Cyborg Children: A Systematic Literature Review on the Experience of Children Using Extended Reality
Abstract
:1. Introduction
- Identify specific research strands that have studied children’s experiences with XR technologies.
- Examine the different types of XR technologies (hardware and software) and their applications across the different research strands.
- For each strand, discuss new directions for future research with XR that involve children (under 18 years of age) as research participants or stakeholders.
2. Method
2.1. Keywords and Literature Search Terms
2.2. Screening and Coding Process
2.3. Analysis of the Material
3. Findings
3.1. Strands of Studies on Children and XR
3.2. Specific Topics and Concepts in Research on Children and XR
4. Discussion
4.1. Clinical Interventions and HMDs
4.2. Teaching and Learning and AR
4.3. Adoption and User Experience
4.4. Design and Prototyping: The Challenge of Commercialization
5. Conclusions and Study Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haraway, D.J. Siminas, Cyborgs, and Women: The Reinventation of Nature; Routledge: New York, NY, USA, 1991. [Google Scholar]
- Buck, L.; McDonnell, R. Security and privacy in the metaverse: The threat of the digital human. In Proceedings of the CHI EA Novel Challenges of Safety, Security, and Privacy, in Extended Reality, New Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar]
- Phippen, A. Protecting Children in the Metaverse: It’s Easy to Blame Big Tech, But We All Have a Role to Play. Parenting for a Digital Future. 2022. Available online: https://blogs.lse.ac.uk/parenting4digitalfuture/2022/03/23/metaverse/2022 (accessed on 5 May 2022).
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A survey on metaverse: Fundamentals, security, and privacy. IEEE Commun. Surv. Tutor. 2022, 25, 319–352. [Google Scholar] [CrossRef]
- Halldorsson, B.; Hill, C.; Waite, P.; Partridge, K.; Freeman, D.; Creswell, C. Annual research review: Immersive virtual reality and digital applied gaming interventions for the treatment of mental health problems in children and young people: The need for rigorous treatment development and clinical evaluation. J. Child Psychol. Psychiatry 2021, 62, 584–605. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, F.; Pepe, A.; Mantovani, F. Commercial off-the-shelf video games for reducing stress and anxiety: Systematic review. JMIR Ment. Health 2021, 8, e28150. [Google Scholar] [CrossRef] [PubMed]
- Bailsenson, J. Experience on Demand: What Virtual Reality, How It Works, and What It Can Do; Norton & Company: New York, NY, USA, 2018. [Google Scholar]
- Hall, L.; Paracha, S.; Mitsche, N.; Flint, T.; Stewart, F.; MacFarlane, K.; Hagan-Green, G.; Dixon-Todd, Y. When will immersive virtual reality have its day? Challenges to IVR adoption in the home as exposed in studies with teenagers, parents, and experts. Presence 2019, 28, 169–201. [Google Scholar] [CrossRef]
- Lanier, J. Dawn of the New Everything: A Journey through Virtual Reality; Henry Holt and Company: New York, NY, USA, 2017. [Google Scholar]
- LaValle, S.M. Virtual Reality; Cambridge University Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Bailey, J.O.; Bailenson, J.N. Considering virtual reality in children’s lives. J. Child. Media 2017, 11, 107–113. [Google Scholar] [CrossRef]
- Bailey, J.O.; Bailenson, J.N. Immersive virtual reality and the developing child. In Cognitive Development in Digital Contexts; Brooks, P., Blumberg, F., Eds.; Elsevier: San Diego, CA, USA, 2017; pp. 181–200. [Google Scholar]
- Yamada-Rice, D.; Dare, E.; Main, A.; Potter, J.; Ando, A.; Miyoshi, K.; Narumi, T.; Beshani, S.; Clark, A.; Duszenko, I.; et al. Location-Based Virtual Reality Experiences for Children: Japan-UK Knowledge Exchange Network: Final Project Report 2020. Available online: https://ukjapanvr.wordpress.com/2020/06/13/final-project-report/ (accessed on 26 August 2021).
