Progress in the Application of Bronchoscopic Cryotherapy in Pediatric Pulmonary Diseases
Abstract
:1. Introduction
1.1. The Principle of Cryotherapy
1.2. Bronchoscopic Cryotherapy Procedure
1.2.1. Preoperative Preparation
Patient Preparation
Preparation of Equipment
- (1)
- Bronchoscopy: a. Rigid bronchoscope; b. Flexible bronchoscope.
- (2)
- Cryotherapy device: Consists of three parts: cooling source, control device, and cryoprobe.
Freezing Equipment
- (1)
- Three main types of coolants: carbon dioxide, nitrous oxide, and liquid nitrogen.
- (2)
- Control device: mainly includes the freezing host, control panel, and foot switch.
- (3)
- Freezing probes are divided into flexible freezing probes and rigid freezing probes (Figure 1).
1.2.2. Operation Steps and Methods
- (1)
- Patient preparation.
- (2)
- Anesthesia: Local anesthesia or general anesthesia.
- (3)
- The location and extent of the lesion are determined, and its surface secretions and accumulated blood are cleaned.
- (4)
- The cryoprobe is inserted through the working channel, with the metal end at least 5 mm away from the distal end of the bronchoscope.
- (5)
- The tip or sidewall of the probe can be used to freeze the lesion, and the metal tip should be placed as close to or deep into the lesion as possible. The cycle from freezing to thawing is 1–3 min, and each point should be repeatedly frozen and thawed 1–3 times. Several freezing points can be set for large lesions.
- (6)
- About one week after the first stage of cryotherapy, bronchoscopy should be re-examined to evaluate the efficacy, the necrotic tissue should be cleared, and cryotherapy can be performed again for residual lesions.
1.2.3. Matters Needing Attention
- (1)
- Cryotherapy is mainly used to remove benign or malignant lesions in the airway cavity. Therefore, it cannot remove invisible tissues and is ineffective for extraluminal pressure lesions.
- (2)
- When treating target tissues with freeze-thaw therapy, since the effect of one cryotherapy is not obvious, the same area should be subjected to at least three cycles of rapid freezing and slow thawing to achieve the maximum freezing effect. Tissue shedding may occur one week later, so it is not suitable for the treatment of lesions that are about to cause respiratory failure and require immediate removal. In addition, the possibility of asphyxia caused by the edema of surrounding tissues after freeze–thaw therapy should be considered. Freeze-cutting therapy is relatively fast, but for asphyxiating endotracheal lesions, it should still be carefully selected and not be the preferred technique.
- (3)
- When using spray cryotherapy, consideration should be given to the rapid expansion of gas in a short period of time, so the effective channel for gas release should be unobstructed to avoid the occurrence of complications.
- (4)
- Cryotherapy is only a treatment technique within the airway cavity, and its combination with other treatment methods can achieve more significant therapeutic effects.
- (5)
- During the operation, the cryoprobe should be inserted through the working channel, and its metal end should be at least 5 mm away from the distal end of the bronchoscope to prevent damage to the bronchoscope.
