Ocular Biometry Distribution and One-Year Growth in Eight-Year-Old Southern European Schoolchildren Under the CISViT Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Study Population Sample
2.4. Measurements and Variable Definitions
- Sociodemographic Variables
- Ocular Biometric Variables
- Refractive Error
2.5. Statistical Analysis
3. Results
3.1. Sample Population Characteristics
3.2. General Ocular Biometric Parameter Distribution
3.3. Ocular Biometric Parameters by Refractive Error
3.4. Correlation Between Ocular Biometric Parameters and Refractive Error
3.5. Ocular Biometric Parameters by Ethnicity
3.6. Ocular Biometric Parameters Compared Across Ethnicities
3.7. Annual Growth in Ocular Biometric Parameters
4. Discussion
4.1. Ocular Biometric Parameter Distribution by Sociodemographic Variable
4.2. Ocular Biometric Parameters by Refractive Error
4.3. Annual Growth in Ocular Biometric Parameters
5. Strengths and Limitations
6. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Axial length |
CISViT | Terrassa Visual Health Children’s Cohort |
CR | Corneal radius |
D | Diopters |
mm | millimeters |
SE | Spherical equivalent |
∆ | Variation |
References
- Bremond-Gignac, D. Myopie de l’enfant [Myopia in children]. Med. Sci. 2020, 36, 763–768. [Google Scholar] [CrossRef]
- Wong, Y.L.; Yuan, Y.; Su, B.; Tufail, S.; Ding, Y.; Ye, Y.; Paille, D.; Drobe, B.; Chen, H.; Bao, J. Prediction of myopia onset with refractive error measured using non-cycloplegic subjective refraction: The WEPrOM Study. BMJ Open Ophthalmol. 2021, 6, e000628. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, A.; Hussaindeen, J.R.; Sivaraman, V.; Swaminathan, M.; Wong, Y.L.; Armitage, J.A.; Gentle, A.; Backhouse, S. Prevalence of myopia among urban and suburban school children in Tamil Nadu, South India: Findings from the Sankara Nethralaya Tamil Nadu Essilor Myopia (STEM) Study. Ophthalmic Physiol. Opt. J. Coll. Optom. 2022, 42, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Kanclerz, P.; Tsubota, K.; Lanca, C.; Saw, S.M. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Kido, A.; Masahiro, M.; Watanabe, N. Interventions to increase time spent outdoors for preventing incidence and progression of myopia in children. Cochrane Database Syst. Rev. 2024, 6, CD013549. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zou, H.; Lin, S.; Xu, X.; Zhao, R.; Lu, L.; Zhao, H.; Li, Q.; Wang, L.; Zhu, J.; et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin. Exp. Ophthalmol. 2018, 46, 861–872. [Google Scholar] [CrossRef]
- Ohno-Matsui, K.; Lai, T.Y.; Lai, C.; Cheung, C.M. Updates of pathologic myopia. Prog. Retin. Eye Res. 2016, 52, 156–187. [Google Scholar] [CrossRef] [PubMed]
- International Myopia Institute. Myopia. 2024. Available online: https://myopiainstitute.org/myopia/ (accessed on 10 July 2024).
- World Health Organization. (n.d.). Blindness and Visual Impairment. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 10 July 2024).