- Czech, O.; Rutkowski, S.; Kowaluk, A.; Kiper, P.; Malicka, I. Virtual reality in chemotherapy support for the treatment of physical functions, fear, and quality of life in pediatric cancer patients: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1039720. [Google Scholar] [CrossRef] [PubMed]
- Ridout, B.; Kelson, J.; Campbell, A.; Steinbeck, K. Effectiveness of virtual reality interventions for adolescent patients in hospital settings: Systematic review. J. Med. Internet Res. 2021, 23, e24967. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ayuso, D.; Toledano-González, A.; Rodríguez-Martínez, M.d.C.; Arroyo-Castillo, P.; Triviño-Juárez, J.M.; González, P.; Ariza-Vega, P.; González, A.D.P.; Segura-Fragoso, A. Effectiveness of virtual reality-based interventions for children and adolescents with ADHD: A systematic review and meta-analysis. Children 2021, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Scavarelli, A.; Arya, A.; Teather, R.J. Virtual reality and augmented reality in social learning spaces: A literature review. Virtual Real. 2021, 25, 257–277. [Google Scholar] [CrossRef]
- Hamilton, D.; McKechnie, J.; Edgerton, E.; Wilson, C. Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. JCE 2021, 8, 1–32. [Google Scholar] [CrossRef]
- Wang, A.I. Systematic literature review on health effects of playing Pokémon Go. Entertain. Comput. 2021, 38, 100411. [Google Scholar] [CrossRef]
- Everri, M. Evaluation of the Side Effects of Virtual Technologies on Young People’s Bodies and Minds to Create an Innovative Solution to a Nascent Problem. 2019. Available online: https://cordis.europa.eu/article/id/386859-virtual-reality-helps-keep-children-safe-online (accessed on 9 January 2021).
- Farshid, M.; Paschen, J.; Eriksson, T.; Kietzmann, J. Go boldly!: Explore augmented reality (AR), virtual reality (VR), and mixed reality (MR) for business. Bus. Horiz. 2018, 61, 657–663. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Livingstone, S.; Bulger, M. A global research agenda for children’s rights in the digital age. J. Child. Media 2014, 8, 317–335. [Google Scholar] [CrossRef]
- Navarro, J.L.; Tudge, J.R. Technologizing Bronfenbrenner: Neo-ecological theory. Curr. Psychol. 2023, 42, 19338–19354. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Okoli, C. A guide to conducting a standalone systematic literature review. CAIS 2015, 37, hal-01574600. [Google Scholar] [CrossRef]
- Anderson, S.; Allen, P.; Peckham, S.; Goodwin, N. Asking the right questions: Scoping studies in the commissioning of research on the organisation and delivery of health services. Health Res. Policy Sy. 2008, 6, 7. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Armstrong, R.; Hall, B.J.; Doyle, J.; Waters, E. ‘Scoping the scope’ of a cochrane review. J. Public Health 2011, 33, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A comparison between two main academic literature collections. Asian Soc. Sci. 2013, 9. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative content analysis: Theoretical background and procedures. In Approaches to Qualitative Research in Mathematics Education. Advances in Mathematics Education; Bikner-Ahsbahs, A., Knipping, C., Presmeg, N., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Schreier, M. Qualitative content analysis. In The SAGE Handbook of Qualitative Data Analysis; Flick, I.U., Ed.; SAGE Publications Ltd.: London, UK, 2014; pp. 170–183. [Google Scholar] [CrossRef]
- Araiza-Alba, P.; Keane, T.; Kaufman, J. Are we ready for virtual reality in K–12 classrooms? Technol. Pedagog. Educ. 2022, 31, 471–491. [Google Scholar] [CrossRef]
- Adamo-Villani, N.; Carpenter, E.; Arns, L. An immersive virtual environment for learning sign language mathematics. In Proceedings of the IMMERSCOM07: First International Conference on Immersive Telecommunications & Workshops, Bussolengo, Verona, Italy, 10–12 October 2006. [Google Scholar]
- Radu, I.; Doherty, E.; DiQuollo, K.; McCarthy, B.; Tiu, M. Cyberchase shape quest: Pushing geometry education boundaries with augmented reality. In Proceedings of the 14th International Conference on Interaction Design and Children, Medford, MA, USA, 21–24 June 2015; pp. 430–433. [Google Scholar]
- Goldman, A.; Chen, M. Pirate Island: An immersion-style language-learning RPG. In Proceedings of the 12th International Conference on Interaction Design and Children, New York, NY, USA, 24–27 June 2013; pp. 404–407. [Google Scholar]