2. Clinical Use of Bronchoscopic Cryotherapy
2.1. Application in the Diagnosis and Treatment of Benign Airway Obstructive Lesions
2.1.1. Bronchial Foreign Body
2.1.2. Bronchial Tuberculosis
2.1.3. Post-Traumatic Tracheobronchial Stenosis
2.1.4. Benign Airway Tumors
2.1.5. Congenital Airway Stenosis
2.1.6. Granulation Hyperplasia Resulting from Other Causes
2.2. Interventional Diagnosis and Treatment of Malignant Tracheobronchial Tumors
2.3. Frozen Biopsy of Tracheobronchial or Intrapulmonary Lesions
3. The Feasibility and Safety of Bronchoscopy with Cryotherapy
4. Possible Complications of Bronchoscopy with Cryotherapy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fontana, A.M.; Muti, E. Terapia con basse temperature in chirurgia plastica [Cryotherapy in plastic surgery]. Minerva Medica 1974, 65, 3677–3679. (In Italian) [Google Scholar] [PubMed]
- Krashen, A.S. Cryotherapy of herpes of the mouth. J. Am. Dent. Assoc. 1970, 81, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Neel, H.B., 3rd; Farrell, K.H.; DeSanto, L.W.; Payne, W.S.; Sanderson, D.R. Cryosurgery of respiratory structures, I. Cryonecrosis of trachea and bronchus. Laryngoscope 1973, 83, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Husnain, S.M.N.; Sarkar, A.; Huseini, T. Utility and safety of bronchoscopic cryotechniques-a comprehensive review. Diagnostics 2023, 13, 2886. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.E.; Fink, R.J. Applications of flexible fiberoptic bronchoscopes in infants and children. Chest 1978, 73 (Suppl. S5), 737–740. [Google Scholar] [CrossRef] [PubMed]
- Goussard, P.; Pohunek, P.; Eber, E.; Midulla, F.; Di Mattia, G.; Merven, M.; Janson, J.T. Pediatric bronchoscopy: Recent advances and clinical challenges. Expert. Rev. Respir. Med. 2021, 15, 453–475. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.; Shore, D.; Boesch, R.P.; Chopra, M.; Das, S.; DiBardino, D.; Goldfarb, S.; Haas, A.; Hysinger, E.; Phinizy, P.; et al. Practices and perspectives on advanced diagnostic and interventional bronchoscopy among pediatric pulmonologists in the United States. Pediatr. Pulmonol. 2024, 59, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Vicencio, A. A paediatric bronchoscopist’s ‘Field of Dreams’: Will the flexible cryoprobe hit a home run? Respirology 2022, 27, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Gage, A. Cryotherapy for cancer. In Cryotherapy; Rand, R., Rinfret, A., Von Leden, H., Eds.; John Wiley & Sons: Springfield, IL, USA, 1968. [Google Scholar]
- Mathur, P.N.; Wolf, K.M.; Busk, M.F.; Briete, W.M.; Datzman, M. Fiberoptic bronchoscopic cryotherapy in the management of tracheobronchial obstruction. Chest 1996, 110, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Sabel, M.S. Cryo-immunology: A review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009, 58, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vergnon, J.M.; Huber, R.M.; Moghissi, K. Place of cryotherapy, brachytherapy and photodynamic therapy in therapeutic bronchoscopy of lung cancers. Eur. Respir. J. 2006, 28, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 1977, 14, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Gage, A.A.; Baust, J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998, 37, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Gage, A.A.; Guest, K.; Montes, M.; Caruana, J.A.; Whalen, D.A., Jr. Effect of varying freezing and thawing rates in experimental cryosurgery. Cryobiology 1985, 22, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Clinical Application of Electronic Bronchoscopy, 3rd ed.; Cai, H., Zhang, M., Eds.; China Medical Science Press: Beijing, China, 2023; pp. 1–432. (In Chinese) [Google Scholar]
- Hetzel, M.; Hetzel, J.; Schumann, C.; Marx, N.; Babiak, A. Cryorecanalization: A new approach for the immediate management of acute airway obstruction. J. Thorac. Cardiovasc. Surg. 2004, 127, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Sunna, R. Cryotherapy and cryodebridement. In Principles and Practice of Interventiona Pulmonology; Ernst, A., Herth, F.J.F., Eds.; Springer: New York, NY, USA, 2013; pp. 343–350. [Google Scholar]