- Tideman, J.W.L.; Polling, J.R.; Vingerling, J.R.; Jaddoe, V.W.V.; Williams, C.; Guggenheim, J.A.; Klaver, C.C.W. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol. 2018, 96, 301–309. [Google Scholar] [CrossRef]
- Li, S.M.; Li, S.Y.; Kang, M.T.; Zhou, Y.H.; Li, H.; Liu, L.R.; Yang, X.Y.; Wang, Y.P.; Yang, Z.; Zhan, S.Y.; et al. Distribution of ocular biometry in 7- and 14-year-old Chinese children. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2015, 92, 566–572. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sankaridurg, P.; Naduvilath, T.; Wang, J.; Xiong, S.; Weng, R.; Du, L.; Chen, J.; Zou, H.; Xu, X. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4–18 years. Br. J. Ophthalmol. 2023, 107, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Oke, I.; Nihalani, B.R.; VanderVeen, D.K. Axial length and corneal curvature of normal eyes in the first decade of life. Eur. J. Ophthalmol. 2023, 33, 2217–2221. [Google Scholar] [CrossRef] [PubMed]
- Scheiman, M.; Gwiazda, J.; Zhang, Q.; Deng, L.; Fern, K.; Manny, R.E.; Weissberg, E.; Hyman, L.; COMET Group. Longitudinal changes in corneal curvature and its relationship to axial length in the Correction of Myopia Evaluation Trial (COMET) cohort. J. Optom. 2016, 9, 13–21. [Google Scholar] [CrossRef]
- Tao, L.; Wang, C.; Peng, Y.; Xu, M.; Wan, M.; Lou, J.; Yu, X. Correlation Between Increase of Axial Length and Height Growth in Chinese School-Age Children. Front. Public Health 2022, 9, 817882. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Kar, M.; Mandal, D.; Ray, R.S.; Kar, C. Variation of axial ocular dimensions with age, sex, height, BMI, and their relation to refractive status. J. Clin. Diagn. Res. 2015, 9, AC01–AC04. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.L.; Wu, J.F.; Ye, X.; Hu, Y.Y.; Wu, H.; Sun, W.; Guo, D.D.; Wang, X.R.; Bi, H.S.; Jonas, J.B. Axial Length and Associated Factors in Children: The Shandong Children Eye Study. Ophthalmologica 2016, 235, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.; Strang, N.; Cagnolati, B.; Gray, L. Change in body height, axial length and refractive status over a four-year period in Caucasian children and young adults. J. Optom. 2020, 13, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, A.P.; Brautaset, R.; Domínguez-Vicent, A. Effect of six different autorefractor designs on the precision and accuracy of refractive error measurement. PLoS ONE 2022, 17, e0278269. [Google Scholar] [CrossRef] [PubMed]
- Aldaba, M.; Ochando, P.; Vila-Vidal, N.; Vinuela-Navarro, V.; Guisasola, L.; Perez-Corral, J. Precision and agreement of axial length in paediatric population measured with MYAH and AL-Scan biometers. Clin. Exp. Optom. 2024, 107, 748–753. [Google Scholar] [CrossRef]
- Truckenbrod, C.; Meigen, C.; Brandt, M.; Vogel, M.; Sanz Diez, P.; Wahl, S.; Jurkutat, A.; Kiess, W. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthalmic Physiol. Opt. J. Coll. Optom. 2021, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, F.G.; Francke, M.; Hiemisch, A.; Kiess, W.; Michael, R. Ocular biometry in children and adolescents from 4 to 17 years: A cross-sectional study in central Germany. Ophthalmic Physiol. Opt. J. Coll. Optom. 2021, 41, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Sanz Diez, P.; Yang, L.H.; Lu, M.X.; Wahl, S.; Ohlendorf, A. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jiang, B.; Zhou, X. Axial length elongation in primary school-age children: A 3-year cohort study in Shanghai. BMJ Open 2019, 9, e029896. [Google Scholar] [CrossRef]