- Degli Innocenti, E.; Geronazzo, M.; Vescovi, D.; Nordahl, R.; Serafin, S.; Ludovico, L.A.; Avanzini, F. Mobile virtual reality for musical genre learning in primary education. Comput. Educ. 2019, 139, 102–117. [Google Scholar] [CrossRef]
- Araiza-Alba, P.; Keane, T.; Chen, W.S.; Kaufman, J. Immersive virtual reality as a tool to learn problem-solving skills. Comput. Educ. 2021, 164, 104–121. [Google Scholar] [CrossRef]
- Smith, S.; Ericson, E. Using immersive game-based virtual reality to teach fire-safety skills to children. Virtual Real. 2009, 13, 87–99. [Google Scholar] [CrossRef]
- Tarkkanen, K.; Lehto, A.; Oliva, D.; Somerkoski, B.; Haavisto, T.; Luimula, M. Research study design for teaching and testing fire safety skills with AR and VR games. In Proceedings of the 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Mariehamn, Finland, 23–25 September 2020; pp. 000167–000172. [Google Scholar]
- Corbett, M.R.; Morrongiello, B.A. Examining how different measurement approaches impact safety outcomes in child pedestrian research: Implications for research and prevention. Accid. Anal. Prev. 2017, 106, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, G.; Yang, T.; Luo, H. Exploring the Potential of Virtual Reality for Child Pedestrian Safety Training: A Case Study in China. In Proceedings of the International Symposium on Educational Technology (ISET), Bangkok, Thailand, 24–27 August 2020; pp. 83–87. [Google Scholar]
- Plumert, J.M.; Kearney, J.K.; Cremer, J.F. Children’s road crossing: A window into perceptual–motor development. Curr. Dir. Psychol. Sci. 2007, 16, 255–258. [Google Scholar] [CrossRef]
- Schwebel, D.C.; Combs, T.; Rodriguez, D.; Severson, J.; Sisiopiku, V. Community-based pedestrian safety training in virtual reality: A pragmatic trial. Accid. Anal. Prev. 2016, 86, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Schwebel, D.C.; Severson, J.; He, Y.; McClure, L. Virtual reality by mobile smartphone: Improving child pedestrian safety. Inj. Prev. 2017, 23, 357. [Google Scholar] [CrossRef] [PubMed]
- Enz, S.; Zoll, C.; Vannini, N.; Schneider, W.; Hall, L.; Paiva, A. Motional Learning in Primary Schools: FearNot! An Anti-bullying Intervention Based on Virtual Role-play with Intelligent Synthetic Characters. EJEL 2008, 6, 131–138. [Google Scholar]
- Economou, D.; Mitchell, W.L.; Boyle, T. Requirements elicitation for virtual actors in collaborative learning environments. Comput. Educ. 2000, 34, 225–239. [Google Scholar] [CrossRef]
- Tokuoka, M.; Komiya, N.; Mizoguchi, H.; Egusa, R.; Inagaki, S.; Kusunoki, F. Application of 3D Range Image Sensor to Body Movement Detection: Supporting Children’s Collaborative Learning in Museums. In Proceedings of the 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 394–398. [Google Scholar]
- Gheorghiu, D.; Ştefan, L. 3D Online Virtual Museum as e-learning tool. In Proceedings of the 6th International Conference on Computer Supported Education, Barcelona, Spain, 1–3 April 2014; Volume 2, pp. 379–388. [Google Scholar]
- Yoshida, R.; Tamaki, H.; Sakai, T.; Saito, M.; Egusa, R.; Kamiyama, S.; Namatame, M.; Sugimoto, M.; Kusanoki, F.; Yamaguchi, E.; et al. Experience-based learning support system to enhance child learning in a museum: Touching real fossils and” experiencing” paleontological environment. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology, Iskandar, Malaysia, 16–19 November 2015; pp. 1–4. [Google Scholar]
- Hsiao, P.W.; Su, C.H. A study on the impact of STEAM education for sustainable development courses and its effects on student motivation and learning. Sustainability 2021, 13, 3772. [Google Scholar] [CrossRef]
- Eijlers, R.; Dierckx, B.; Staals, L.M.; Berghmans, J.M.; van der Schroeff, M.P.; Strabbing, E.M.; Wijnen, R.M.H.; Hillegers, M.H.J.; Legerstee, J.S.; Utens, E.M. Virtual reality exposure before elective day care surgery to reduce anxiety and pain in children: A randomised controlled trial. Eur. J. Anaesthesiol. 2019, 36, 728. [Google Scholar] [CrossRef] [PubMed]
- Farrell, L.J.; Miyamoto, T.; Donovan, C.L.; Waters, A.M.; Krisch, K.A.; Ollendick, T.H. Virtual reality one-session treatment of child-specific phobia of dogs: A controlled, multiple baseline case series. Behav. Ther. 2021, 52, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Maskey, M.; Rodgers, J.; Grahame, V.; Glod, M.; Honey, E.; Kinnear, J.; Labus, M.; Milne, J.; Minos, D.; McConachie, H. A randomised controlled feasibility trial of immersive virtual reality treatment with cognitive behaviour therapy for specific phobias in young people with autism spectrum disorder. J. Autism. Dev. Disord. 2019, 49, 1912–1927. [Google Scholar] [CrossRef]