- Dalkowski, A.; Fimmel, S.; Beutler, C.; Zouboulis, C.C. Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro. Exp. Dermatol. 2003, 12, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.B.; Fernández-Villar, A.; Rivo, J.E.; Leiro, V.; García-Fontán, E.; Botana, M.I.; Torres, M.L.; Cañizares, M.A. Extraction of airway foreign bodies in adults: Experience from 1987–2008. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Ulas, A.B.; Aydin, Y.; Eroglu, A. Foreign body aspirations in children and adults. Am. J. Surg. 2022, 224, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, Y.; Zhang, J.; Zhang, H. Removal of foreign bodies in children’s airways using flexible bronchoscopic CO2 cryotherapy. Pediatr. Pulmonol. 2016, 51, 943–949. [Google Scholar] [CrossRef] [PubMed]
- David, A.P.; Xu, M.J.; Rosbe, K.W.; Meyer, A.K.; Gesthalter, Y.B.; Chan, D.K. Cryoprobe retrieval of an airway foreign body: A case report and literature review. Int. J. Pediatr. Otorhinolaryngol. 2019, 125, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Han, L.L.; Meng, C.; Zhang, Z.X.; Tang, X.D.; Ma, J.; Li, C.X. Clinical analysis of bronchoscope diagnosis and treatment for airway foreign body removal in pediatric patients. Ital. J. Pediatr. 2022, 48, 159. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sun, D. Bronchoscopic removal of a leech from the trachea by cryotherapy. Clin. Respir. J. 2022, 16, 581–583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallam, E.F.; Kasi, A.S.; Patki, R.; Silva, G.L.; Simon, D.M.; Caltharp, S.; Guglani, L. Bronchoscopic interventions for plastic bronchitis in children without structural heart disease. Eur. J. Pediatr. 2021, 180, 3547–3554. [Google Scholar] [CrossRef] [PubMed]
- Gatt, D.; Golan Tripto, I.; Tsaregorodtsev, S.; Aviram, M.; Goldbart, A. Blood clot removal by flexible bronchoscopic cryotherapy in a young child. Pediatr. Int. 2023, 65, e15420. [Google Scholar] [CrossRef] [PubMed]
- Schramm, D.; Freitag, N.; Kötz, K.; Iglesias-Serrano, I.; Culebras-Amigo, M.; Koblizek, V.; Pérez-Tarazona, S.; Cases Viedma, E.; Srikanta, J.T.; Durdik, P.; et al. Cryotherapy in the paediatric airway: Indications, success and safety. Respirology 2022, 27, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Fruchter, O.; Kramer, M.R. Retrieval of various aspirated foreign bodies by flexible cryoprobe: In vitro feasibility study. Clin. Respir. J. 2015, 9, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.X.; Sun, L.; Liu, F.; Rao, X.C.; Ma, Y.Y.; Liu, X.C.; Shen, C.; Xu, B.P.; Shen, A.D.; Shen, K.L. Characteristics and clinical role of bronchoscopy in diagnosis of childhood endobronchial tuberculosis. World J. Pediatr. 2017, 13, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.S.; Chen, X.P.; Ye, L.P.; Wang, G.F.; Zheng, Y.M.; Zhang, H.L.; Li, C.C.; Xia, X.D. Clinical application of transbronchial cryotherapy in the diagnosis and treatment of tracheobronchial tuberculosis in children. Zhonghua Er Ke Za Zhi 2021, 59, 963–967. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, T.; Yang, N.; Xu, Y.; Guo, W. Efficacy and safety of CO2 cryotherapy in the treatment of infants with tracheobronchial tuberculosis. Front. Pediatr. 2022, 10, 984738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García-Martínez, L.; Laín Fernández, A.; Iglesias-Serrano, I.; Giné Prades, C.; Soriano-Arandes, A.; López, M. Endobronchial tuberculosis in children: Defining the role of interventional bronchoscopy. Pediatr. Pulmonol. 2022, 57, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Goussard, P.; Retief, F.; Burke, J.; Malherbe, A.; Janson, J. The role of bronchoscopy in the diagnosis and management of pediatric pulmonary tuberculosis. Ther. Adv. Infect. Dis. 2021, 8, 20499361211037168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiao, A.; Liu, F.; Lerner, A.D.; Rao, X.; Guo, Y.; Meng, C.; Pan, Y.; Li, G.; Li, Z.; Wang, F.; et al. Effective treatment of post-intubation subglottic stenosis in children with holmium laser therapy and cryotherapy via flexible bronchoscopy. Pediatr. Investig. 