mitsakis, K.; Nakas, C.T.; Petridou, S.; Sarafidis, K.; Griva, M.; Agakidou, E.; Drossou, V. The influence of extrauterine life on the aEEG maturation in normal preterm infants. Early Hum. Dev. 2009, 85, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Štuikienė, K.; Griesmaier, E.; Aldakauskienė, I.; Vidmantė, R.; Šmigelskas, K.; Tamelienė, R. Trends in Amplitude-Integrated Electroencephalography in the Smallest Preterm Neonates. Children 2024, 11, 566. [Google Scholar] [CrossRef] [PubMed]
- Sisman, J.; Campbell, D.E.; Brion, L.P. Amplitude-Integrated EEG in Preterm Infants: Maturation of Background Pattern and Amplitude Voltage with Postmenstrual Age and Gestational Age. J. Perinatol. 2005, 25, 391–396. [Google Scholar] [CrossRef]
- Pickler, R.H.; McGrath, J.M.; Reyna, B.A.; McCain, N.; Lewis, M.; Cone, S.; Wetzel, P.; Best, A. A Model of Neurodevelopmental Risk and Protection for Preterm Infants. J. Perinat. Neonatal Nurs. 2010, 24, 356–365. [Google Scholar] [CrossRef]
- Eryigit Madzwamuse, S.; Baumann, N.; Jaekel, J.; Bartmann, P.; Wolke, D. Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Child Psychol. Psychiatry 2015, 56, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Wallois, F.; Routier, L.; Bourel-Ponchel, E. Impact of prematurity on neurodevelopment. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–375. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780444641502000265 (accessed on 18 September 2020).
- Orman, A.; Hakan, N.; Çağlar, A.; Aydin, M.; Department of Pediatrics-Neonatology, Firat University School of Medicine, Elazig, Turkey; Cerebral Function Monitoring in Neonatal Intensive Care Units. Neonatal Cerebral Function Monitoring. Int. J. Neurol. Res. 2018, 4, 464–471. [Google Scholar] [CrossRef]
- Variane, G.F.T.; Magalhães, M.; Gasperine, R.; Alves, H.C.B.R.; Scoppetta, T.L.P.D.; Figueredo, R.D.J.G.; Rodrigues, F.P.M.; Netto, A.; Mimica, M.J.; Gallacci, C.B. Early amplitude-integrated electroencephalography for monitoring neonates at high risk for brain injury. J. Pediatr. 2017, 93, 460–466. [Google Scholar] [CrossRef]
- Magalhães, L.V.S.; Winckler, M.I.B.; Bragatti, J.A.; Procianoy, R.S.; Silveira, R.C. Early Amplitude-Integrated Electroencephalogram as a Predictor of Brain Injury in Newborns With Very Low Birth Weight: A Cohort Study. J. Child Neurol. 2018, 33, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Paul, R.A.; Mitchell, T.J.; Wong, C.; Inder, T.E.; Mathur, A.M. Normative amplitude-integrated EEG measures in preterm infants. J. Perinatol. 2015, 35, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Soubasi, V.; Mitsakis, K.; Sarafidis, K.; Griva, M.; Nakas, C.T.; Drossou, V. Early abnormal amplitude-integrated electroencephalography (aEEG) is associated with adverse short-term outcome in premature infants. Eur. J. Paediatr. Neurol. 2012, 16, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Bruns, N.; Dransfeld, F.; Hüning, B.; Hobrecht, J.; Storbeck, T.; Weiss, C.; Felderhoff-Müser, U.; Müller, H. Comparison of two common aEEG classifications for the prediction of neurodevelopmental outcome in preterm infants. Eur. J. Pediatr. 2017, 176, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Griesmaier, E.; Enot, D.P.; Bachmann, M.; Neubauer, V.; Hellström-Westas, L.; Kiechl-Kohlendorfer, U.; Keller, M. Systematic characterization of amplitude-integrated EEG signals for monitoring the preterm brain. Pediatr. Res. 2013, 73, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Scoppa, A.; Casani, A.; Cocca, F.; Coletta, C.; De Luca, M.G.; Di Manso, G.; Grappone, L.; Pozzi, N.; Orfeo, L. aEEG in preterm infants. J. Matern.-Fetal Neonatal Med. 2012, 25 (Suppl. 4), 131–132. [Google Scholar] [CrossRef] [PubMed]