- Harrington, S.C.; O’Dwyer, V. Ocular biometry, refraction and time spent outdoors during daylight in Irish schoolchildren. Clin. Exp. Optom. 2020, 103, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.M.; Chua, W.H.; Gazzard, G.; Koh, D.; Tan, D.T.; Stone, R.A. Eye growth changes in myopic children in Singapore. Br. J. Ophthalmol. 2005, 89, 1489–1494. [Google Scholar] [CrossRef]
- He, X.; Zou, H.; Lu, L. Axial length/corneal radius ratio: Association with refractive state and role on myopia detection combined with visual acuity in chinese schoolchildren. PLoS ONE 2015, 10, e0111766. [Google Scholar] [CrossRef]
- Ip, J.M.; Huynh, S.C.; Kifley, A. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4846–4853. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Wang, J.; Zhu, Z.; Zhang, J.; Zhang, B.; Yang, J.; Du, L.; Zhu, J.; Zou, H.; et al. Cutoff values of axial length/corneal radius ratio for determining myopia vary with age among 3-18 years old children and adolescents. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 651–661. [Google Scholar] [CrossRef]
- O’Donoghue, L.; McClelland, J.F.; Logan, N.S.; Rudnicka, A.R.; Owen, C.G.; Saunders, K.J. Refractive error and visual impairment in school children in Northern Ireland. Br. J. Ophthalmol. 2010, 94, 1155–1159. [Google Scholar] [CrossRef]
- Li, L.; Zhong, H.; Li, J.; Li, C.R.; Pan, C.W. Incidence of myopia and biometric characteristics of premyopic eyes among Chinese children and adolescents. BMC Ophthalmol. 2018, 18, 178. [Google Scholar] [CrossRef] [PubMed]
- McCullough, S.; Adamson, G.; Breslin, K.M.M.; McClelland, J.F.; Doyle, L.; Saunders, K.J. Axial growth and refractive change in white European children and young adults: Predictive factors for myopia. Sci. Rep. 2020, 10, 15189. [Google Scholar] [CrossRef] [PubMed]
All N = 476 | Boys N = 231 (48.5%) | Girls N = 245 (51.5%) | p | |
---|---|---|---|---|
Refractive Error | ||||
Hyperopic | 90 (18.9%) | 43 (18.6%) | 47 (19.2%) | 0.673 |
Emmetropic | 340 (71.4%) | 164 (71.0%) | 176 (71.8%) | 0.515 |
Myopic | 46 (9.7%) | 24 (10.4%) | 22 (9.0%) | 0.768 |
Ethnicity | ||||
Caucasian | 214 (45%) | 106 (45.9%) | 108 (44.1%) | 0.891 |
Maghreb | 141 (29.6%) | 69 (29.9%) | 72 (29.4%) | 0.801 |
Latin | 79 (16.6%) | 38 (16.5%) | 41 (16.7%) | 0.736 |
Other | 42 (8.8%) | 18 (7.8) | 24 (9.8%) | 0.355 |
Initial Visit (8.2 Years Old) | Follow-Up Visit (9.3 Years Old) | |||||||
---|---|---|---|---|---|---|---|---|
All | Boys | Girls | p | All | Boys | Girls | p | |
AL (mm) | 22.93 ± 0.78 | 23.22 ± 0.73 | 22.65 ± 0.72 | <0.001 | 23.06 ± 0.81 | 23.35 ± 0.75 | 22.79 ± 0.77 | <0.001 |
CR (mm) | 7.79 ± 0.27 | 7.86 ± 0.27 | 7.72 ± 0.25 | <0.001 | 7.78 ± 0.27 | 7.85 ± 0.28 | 7.71 ± 0.25 | <0.001 |
AL/CR | 2.95 ± 0.08 | 2.96 ± 0.09 | 2.93 ± 0.08 | 0.002 | 2.97 ± 0.09 | 2.98 ± 0.09 | 2.96 ± 0.08 | 0.011 |
Initial Visit (8.2 Years Old) | Follow-Up Visit (9.3 Years Old) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