2019, 3, 9–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.C.; Kim, M.S.; Kim, D.J.; Park, D.H.; Lee, I.W.; Roh, H.J.; Lee, B.J.; Kim, Y.A.; Ko, S.; Sung, E.S. Subglottic stenosis in children: Our experience at a pediatric tertiary center for 8 years in South Korea. Int. J. Pediatr. Otorhinolaryngol. 2019, 121, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, C.M.; Shah, R.K. A novel and promising addition to the treatment arsenal for post-intubation subglottic stenosis: Holmium laser ablation and cryotherapy via flexible bronchoscopy. Pediatr. Investig. 2019, 3, 17–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, Y.R.; Taek Jeong, J.; Kyu Lee, M.; Kim, S.H.; Joong Yong, S.; Jeong Lee, S.; Lee, W.Y. Recurred post-intubation tracheal stenosis treated with bronchoscopic cryotherapy. Intern. Med. 2016, 55, 3331–3335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hosna, A.; Haseeb Ul Rasool, M.; Noff, N.C.; Makhoul, K.; Miller, D.; Umar, Z.; Ghallab, M.; Hasan, R.; Ashfaq, S.; Parikh, A.; et al. Cryotherapy for the treatment of tracheal stenosis: A systematic review. Cureus 2023, 15, e41012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varela, P.; Pio, L.; Torre, M. Primary tracheobronchial tumors in children. Semin. Pediatr. Surg. 2016, 25, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Varela, P.; Pio, L.; Brandigi, E.; Paraboschi, I.; Khen-Dunlop, N.; Hervieux, E.; Muller, C.; Mattioli, G.; Sarnacki, S.; Torre, M. Tracheal and bronchial tumors. J. Thorac. Dis. 2016, 8, 3781–3786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.; Fu, W.L.; Dai, J.H.; Li, Y.G.; Tang, X.Y.; Ma, X.F.; Geng, G.; Li, Y.; Yang, T.; Yan, L.; et al. Clinical analysis of primary tracheobronchial tumors in children and evaluation of the predicting models for mucoepidermoid carcinoma. Curr. Med. Sci. 2022, 42, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhu, P.; Xu, M.; Chen, S.; Wang, Y.; Shen, C.; Xu, H.; Chen, J.; Li, X. Diagnosis of infantile subglottic hemangioma and the effect of oral propranolol. Am. J. Otolaryngol. 2022, 43, 103610. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Song, D.; Wang, L.; Zhou, J.; Wang, C.; Li, J.; Sun, J.; Zhang, X.; Guo, L. Transarterial arterial sclerosing embolization for the treatment of propranolol-resistant subglottic hemangioma: Feasibility and effificacy. Front. Oncol. 2023, 13, 1062510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krowchuk, D.P.; Frieden, I.J.; Mancini, A.J.; Darrow, D.H.; Blei, F.; Greene, A.K.; Annam, A.; Baker, C.N.; Frommelt, P.C.; Hodak, A.; et al. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics 2019, 143, e20183475. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Wu, L.; Li, S.; Wu, Y.; Lai, C.; Chen, E.; Chen, Z.; Jin, G.; Wang, Y. Successful management of tracheal lobular capillary hemangioma with arterial embolization followed by electrosurgical snaring via flexible bronchoscopy in an 11-year-old boy: A case report and literature review. Front. Med. 2023, 10, 1088815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R.Y.; Quintanilla, N.M.; Chumpitazi, B.P.; Gitomer, S.; Chiou, E.H.; Ongkasuwan, J. Pediatric tracheal lobular capillary hemangioma: A case report and review of the literature. Laryngoscope 2021, 131, 1729–1731. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Dong, Z.; Zhang, J.; Yu, J. Lobular capillary hemangioma of the tracheobronchial tree: A case report and literature review. Medicine 2016, 95, e5499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.; Orban, N. Infantile recurrent respiratory papillomatosis: Review of adjuvant therapies. J. Laryngol. Otol. 2021, 135, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Dalar, L.; Ozdemir, C.; Sokucu, S.N.; Nur Urer, H.; Altin, S. Bronchoscopic treatment of benign endoluminal lung tumors. Can. Respir. J. 2019, 2019, 5269728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y. Case report: A rare cause of stridor and hoarseness in infants-congenital laryngeal web. Front. Pediatr. 2022, 10, 875137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabath, B.F.; Casal, R.F. Airway stenting for central airway obstruction: A review. Mediastinum 2023, 7, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Zhu, B.; Xu, X. Follow-up investigation of 41 children after metallic airway stent implantation: An 8-year experience. Front. Pediatr. 