- Ali, R.R.; Selim, A.O.; Ghafar, M.A.A.; Abdelraouf, O.R.; Ali, O.I. Virtual reality as a pain distractor during physical rehabilitation in pediatric burns. Burns 2022, 48, 303–308. [Google Scholar] [CrossRef]
- Ang, S.P.; Montuori, M.; Trimba, Y.; Maldari, N.; Patel, D.; Chen, Q.C. Recent applications of virtual reality for the management of pain in burn and pediatric patients. Curr. Pain Headache Rep. 2021, 25, 4. [Google Scholar] [CrossRef]
- Buyuk, E.T.; Odabasoglu, E.; Uzsen, H.; Koyun, M. The effect of virtual reality on Children’s anxiety, fear, and pain levels before circumcision. J. Pediatr. Urol. 2021, 17, 567.e1–567.e8. [Google Scholar] [CrossRef] [PubMed]
- Dahlquist, L.M.; McKenna, K.D.; Jones, K.K.; Dillinger, L.; Weiss, K.E.; Ackerman, C.S. Active and passive distraction using a head-mounted display helmet: Effects on cold pressor pain in children. Health Psychol. 2007, 26, 794. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.; Taverner, T.; Masinde, W.; Gromala, D.; Shaw, C.; Negraeff, M. A rapid evidence assessment of immersive virtual reality as an adjunct therapy in acute pain management in clinical practice. Clin. J. Pain 2014, 30, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.I.; Mahrer, N.E. Is virtual reality ready for prime time in the medical space? A randomized control trial of pediatric virtual reality for acute procedural pain management. J. Pediatr. Psychol. 2018, 43, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Alshatrat, S.M.; Sabarini, J.M.; Hammouri, H.M.; Al-Bakri, I.A.; Al-Omari, W.M. Effect of immersive virtual reality on pain in different dental procedures in children: A pilot study. Int. J. Paediatr. Dent. 2022, 32, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Pande, P.; Rana, V.; Srivastava, N.; Kaushik, N. Effectiveness of different behavior guidance techniques in managing children with negative behavior in a dental setting: A randomized control study. J. Indian Soc. Pedod. Prev. Dent. 2020, 38, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Althumairi, A.; Sahwan, M.; Alsaleh, S.; Alabduljobar, Z.; Aljabri, D. Virtual reality: Is it helping children cope with fear and pain during vaccination? J. Multidiscip. Healthc. 2021, 1, 2625–2632. [Google Scholar] [CrossRef] [PubMed]
- Chau, B.; Chi, B.; Wilson, T. Decreasing pediatric pain and agitation during botulinum toxin injections for spasticity with virtual reality: Lessons learned from clinical use. J. Pediatr. Rehabil. Med. 2018, 11, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.N.; Bae, W.; Park, J.W.; Jung, J.Y.; Hwang, S.; Kim, D.K.; Kwak, Y.H. Virtual reality environment using a dome screen for procedural pain in young children during intravenous placement: A pilot randomized controlled trial. PLoS ONE 2021, 16, e0256489. [Google Scholar] [CrossRef]
- Wong, C.L.; Lui, M.M.W.; Choi, K.C. Effects of immersive virtual reality intervention on pain and anxiety among pediatric patients undergoing venipuncture: A study protocol for a randomized controlled trial. Trials 2019, 20, e230001. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Robertson, S.; Litwin, L.; Tringale, E.; Treadwell, M.; Hoppe, C.; Marsh, A. Virtual reality as complementary pain therapy in hospitalized patients with sickle cell disease. Pediatr. Blood Cancer 2019, 66, e27525. [Google Scholar] [CrossRef] [PubMed]
- Birnie, K.A.; Kulandaivelu, Y.; Jibb, L.; Hroch, P.; Positano, K.; Robertson, S.; Campbell, F.; Abla, O.; Stinson, J. Usability testing of an interactive virtual reality distraction intervention to reduce procedural pain in children and adolescents with cancer. J. Pediatr. Oncol. Nurs. 2018, 35, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Wolitzky, K.; Fivush, R.; Zimand, E.; Hodges, L.; Rothbaum, B.O. Effectiveness of virtual reality distraction during a painful medical procedure in pediatric oncology patients. J. Health Psychol. 2005, 20, 817–824. [Google Scholar] [CrossRef]
- Abdelmohsen, M.; Arafa, Y. Training social skills of children with ASD through social virtual robot. In Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Virtual Event, 27 March–1 April 2021; pp. 314–319. [Google Scholar]