All | Boys | Girls | p (Sex) | p (Refractive Error) | All | Boys | Girls | p (Sex) | p (Refractive Error) | |
AL (mm) | <0.001 | <0.001 | ||||||||
All | 22.93 ± 0.78 | 23.22 ± 0.73 | 22.65 ± 0.72 | <0.001 | 23.06 ± 0.81 | 23.35 ± 0.75 | 22.79 ± 0.77 | <0.001 | ||
Hyperopic | 22.47 ± 0.68 | 22.75 ± 0.65 | 22.21 ± 0.60 | <0.001 | 22.59 ± 0.68 | 22.88 ± 0.65 | 22.32 ± 0.61 | <0.001 | ||
Emmetropic | 22.97 ± 0.74 | 23.29 ± 0.69 | 22.68 ± 0.67 | <0.001 | 23.10 ± 0.76 | 23.40 ± 0.70 | 22.82 ± 070 | <0.001 | ||
Myopic | 23.47 ± 0.68 | 23.62 ± 0.76 | 23.29 ± 0.83 | 0.169 | 23.64 ± 0.92 | 23.77 ± 0.85 | 23.50 ± 0.99 | 0.332 | ||
CR (mm) | 0.069 | 0.149 | ||||||||
All | 7.79 ± 0.27 | 7.86 ± 0.27 | 7.72 ± 0.25 | <0.001 | 7.78 ± 0.27 | 7.85 ± 0.28 | 7.71 ± 0.25 | <0.001 | ||
Hyperopic | 7.75 ± 0.23 | 7.81 ± 0.24 | 7.69 ± 0.22 | 0.0017 | 7.74 ± 0.23 | 7.80 ± 0.24 | 7.69 ± 0.22 | 0.022 | ||
Emmetropic | 7.81 ± 0.28 | 7.88 ± 0.28 | 7.73 ± 0.26 | <0.001 | 7.79 ± 0.29 | 7.88 ± 0.29 | 7.71 ± 0.26 | <0.001 | ||
Myopic | 7.73 ± 0.23 | 7.76 ± 0.19 | 7.71 ± 0.27 | 0.512 | 7.73 ± 0.23 | 7.74 ± 0.20 | 7.71 ± 0.27 | 0.670 | ||
AL/CR | <0.001 | <0.001 | ||||||||
All | 2.95 ± 0.08 | 2.96 ± 0.09 | 2.93 ± 0.08 | 0.002 | 2.97 ± 0.09 | 2.98 ± 0.09 | 2.96 ± 0.08 | 0.011 | ||
Hyperopic | 2.90 ± 0.07 | 2.92 ± 0.07 | 2.89 ± 0.06 | 0.044 | 2.92 ± 0.07 | 2.93 ± 0.07 | 2.90 ± 0.06 | 0.016 | ||
Emmetropic | 2.94 ± 0.07 | 2.96 ± 0.08 | 2.93 ± 0.07 | 0.024 | 2.97 ± 0.07 | 2.97 ± 0.07 | 2.96 ± 0.07 | 0.127 | ||
Myopic | 3.04 ± 0.10 | 3.05 ± 0.11 | 3.02 ± 0.10 | 0.612 | 3.06 ± 0.12 | 3.07 ± 0.12 | 3.05 ± 0.11 | 0.660 |
Initial Visit (8.2 Years Old) | Follow-Up Visit (9.3 Years Old) | |||||
---|---|---|---|---|---|---|
AL | CR | AL/CR | AL | CR | AL/CR | |
All | −0.396 (p < 0.001) | −0.018 (p = 0.694) | −0.410 (p < 0.001) | −0.312 (p < 0.001) | 0.072 (p = 0.117) | −0.413 (p < 0.001) |
Hyperopic | −0.204 (p = 0.054) | 0.104 (p = 0.330) | −0.384 (p < 0.001) | −0.014 (p = 0.893) | 0.196 (p = 0.064) | −0.301 (p = 0.004) |
Emmetropic | −0.234 (p < 0.001) | −0.011 (p = 0.840) | −0.233 (p < 0.001) | −0.229 (p < 0.001) | 0.037 (p = 0.501) | −0.289 (p < 0.001) |
Myopic | −0.603 (p < 0.001) | 0.081 (p = 0.593) | −0.682 (p < 0.001) | −0.661 (p < 0.001) | 0.137 (p = 0.365) | −0.767 (p < 0.001) |
Initial Visit (8.2 Years Old) | Follow-Up Visit (9.3 Years Old) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
All | Boys | Girls | p (Sex) | p (Ethnicity) | All | Boys | Girls | p (Sex) | p (Ethnicity) | |
AL (mm) | 0.002 | <0.001 | ||||||||
Caucasian | 22.78 ± 0.76 | 23.09 ± 0.69 | 22.48 ± 0.70 | <0.001 | 22.91 ± 0.78 | 23.20 ± 0.70 | 22.61 ± 0.73 | <0.001 | ||
Maghreb | 23.10 ± 0.81 | 23.38 ± 0.79 | 22.84 ± 0.74 | <0.001 | 23.25 ± 0.86 | 23.52 ± 0.82 | 23.00 ± 0.82 | <0.001 | ||
Latin | 23.00 ± 0.74 | 23.24 ± 0.73 | 22.77 ± 0.68 | 0.004 | 23.12 ± 0.76 | 23.36 ± 0.76 | 22.91 ± 0.67 | 0.008 | ||
Other | 22.93 ± 0.78 | 23.37 ± 0.57 | 22.60 ± 0.70 | <0.001 | 23.07 ± 0.75 | 23.53 ± 0.53 | 22.73 ± 0.72 | <0.001 | ||
CR (mm) | 0.030 | 0.018 | ||||||||
Caucasian | 7.75 ± 0.27 | 7.83 ± 0.28 | 7.68 ± 0.24 | <0.001 | 7.74 ± 0.27 | 7.82 ± 0.28 | 7.66 ± 0.24 | <0.001 | ||
Maghreb | 7.84 ± 0.28 | 7.89 ± 0.28 | 7.80 ± 0.26 | 0.057 | 7.84 ± 0.28 | 7.88 ± 0.28 | 7.79 ± 0.26 | 0.060 | ||