2020, 8, 579209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, X.; Ding, H.; Liu, X.; Zhu, B.; Feng, Z. Emergency management for congenital tracheal stenosis with endoluminal stenting in pediatric intensive care units. Ther. Adv. Respir. Dis. 2016, 10, 310–317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Wu, L.; Zhou, J.; Wang, Y.; Jin, F.; Chen, X.; Liu, J.; Chen, Z. Interventional therapy via flexible bronchoscopy in the management of foreign body-related occlusive endobronchial granulation tissue formation in children. Pediatr. Pulmonol. 2021, 56, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Uppal, D.K.; Madan, R.; Peters, N.J.; Bal, A.; Ballari, N.; Goyal, S.; Khosla, D. Mucoepidermoid carcinoma of the trachea in a 9-year-old male child: Case report and review of literature. Radiat. Oncol. J. 2022, 40, 208–212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nawalaniec, J.; Mullapudi, B.; Jiang, W.; Brigger, M.; El-Said, H.; Saenz, N.; Murthy, R. Carinal resection and reconstruction for an obstructing inflammatory myofibroblastic tumor in a child. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.S.; Lue, K.H.; Su, J.M.; Chang, H. Primary bronchopulmonary leiomyosarcoma of the left main bronchus in a child presenting with wheezing and atelectasis of the left lung. Pediatr. Pulmonol. 2002, 33, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, J.; Li, D.; Zhang, N.; Li, J.; Mao, J. Efficacy of bronchoscopic therapies for bronchial mucoepidermoid carcinoma in children: Results from six patients. Tumori. 2015, 101, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Jieli, Z.; Yunzhi, Z.; Nan, Z.; Heng, Z.; Hongwu, W.; Jiankun, L.; Dongmei, L.; Hui, W.; Jing, L.; Changxin, L.; et al. Different effects of bronchoscopic interventions on children and adults with tracheobronchial mucoepidermoid carcinoma. Tumori. 2022, 108, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Yoon, J.; Lee, E.; Lee, Y.S.; Kim, S.Y.; Roh, J.L.; Kim, D.K.; Choi, S.H.; Park, S.I.; Kim, Y.H.; et al. The different clinical aspects of pediatric primary airway tumors in the larynx, trachea, and bronchi. J. Korean Med. Sci. 2017, 32, 1304–1311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soloperto, D.; Gazzini, S.; Cerullo, R. Molecular mechanisms of carcinogenesis in pediatric airways tumors. Int. J. Mol. Sci. 2023, 24, 2195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hetzel, J.; Eberhardt, R.; Herth, F.J.; Petermann, C.; Reichle, G.; Freitag, L.; Dobbertin, I.; Franke, K.J.; Stanzel, F.; Beyer, T.; et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: A multicentre trial. Eur. Respir. J. 2012, 39, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Babiak, A.; Hetzel, J.; Krishna, G.; Fritz, P.; Moeller, P.; Balli, T.; Hetzel, M. Transbronchial cryobiopsy: A new tool for lung biopsies. Respiration 2009, 78, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Hetzel, J.; Hetzel, M.; Hasel, C.; Moeller, P.; Babiak, A. Old meets modern: The use of traditional cryoprobes in the age of molecular biology. Respiration 2008, 76, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Balaji, B.S.; Vijayasekaran, D.; Arunagirinathan, V.; Srivatsav, N.S. Utility of transbronchial cryobiopsy via flexible bronchoscope in diagnosis of isolated pulmonary LCH: A case report. Indian J. Pediatr. 2023, 90, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.; Agrawal, S.; Nair, S.; Jayakumar, C.; Gopalakrishnan, R.; Nambiar, A. Novel technique of performing transbronchial lung cryobiopsy (TBLC) for diagnosing diffuse parenchymal lung diseases (DPLD) in infants. Respirol. Case Rep. 2023, 11, e01096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moslehi, M.A. Transbronchial lung cryobiopsy in children. Expert. Rev. Respir. Med. 2022, 16, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Dhochak, N.; Mittal, S.; Jain, D.; Jat, K.R.; Singh, V.; Jana, M.; Kabra, S.K.; Madan, K. The first report of pediatric endobronchial cryobiopsy: Expanding horizon of bronchoscopic cryotherapy for airway tumors. Pediatr. Pulmonol. 2021, 56, 3051–3053. [Google Scholar] [CrossRef] [PubMed]