- Boo, C.; Alpers-Leon, N.; McIntyre, N.; Mundy, P.; Naigles, L. Conversation during a virtual reality task reveals new structural language profiles of children with ASD, ADHD, and comorbid symptoms of both. J. Autism Dev. Disord. 2022, 1, 2970–2983. [Google Scholar] [CrossRef] [PubMed]
- Goharinejad, S.; Goharinejad, S.; Hajesmaeel-Gohari, S.; Bahaadinbeigy, K. The usefulness of virtual, augmented, and mixed reality technologies in the diagnosis and treatment of attention deficit hyperactivity disorder in children: An overview of relevant studies. BMC Psych. 2022, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Ip, H.H.; Wong, S.W.; Chan, D.F.; Byrne, J.; Li, C.; Yuan, V.S.; Lau, K.S.Y.; Wong, J.Y. Virtual reality enabled training for social adaptation in inclusive education settings for school-aged children with autism spectrum disorder (ASD). In Blended Learning: Aligning Theory with Practices, Proceedings of the 9th International Conference, ICBL 2016, Beijing, China, 19–21 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 94–102. [Google Scholar]
- Malihi, M.; Nguyen, J.; Cardy, R.E.; Eldon, S.; Petta, C.; Kushki, A. Evaluating the safety and usability of head-mounted virtual reality compared to monitor-displayed video for children with autism spectrum disorder. Autism 2020, 24, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; Criscuolo, S.; De Benedetto, E.; Donato, N.; Duraccio, L. A wearable ar-based bci for robot control in ADHD treatment: Preliminary evaluation of adherence to therapy. In Proceedings of the 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS, Nis, Serbia, 20–22 October 2021; pp. 321–324. [Google Scholar]
- Reddy, G.R.; Lingaraju, G.M. A brain-computer interface and augmented reality neurofeedback to treat ADHD: A virtual telekinesis approach. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Recife, Brazil, 9–13 November 2020; pp. 123–128. [Google Scholar]
- Rohani, D.A.; Sorensen, H.B.; Puthusserypady, S. Brain-computer interface using P300 and virtual reality: A gaming approach for treating ADHD. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3606–3609. [Google Scholar]
- Clancy, T.A.; Rucklidge, J.J.; Owen, D. Road-crossing safety in virtual reality: A comparison of adolescents with and without ADHD. JCCAP 2006, 35, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Biffi, E.; Gagliardi, C.; Maghini, C.; Genova, C.; Panzeri, D.; Redaelli, D.F.; Turconi, A.C. Learning my way: A pilot study of navigation skills in cerebral palsy in immersive virtual reality. Front. Psychol. 2020, 11, 591296. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, V.; Filippova, S.N.; Belyaev, V.S.; Karlova, E.V. Efficiency of image visualization simulator technology for physical rehabilitation of children with cerebral palsy through play. Bull RSMU 2019, 4, 39–46. [Google Scholar] [CrossRef]
- Mirich, R.; Kyvelidou, A.; Greiner, B.S. The effects of virtual reality-based rehabilitation on upper extremity function in a child with cerebral palsy: A case report. Phys. Occup. Ther. Pediatr. 2021, 41, 620–636. [Google Scholar] [CrossRef]
- Arnone, O.; Colombo, V.; Cosentino, G.; Riccardi, F.; Beccaluva, E.; Garzotto, F. Smart buckets: An interactive interface enabling sensory integration. In Proceedings of the ACM Interaction Design and Children Conference: Extended Abstracts, London, UK, 21–24 June 2020; pp. 181–186. [Google Scholar]
- Nakayama, T.; Yoshida, R.; Nakadai, T.; Ogitsu, T.; Mizoguchi, H.; Izuishi, K.; Kusuniki, F.; Muratsu, K.; Equsa, R.; Inagaki, S. Immersive learning support system based on Kinect sensor for children to learn about paleontological environments. Int. J. Smart Sens. Intell. Syst. 2015, 8, 1050. [Google Scholar] [CrossRef]
- Nugroho, E.W.; Harnadi, B. The method of integrating virtual reality with brainwave sensor for an interactive math’s game. In Proceedings of the 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; pp. 359–363. [Google Scholar]
- Juan, C.; Canu, R.; Giménez, M. Augmented reality interactive storytelling systems using tangible cubes for edutainment. In Proceedings of the Eighth IEEE International Conference on Advanced Learning Technologies, Washington, DC, USA, 1–5 July 2008; pp. 233–235. [Google Scholar]