Latin | 7.78 ± 0.25 | 7.85 ± 0.25 | 7.72 ± 0.68 | 0.020 | 7.77 ± 0.26 | 7.84 ± 0.26 | 7.71 ± 0.25 | 0.028 | ||
Other | 7.79 ± 0.27 | 7.93 ± 0.19 | 7.70 ± 0.25 | 0.002 | 7.78 ± 0.27 | 7.92 ± 0.21 | 7.67 ± 0.25 | 0.001 | ||
AL/CR | 0.291 | 0.390 | ||||||||
Caucasian | 2.94 ± 0.07 | 2.95 ± 0.08 | 2.93 ± 0.06 | 0.062 | 2.96 ± 0.08 | 2.97 ± 0.08 | 2.95 ± 0.07 | 0.025 | ||
Maghreb | 2.95 ± 0.09 | 2.97 ± 0.09 | 2.93 ± 0.09 | 0.029 | 2.97 ± 0.10 | 2.99 ± 0.10 | 2.95 ± 0.10 | 0.031 | ||
Latin | 2.96 ± 0.09 | 2.96 ± 0.09 | 2.95 ± 0.09 | 0.575 | 2.98 ± 0.09 | 2.98 ± 0.10 | 2.97 ± 0.09 | 0.623 | ||
Other | 2.94 ± 0.07 | 2.95 ± 0.06 | 2.94 ± 0.068 | 0.550 | 2.97 ± 0.08 | 2.97 ± 0.08 | 2.97 ± 0.07 | 0.848 |
Population Group | AL (mm) | CR (mm) | AL/CR Ratio | SE (D) | Study |
---|---|---|---|---|---|
Southern Europe | 22.91 ± 0.78 | 7.74 ± 0.27 | 2.96 ± 0.08 | +0.09 ± 0.78 | CISViT |
Northern Europe | 23.10 ± 0.84 | 7.78 ± 0.26 | 2.97 ± 0.09 | +0.74 ± 1.30 | Generation R [10] |
Maghreb | 23.25 ± 0.86 | 7.84 ± 0.28 | 2.97 ± 0.10 | −0.39 ± 1.12 | CISViT |
East Asia | 23.29 ± 0.87 | 7.84 ± 0.25 | 2.97 ± 0.10 | 0.02 ± 1.29 | Baoshan Eye [6] |
AL (mm) | AL/CR | |||||
---|---|---|---|---|---|---|
Variation | p (Variation) | p (Group) | Variation | p (Variation) | p (Group) | |
All | 0.13 | 0.010 | 0.021 | <0.001 | ||
Sex | 0.372 | 0.863 | ||||
Boys | 0.12 | 0.072 | 0.019 | 0.021 | ||
Girls | 0.14 | 0.037 | 0.023 | 0.002 | ||
Refractive error | 0.484 | 0.332 | ||||
Hyperopic | 0.12 | 0.223 | 0.016 | 0.116 | ||
Emmetropic | 0.13 | 0.024 | 0.022 | <0.001 | ||
Myopic | 0.17 | 0.336 | 0.024 | 0.312 | ||
SE variation | <0.001 | <0.001 | ||||
∆SE ≥ −0.50 D | 0.12 | 0.034 | 0.020 | 0.001 | ||
∆SE < −0.50 D | 0.17 | 0.144 | 0.024 | 0.038 | ||
Ethnicity | 0.667 | 0.851 | ||||
Caucasian | 0.12 | 0.110 | 0.021 | 0.004 | ||
Maghreb | 0.15 | 0.135 | 0.021 | 0.071 | ||
Latin | 0.13 | 0.286 | 0.019 | 0.181 | ||
Other | 0.14 | 0.390 | 0.024 | 0.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharbi, M.E.; Guisasola, L.; Galdón, A.; Vinuela-Navarro, V.; Pérez-Corral, J.; Tomás, N.; Vila-Vidal, N. Ocular Biometry Distribution and One-Year Growth in Eight-Year-Old Southern European Schoolchildren Under the CISViT Project. Children 2025, 12, 221. https://doi.org/10.3390/children12020221
Gharbi ME, Guisasola L, Galdón A, Vinuela-Navarro V, Pérez-Corral J, Tomás N, Vila-Vidal N. Ocular Biometry Distribution and One-Year Growth in Eight-Year-Old Southern European Schoolchildren Under the CISViT Project. Children. 2025; 12(2):221. https://doi.org/10.3390/children12020221
Chicago/Turabian StyleGharbi, Mariam El, Laura Guisasola, Alba Galdón, Valldeflors Vinuela-Navarro, Joan Pérez-Corral, Núria Tomás, and Núria Vila-Vidal. 2025. "Ocular Biometry Distribution and One-Year Growth in Eight-Year-Old Southern European Schoolchildren Under the CISViT Project" Children 12, no. 2: 221. https://doi.org/10.3390/children12020221
APA StyleGharbi, M. E., Guisasola, L., Galdón, A., Vinuela-Navarro, V., Pérez-Corral, J., Tomás, N., & Vila-Vidal, N. (2025). Ocular Biometry Distribution and One-Year Growth in Eight-Year-Old Southern European Schoolchildren Under the CISViT Project. Children, 12(2), 221. https://doi.org/10.3390/children12020221