- Griesmaier, E.; Burger, C.; Ralser, E.; Neubauer, V.; Kiechl-Kohlendorfer, U. Amplitude-integrated electroencephalography shows mild delays in electrocortical activity in preterm infants born small for gestational age. Acta Paediatr. 2015, 104, e283–e288. [Google Scholar] [CrossRef] [PubMed]
- Klebermass, K.; Olischar, M.; Waldhoer, T.; Fuiko, R.; Pollak, A.; Weninger, M. Amplitude-Integrated EEG Pattern Predicts Further Outcome in Preterm Infants. Pediatr. Res. 2011, 70, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ralser, E.; Neubauer, V.; Pupp-Peglow, U.; Kiechl-Kohlendorfer, U.; Griesmaier, E. Amplitude-integrated electroencephalography can predict neurodevelopmental outcome at 12 months of corrected age in very preterm infants. Acta Paediatr. 2017, 106, 594–600. [Google Scholar] [CrossRef]
- Song, J.; Xu, F.; Wang, L.; Gao, L.; Guo, J.; Xia, L.; Zhang, Y.; Zhou, W.; Wang, X.; Zhu, C. Early amplitude-integrated electroencephalography predicts brain injury and neurological outcome in very preterm infants. Sci. Rep. 2015, 5, 13810. [Google Scholar] [CrossRef]
- Burdjalov, V.F.; Baumgart, S.; Spitzer, A.R. Cerebral Function Monitoring: A New Scoring System for the Evaluation of Brain Maturation in Neonates. Pediatrics 2003, 112, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Olischar, M.; Klebermass, K.; Kuhle, S.; Hulek, M.; Messerschmidt, A.; Weninger, M. Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Child’s Nerv. Syst. 2004, 20, 41–45. [Google Scholar] [CrossRef]
- Olischar, M.; Davidson, A.J.; Lee, K.J.; Hunt, R.W. Effects of Morphine and Midazolam on Sleep-Wake Cycling in Amplitude-Integrated Electroencephalography in Post-Surgical Neonates ≥32 Weeks of Gestational Age. Neonatology 2012, 101, 293–300. [Google Scholar] [CrossRef]
- Peled, M.; Abuhatzira, A.; Novack, L.; Meledin, I.; Shany, E. Effect of morphine on cerebral activity of extremely premature infants. Early Hum. Dev. 2020, 151, 105241. [Google Scholar] [CrossRef] [PubMed]
- Ter Horst, H.; Van Olffen, M.; Remmelts, H.; De Vries, H.; Bos, A. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatr. 2010, 99, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, X.; Lin, S.; Zhu, J.; Liang, L.; Zhu, M.; Yang, Z.; Chen, S.; Lin, Z.; Liu, Y. Early aEEG can predict neurodevelopmental outcomes at 12 to 18 month of age in VLBWI with necrotizing enterocolitis: A cohort study. BMC Pediatr. 2021, 21, 582. [Google Scholar] [CrossRef] [PubMed]
- Bayley, N. Bayley Scales of Infant Development, 2nd ed.; Psychological Corporation: San Antonio, TX, USA, 1993. [Google Scholar]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L. Neonatal Necrotizing Enterocolitis. Ther. Decis. Based Upon Clin. Staging. Ann Surg 1978, 187, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.; Mathai, A.; Parikh, S.; Sekhar, G.C.; Thomas, R. Understanding and using sensitivity, speciÞcity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Welch, C.; Helderman, J.; Williamson, E.; O’Shea, T.M. Brain wave maturation and neurodevelopmental outcome in extremely low gestational age neonates. J. Perinatol. 2013, 33, 867–871. [Google Scholar] [CrossRef]