- Radu, I.; Joy, T.; Bott, I.; Bowman, Y.; Schneider, B. Using augmented reality in education: Opportunities and pitfalls. In Proceedings of the International Society for Technological Education, Denver, CO, USA, 26–30 June 2021; pp. 1–13. [Google Scholar]
- Schofield, T.; Trujillo Pisanty, D.; Arrigoni, G.; Reynolds, K.; Pattinson, R. Magical realism and augmented reality: Designing apps with children in a cultural institution. In Proceedings of the Designing Interactive Systems Conference, San Diego, CA, USA, 23–28 June 2019; pp. 737–749. [Google Scholar]
- Southgate, E. Using screen capture video to understand learning in virtual reality. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 22–26 March 2020; pp. 418–421. [Google Scholar]
- Bobick, A.F.; Intille, S.S.; Davis, J.W.; Baird, F.; Pinhanez, C.S.; Campbell, L.W.; Ivanov, Y.A.; Schutte, A.; Wilson, A. The KidsRoom: A perceptually-based interactive and immersive story environment. Presence 1999, 8, 369–393. [Google Scholar] [CrossRef]
- Ryokai, K.; Li, Y. VR SandScape: Working with multiple perspectives in a hybrid VR/SAR collaborative play space. In Proceedings of the Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play, Virtual Event, 2–4 November 2020; pp. 350–354. [Google Scholar]
- Shirai, A.; Kobayashi, K.; Kawakita, M.; Hasegawa, S.; Nakajima, M.; Sato, M. Entertainment applications of human-scale virtual reality systems. In Advances in Multimedia Information Processing-PCM 2004, Proceedings of the 5th Pacific Rim Conference on Multimedia, Tokyo, Japan, 30 November–3 December 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–38. [Google Scholar]
- Apostolellis, P.; Daradoumis, T. Exploring the value of audience collaboration and game design in immersive virtual learning environments. In Proceedings of the 9th International Conference on Interaction Design and Children, Barcelona, Spain, 9–12 June 2010; pp. 326–330. [Google Scholar]
- Noor, N.M.; Ismail, M.; Yussof, R.L.; Yusoff, F.H. Measuring tajweed augmented reality-based gamification learning model (TARGaLM) implementation for children in tajweed learning. Pertanika J. Sci. Technol. 2019, 27, 1821–1840. [Google Scholar]
- Powers, D.M.; Leibbrandt, R.; Pfitzner, D.; Luerssen, M.; Lewis, T.; Abrahamyan, A.; Stevens, K. Language teaching in a mixed reality games environment. In Proceedings of the 1st International Conference on Pervasive Technologies Related to Assistive Environments, Athens, Greece, 16–18 July 2008; pp. 1–7. [Google Scholar]
- Amantini, S.N.; Montilha, A.A.; Antonelli, B.C.; Leite, K.T.; Rios, D.; Cruvinel, T.; Neto, N.L.; Oliveira, T.M.; Machado, M.A. Using augmented reality to motivate oral hygiene practice in children: Protocol for the development of a serious game. JMIR Res. Prot. 2020, 9, e10987. [Google Scholar] [CrossRef]
- Sudarmilah, E.; Siregar, R.M.P. The usability of ‘keepin’collect the trash: Virtual reality educational game in android smartphone for children. Int. J. Adv. Res. Sci. Eng. Technol. 2019, 8, 944–947. [Google Scholar]
- Vera, L.; Gimeno, J.; Casas, S.; García-Pereira, I.; Portalés, C. A hybrid virtual-augmented serious game to improve driving safety awareness. In Advances in Computer Entertainment Technology, Proceedings of the 14th International Conference, ACE, London, UK, 14–16 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 293–310. [Google Scholar]
- Huh, Y.; Duarte, G.T.; El Zarki, M. Minebike: Exergaming with minecraft. In Proceedings of the IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic, 17–20 September 2018; pp. 1–6. [Google Scholar]
- Finkelstein, S.; Nickel, A.; Lipps, Z.; Barnes, T.; Wartell, Z.; Suma, E.A. Astrojumper: Motivating exercise with an immersive virtual reality exergame. Presence 2011, 20, 78–92. [Google Scholar] [CrossRef]
- Laine, T.H.; Suk, H.J. Designing mobile augmented reality exergames. Games Cult. 2016, 11, 548–580. [Google Scholar] [CrossRef]
- Yasumoto, M.; Teraoka, T. Physical e-Sports in VAIR Field system. In Proceedings of the SIGGRAPH Asia XR, Brisbane, Australia, 17–20 November 2019; pp. 31–33. [Google Scholar]
- Al Mahmud, A.; Mubin, O.; Shahid, S.; Martens, J.B. Designing social games for children and older adults: Two related case studies. Entertain. Comput. 2010, 1, 147–156. [Google Scholar] [CrossRef]
- Baumgartner, T.; Speck, D.; Wettstein, D.; Masnari, O.; Beeli, G.; Jäncke, L. Feeling present in arousing virtual reality worlds: Prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosc. 2008, 2, 279–283. [Google Scholar] [CrossRef]