- Dhochak, N.; Mittal, S.; Mohan, A.; Jain, D.; Jat, K.R.; Jana, M.; Kabra, S.K.; Madan, K. Transbronchial lung cryobiopsy for diffuse lung diseases in children: A case series. Pediatr. Pulmonol. 2022, 57, 2851–2854. [Google Scholar] [CrossRef] [PubMed]
- Schramm, D.; Vicencio, A. Pediatric cryobiopsy. Pediatr. Pulmonol. 2023, 58, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, J.R.; Huang, Z.S.; Fu, W.L.; Wu, X.L.; Wu, N.; Kuebler, W.M.; Herth, F.J.F.; Fan, Y. Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: A randomised trial. Eur. Respir. J. 2021, 58, 2100055. [Google Scholar] [CrossRef] [PubMed]
- Troy, L.K.; Grainge, C.; Corte, T.J.; Williamson, J.P.; Vallely, M.P.; Cooper, W.A.; Mahar, A.; Myers, J.L.; Lai, S.; Mulyadi, E.; et al. Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): A prospective, comparative study. Lancet Respir. Med. 2020, 8, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Korevaar, D.A.; Colella, S.; Fally, M.; Camuset, J.; Colby, T.V.; Hagmeyer, L.; Hetzel, J.; Maldonado, F.; Morais, A.; Ravaglia, C.; et al. European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases. Eur. Respir. J. 2022, 60, 2200425. [Google Scholar] [CrossRef] [PubMed]
- Chandra, T.; Srikanta, J.T.; Madhusudan, M.; Mohite, K.; Arigela, K. Safety, utility and clinical efficacy of cryobiopsy of lung in paediatric population—A single centre experience. Lung India 2023, 40, 418–422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anxia, J.; Liu, F.; Ma, Y.; Yan, G.; Rao, X.; Meng, C.; Pan, Y.; Li, G.; Wang, F. Cap-shaped bronchial foreign bodies extraction in children by cryotherapy via flexible bronchoscopy. Eur. Respir. J. 2019, 54 (Suppl. 63), PA3101. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Vásquez-Pérez, A.; Gallego-Díaz, M.; Rosell, A.; Valdesoiro-Navarrete, L.; Tazi-Mezalek, R. Successful removal of distal persistent foreign body airway with CO2 cryotherapy in a child. Respir. Med. Case Rep. 2022, 36, 101594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brewington, J.J.; Benscoter, D.T.; Torres-Silva, C.A.; McHendry, C.M.; Lim, F.Y.; Cortezzo, D.E.; Hysinger, E.B. Flexible bronchoscopic thrombus cryoextraction in a neonate on extracorporeal membrane oxygenation. Am. J. Respir. Crit. Care Med. 2021, 203, 633–635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ni, C.; Yu, H.; Han, X.; Meng, C.; Zhang, Y. Clinical analysis of bronchoscopic cryotherapy in 156 pediatric patients. Pediatr. Int. 2017, 59, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, A.M.; Wu, X.L.; Huang, Z.S.; Kontogianni, K.; Sun, K.; Fu, W.L.; Wu, N.; Kuebler, W.M.; Herth, F.J.F. Transbronchial needle aspiration combined with cryobiopsy in the diagnosis of mediastinal diseases: A multicentre, open-label, randomised trial. Lancet Respir. Med. 2023, 11, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Mehta, A.C.; Mathur, P.N. Management of complications from diagnostic and interventional bronchoscopy. Respirology 2009, 14, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, W.J.; Sung, S.W.; Kim, Y.K.; Kim, C.H.; Zo, J.I.; Park, K.J. Endoscopic cryotherapy of lung and bronchial tumors: A systematic review. Korean J. Intern. Med. 2011, 26, 137–144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, X.; Li, S.; Wu, H.; Jin, F.; Jin, G.; Wu, L. Progress in the Application of Bronchoscopic Cryotherapy in Pediatric Pulmonary Diseases. Children 2024, 11, 1130. https://doi.org/10.3390/children11091130
Tao X, Li S, Wu H, Jin F, Jin G, Wu L. Progress in the Application of Bronchoscopic Cryotherapy in Pediatric Pulmonary Diseases. Children. 2024; 11(9):1130. https://doi.org/10.3390/children11091130
Chicago/Turabian StyleTao, Xiaofen, Shuxian Li, Hujun Wu, Fang Jin, Guoping Jin, and Lei Wu. 2024. "Progress in the Application of Bronchoscopic Cryotherapy in Pediatric Pulmonary Diseases" Children 11, no. 9: 1130. https://doi.org/10.3390/children11091130
APA StyleTao, X., Li, S., Wu, H., Jin, F., Jin, G., & Wu, L. (2024). Progress in the Application of Bronchoscopic Cryotherapy in Pediatric Pulmonary Diseases. Children, 11(9), 1130. https://doi.org/10.3390/children11091130