- Kidokoro, H.; Kubota, T.; Hayashi, N.; Hayakawa, M.; Takemoto, K.; Kato, Y.; Okumura, A. Absent Cyclicity on aEEG within the First 24 h is Associated with Brain Damage in Preterm Infants. Neuropediatrics 2010, 41, 241–245. [Google Scholar] [CrossRef] [PubMed]
- El-Dib, M.; Massaro, A.N.; Glass, P.; Aly, H. Sleep wake cycling and neurodevelopmental outcome in very low birth weight infants. J. Matern.-Fetal Neonatal Med. 2014, 27, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Hüning, B.; Storbeck, T.; Bruns, N.; Dransfeld, F.; Hobrecht, J.; Karpienski, J.; Sirin, S.; Schweiger, B.; Weiss, C.; Felderhoff-Müser, U.; et al. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants. Eur. J. Pediatr. 2018, 177, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Burger, C.; Hammerl, M.; Neubauer, V.; Pupp Peglow, U.; Kiechl-Kohlendorfer, U.; Griesmaier, E. Early preterm infants with abnormal psychomotor neurodevelopmental outcome at age two show alterations in amplitude-integrated electroencephalography signals. Early Hum. Dev. 2020, 141, 104935. [Google Scholar] [CrossRef] [PubMed]
- El Ters, N.M.; Vesoulis, Z.A.; Liao, S.M.; Smyser, C.D.; Mathur, A.M. Term-equivalent functional brain maturational measures predict neurodevelopmental outcomes in premature infants. Early Hum. Dev. 2018, 119, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.; Goshen, S.; Meledin, I.; Golan, A.; Goldstein, E.; Shany, E. Predictive Value of Early Amplitude Integrated EEG in Extremely Premature Infants. J. Child Neurol. 2020, 35, 737–743. [Google Scholar] [CrossRef]
- Wang, X.; Trabatti, C.; Weeke, L.; Dudink, J.; de Veye, H.S.; Eijsermans, R.M.; Koopman-Esseboom, C.; Benders, M.J.; Tataranno, M.L. Early qualitative and quantitative amplitude-integrated electroencephalogram and raw electroencephalogram for predicting long-term neurodevelopmental outcomes in extremely preterm infants in the Netherlands: A 10-year cohort study. Lancet Digit. Health 2023, 5, e895–e904. [Google Scholar] [CrossRef]
- Feldmann, M.; Rousson, V.; Nguyen, T.D.; Bernet, V.; Hagmann, C.; Latal, B.; Natalucci, G. Cognitive outcome of early school-aged children born very preterm is not predicted by early short-term amplitude-integrated electroencephalography. Acta Paediatr. 2020, 109, 78–84. [Google Scholar] [CrossRef]
Score | Continuity | Cycling | Amplitude of Lower Border | Bandwidth Span and Amplitude of Lower Border |
---|---|---|---|---|
0 | Discontinuous | None | Severely depressed (<3 μV) | Very depressed: low span (≤15 μV) and low voltage (5 μV) |
1 | Somewhat continuous | Waves first appear | Somewhat depressed (3–5 μV) | Very immature: high (>20 μV) or moderate (15–20 μV) span and low voltage (5 μV) |
2 | Continuous | Not definite, somewhat cycling | Elevated (>5 μV) | Immature: high span (>20 μV) and high voltage (>5 μV) |
3 | Definite cycling, butinterrupted | Maturing: moderate span (15–20 μV) and high voltage (>5 μV) | ||