- Mikropoulos, T.A.; Strouboulis, V. Factors that influence presence in educational virtual environments. Cyberpsychol. Behav. 2004, 7, 582–591. [Google Scholar] [CrossRef]
- Dewe, H.; Gottwald, J.M.; Bird, L.A.; Brenton, H.; Gillies, M.; Cowie, D. My virtual self: The role of movement in children’s sense of embodiment. IEEE Trans. Vis. Comput. Graph. 2021, 28, 4061–4072. [Google Scholar] [CrossRef]
- Georgiou, Y.; Ioannou, A.; Ioannou, M. Investigating children’s immersion in a high-embodied versus low-embodied digital learning game in an authentic educational setting. In Immersive Learning Research Network, Proceedings of the 5th International Conference, iLRN 2019, London, UK, 23–27 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 222–233. [Google Scholar]
- Schloss, I.; OBailey, J.; Tripathi, S. “I’m in his belly!”: Children’s Responses to Different Types of Characters in Virtual Reality. Interact. Des. Child. 2021, 2, 43–48. [Google Scholar]
- Cadet, L.B.; Reynaud, E.; Chainay, H. Memory for a virtual reality experience in children and adults according to image quality, emotion, and sense of presence. Virtual Real. 2020, 26, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Houldin, A.; Goldstand, S.; Gal, E.; Weiss, P.L.T.; Bahat, Y.; Weiss, D.; Moran, A.; Yigal, N. Usability of an Immersive Virtual Playground: Enjoyment, Authenticity, Effort and Cybersickness. In Proceedings of the International Conference on Virtual Rehabilitation (ICVR), Tel Aviv, Israel, 21–24 July 2019; pp. 1–2. [Google Scholar]
- Lauer, L.; Altmeyer, K.; Malone, S.; Barz, M.; Brünken, R.; Sonntag, D.; Peschel, M. Investigating the usability of a head-mounted display augmented reality device in elementary school children. Sensors 2021, 21, 6623. [Google Scholar] [CrossRef]
- Lorusso, M.L.; Travellini, S.; Giorgetti, M.; Negrini, P.; Reni, G.; Biffi, E. Semi-immersive virtual reality as a tool to improve cognitive and social abilities in preschool children. Appl. Sci. 2020, 10, 2948. [Google Scholar] [CrossRef]
- Maloney, D.; Freeman, G.; Robb, A. A Virtual Space for All: Exploring Children’s Experience in Social Virtual Reality. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2020), Virtual Event, 2–5 June 2020; pp. 472–483. [Google Scholar]
- Miehlbradt, J.; Cuturi, L.F.; Zanchi, S.; Gori, M.; Micera, S. Immersive virtual reality interferes with default head–trunk coordination strategies in young children. Sci. Rep. 2021, 11, 17959. [Google Scholar] [CrossRef] [PubMed]
- Tychsen, L.; Foeller, P. Effects of immersive virtual reality headset viewing on young children: Visuomotor function, postural stability, and motion sickness. Am. J. Ophthalmol. 2020, 209, 151–159. [Google Scholar] [CrossRef]
- Rauschenberger, R.; Barakat, B. Health and safety of VR use by children in an educational use case. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 878–884. [Google Scholar]
- Tzanavari, A.; Christou, C.; Herakleous, K.; Poullis, C. Studying Children’s Navigation in Virtual Reality. In Learning and Collaboration Technologies, Proceedings of the Third International Conference, LCT 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, 17–22 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–197. [Google Scholar]
- Van Dam, L.C.; Webb, A.L.; Jarvis, L.D.; Hibbard, P.B.; Linley, M. “The Mystery of the Raddlesham Mumps”: A Case Study for Combined Storytelling in a Theatre Play and Virtual Reality. In Proceedings of the International Conference on 3D Immersion (IC3D), Brussels, Belgium, 15 December 2020; pp. 1–7. [Google Scholar]
- Martarelli, C.S.; Borter, N.; Bryjova, J.; Mast, F.W.; Munsch, S. The influence of parent’s body mass index on peer selection: An experimental approach using virtual reality. Psych. Res. 2015, 230, 5–12. [Google Scholar] [CrossRef]
- Hall, A.B.; Ho, C.; Albanese, B.; Keay, L.; Hunter, K.; Charlton, J.; Hayen, A.; Bilston, L.E.; Brown, J. User-driven design of child restraint information to reduce errors in use: A pilot randomised controlled trial. Inj. Prev. 2020, 26, 432–438. [Google Scholar] [CrossRef]
- Morrongiello, B.A.; Corbett, M. Using a virtual environment to study child pedestrian behaviours: A comparison of parents’ expectations and children’s street crossing behaviour. Inj. Prev. 2015, 21, 291–295. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Liu, C.; Wei, Z.; Leung, X.Y. How children experience virtual reality travel: A psycho-physiological study based on flow theory. JHTT 2021, 12, 777–790. [Google Scholar] [CrossRef]
- Abrar, M.F.; Islam, M.R.; Hossain, M.S.; Islam, M.M.; Kabir, M.A. Augmented reality in education: A study on preschool children, parents, and teachers in Bangladesh. In Virtual, Augmented and Mixed Reality. Applications and Case Studies, Proceedings of the 11th International Conference, VAMR, Orlando, FL, USA, 26–31 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 217–229. [Google Scholar]
- Queiroz, A.C.M.; Fauville, G.; Abeles, A.T.; Levett, A.; Bailenson, J.N. The Efficacy of Virtual Reality in Climate Change Education Increases with Amount of Body Movement and Message Specificity. Sustainability 2023, 15, 5814. [Google Scholar] [CrossRef]
- Mubin, S.A.; Thiruchelvam, V.; Andrew, Y.W. Extended Reality: How They Incorporated for ASD Intervention. In Proceedings of the 8th International Conference on Information Technology and Multimedia (ICIMU), Selangor, Malaysia, 24–25 August 2020; pp. 262–266. [Google Scholar]
- Albakri, G.; Bouaziz, R.; Alharthi, W.; Kammoun, S.; Al-Sarem, M.; Saeed, F.; Hadwan, M. Phobia exposure therapy using virtual and augmented reality: A systematic review. Appl. Sci. 2022, 12, 1672. [Google Scholar] [CrossRef]
- Dilgul, M.; Hickling, L.M.; Antonie, D.; Priebe, S.; Bird, V.J. Virtual Reality Group therapy for the treatment of depression: A qualitative study on stakeholder perspectives. Front. Virtual Real. 2021, 1, 609545. [Google Scholar] [CrossRef]
- Lindner, P.; Hamilton, W.; Miloff, A.; Carlbring, P. How to treat depression with low-intensity virtual reality interventions: Perspectives on translating cognitive behavioral techniques into the virtual reality modality and how to make anti-depressive use of virtual reality–unique experiences. Front. Psych. 2019, 10, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Repetto, C.; Riva, G. From virtual reality to interreality in the treatment of anxiety disorders. Neuropsychiatry 2011, 1, 31–43. [Google Scholar] [CrossRef]
- Schröder, D.; Wrona, K.J.; Müller, F.; Heinemann, S.; Fischer, F.; Dockweiler, F. Impact of virtual reality applications in the treatment of anxiety disorders: A systematic review and meta-analysis of randomized-controlled trials. J. Behav. Ther. Exp. Psy. 2023, 81, 101893. [Google Scholar] [CrossRef]
- Kaimara, P.; Oikonomou, A.; Deliyannis, I. Could virtual reality applications pose real risks to children and adolescents? A systematic review of ethical issues and concerns. Virtual Real. 2022, 26, 697–735. [Google Scholar] [CrossRef]
Search Terms | Results |
---|---|
“AR” + child- | 5170 |
“Virtual Reality” + child- | 3493 |
“VR” + child- | 1400 |
“Augmented reality” + child- | 1210 |
immersive + child- | 836 |
TOTAL | 12,109 |
Type of Technology | Clinical Interventions | Teaching and Learning | Adoption and User Experience | Design and Prototyping |
---|---|---|---|---|
HMD | 131 | 55 | 19 | 12 |
HMD vs. other tech or treatments | 40 | 21 | 2 | 1 |
CAVE | 29 | 15 | 10 | 4 |
Screen-based VR | 43 | 38 | 9 | 9 |
AR | 8 | 15 | 2 | 9 |
Virtual environment (projections) | 0 | 9 | 2 | 2 |
Total | 251 | 153 | 44 | 37 |
Themes Emerging from Content Analysis | Leximancer Concepts |
---|---|
Clinical Interventions | Intervention, patients, risk |
Teaching and Learning | Crossing, learning, parents, social |
Adoption and User Experience | Body, children, environment |
Design and Prototyping | Design, VR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Everri, M.; Heitmayer, M. Cyborg Children: A Systematic Literature Review on the Experience of Children Using Extended Reality. Children 2024, 11, 984. https://doi.org/10.3390/children11080984
Everri M, Heitmayer M. Cyborg Children: A Systematic Literature Review on the Experience of Children Using Extended Reality. Children. 2024; 11(8):984. https://doi.org/10.3390/children11080984
Chicago/Turabian StyleEverri, Marina, and Maxi Heitmayer. 2024. "Cyborg Children: A Systematic Literature Review on the Experience of Children Using Extended Reality" Children 11, no. 8: 984. https://doi.org/10.3390/children11080984
APA StyleEverri, M., & Heitmayer, M. (2024). Cyborg Children: A Systematic Literature Review on the Experience of Children Using Extended Reality. Children, 11(8), 984. https://doi.org/10.3390/children11080984