4 | Definite cycling, noninterrupted | Mature: low span (<15 μV) and high voltage (>5 μV) | ||
5 | Regular and mature cycling |
Variable | Normal Cognitive Development n = 86 | Delayed Cognitive Development n = 21 | Normal Motor Development n = 46 | Delayed Motor Development n = 62 |
---|---|---|---|---|
Smoking in pregnancy, n (%) | 9 (10.5) | 5 (23.8) | 7 (15.2) | 7 (11.3) |
Cesarean section, n (%) | 41 (47.7) | 10 (47.6) | 20 (43.5) | 31 (50) |
Antenatal steroids, n (%) | 67 (77.9) | 16 (76.2) | 35 (76.1) | 49 (79) |
PROM, n (%) | 35 (40.7) | 9 (42.9) | 16 (34.8) | 29 (46.8) |
Twins, n (%) | 36 (41.9) | 9 (42.9) | 20 (43.5) | 25 (40.3) |
Gestational age (weeks), Median (IQR) | 29 (26.7–30) | 28 (27–30) | 29 (26.8–30) | 28 (27–30) |
Birth weight (grams), Median (IQR) | 1139 (897–1504) | 1116 (1026–1473) | 1323 (903–1520) | 1083 (894–1398) |
Male, n (%) | 44 (51.2) | 13 (61.9) | 26 (56.5) | 31 (50) |
APGAR score, Median (IQR): | ||||
1-min | 7 (6–8) | 8 (6–8) | 8 (7–8) | 7 (6–8) |
5-min | 8 (7.5–9) | 8 (7–9) | 9 (8–9) | 8 (7–9) |
Surfactant treatment, n (%) | 43 (50) | 12 (57.1) | 23 (50) | 33 (53.2) |
Morbidity: | ||||
Grade III IVH, n (%) | 2 (2.3) | 2 (9.5) | 1 (2.2) | 3 (4.8) |
Grade IV IVH, n (%) | 3 (3.5) | 1 (4.8) | 0 (0) | 4 (6.5) |
Cystic PVL, n (%) | 1 (1.2) | 2 (9.5) | 1 (2.2) | 2 (3.2) |
Late onset sepsis n (%) | 14 (16.3) | 6 (28.6) | 10 (21.7) | 11 (17.7) |
NEC, n (%) | 19 (22.1) | 4 (19) | 8 (17.4) | 16 (25.8) |
PDA, n (%) | 26 (30.2) | 11 (52.4) | 13 (28.3) | 25 (40.3) |
BPD, n (%) | 18 (20.9) | 4 (19) | 5 (10.9) | 18 (29) |
Normal Development (≥85) | Delayed Development (≥70 and <85) | |
---|---|---|
Cognitive (MDI), n (%) | 86 (80.4) | 21 (19.6) |
Motor (PDI), n (%) | 46 (42.6) | 62 (57.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štuikienė, K.; Griesmaier, E.; Aldakauskienė, I.; Garčinskienė, J.; Paškauskė, M.; Šmigelskas, K.; Rimdeikienė, I.; Marmienė, V.; Tamelienė, R. The Predictive Value of Amplitude-Integrated Electroencephalography for the Neurodevelopmental Outcomes of Preterm Newborns at 12 Months Corrected Age. Children 2024, 11, 979. https://doi.org/10.3390/children11080979
Štuikienė K, Griesmaier E, Aldakauskienė I, Garčinskienė J, Paškauskė M, Šmigelskas K, Rimdeikienė I, Marmienė V, Tamelienė R. The Predictive Value of Amplitude-Integrated Electroencephalography for the Neurodevelopmental Outcomes of Preterm Newborns at 12 Months Corrected Age. Children. 2024; 11(8):979. https://doi.org/10.3390/children11080979
Chicago/Turabian StyleŠtuikienė, Kristina, Elke Griesmaier, Ilona Aldakauskienė, Jurgita Garčinskienė, Marija Paškauskė, Kastytis Šmigelskas, Inesa Rimdeikienė, Vitalija Marmienė, and Rasa Tamelienė. 2024. "The Predictive Value of Amplitude-Integrated Electroencephalography for the Neurodevelopmental Outcomes of Preterm Newborns at 12 Months Corrected Age" Children 11, no. 8: 979. https://doi.org/10.3390/children11080979
APA StyleŠtuikienė, K., Griesmaier, E., Aldakauskienė, I., Garčinskienė, J., Paškauskė, M., Šmigelskas, K., Rimdeikienė, I., Marmienė, V., & Tamelienė, R. (2024). The Predictive Value of Amplitude-Integrated Electroencephalography for the Neurodevelopmental Outcomes of Preterm Newborns at 12 Months Corrected Age. Children, 11(8), 979. https://doi.org/10.3390/children11080979