Sodium Glycerophosphate vs. Inorganic Phosphate Use in Parenteral Nutrition for Preterm Infants: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nehra, D.; Carlson, S.J.; Fallon, E.M.; Kalish, B.; Potemkin, A.K.; Gura, K.M.; Simpser, E.; Compher, C.; Puder, M.; The American Society for Parenteral and Enteral Nutrition. A.S.P.E.N. clinical guidelines: Nutrition support of neonatal patients at risk for metabolic bone disease. JPEN J. Parenter. Enteral Nutr. 2013, 37, 570–598. [Google Scholar] [PubMed]
- Steichen, J.J.; Gratton, T.L.; Tsang, R.C. Osteopenia of prematurity: The cause and possible treatment. J. Pediatr. 1980, 96, 528–534. [Google Scholar]
- Greer, F.R.; McCormick, A. Bone growth with low bone mineral content in very low birth weight premature infants. Pediatr. Res. 1986, 20, 925–928. [Google Scholar]
- James, J.R.; Congdon, P.J.; Truscott, J.; Horsman, A.; Arthur, R. Osteopenia of prematurity. Arch. Dis. Child. 1986, 61, 871–876. [Google Scholar]
- Wang, H.J.; Hsieh, Y.T.; Liu, L.Y.; Huang, C.F.; Lin, S.C.; Tsao, P.N.; Chou, H.C.; Yen, T.A.; Chen, C.Y. Use of sodium glycerophosphate in neonatal parenteral nutrition solutions to increase calcium and phosphate compatibility for preterm infants. Pediatr. Neonatol. 2020, 61, 331–337. [Google Scholar] [CrossRef]
- Chinoy, A.; Mughal, M.Z.; Padidela, R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term consequences. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F560–F566. [Google Scholar] [PubMed]
- Mihatsch, W.; Fewtrell, M.; Goulet, O.; Molgaard, C.; Picaud, J.C.; Senterre, T.; The ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin. Nutr. 2018, 37, 2360–2365. [Google Scholar] [PubMed]
- Watrobska-Swietlikowska, D. Compatibility of maximum inorganic and organic calcium and phosphate content in neonatal parenteral solutions. Sci. Rep. 2019, 9, 10525. [Google Scholar]
- Costello, I.; Powell, C.; Williams, A.F. Sodium glycerophosphate in the treatment of neonatal hypophosphataemia. Arch. Dis. Child. Fetal Neonatal Ed. 1995, 73, F44–F45. [Google Scholar]
- Hsu, P.C.; Tsao, P.N.; Chou, H.C.; Huang, H.C.; Yen, T.A.; Chen, C.Y. Sodium glycerophosphate use in parenteral nutrition improves mineral metabolism in extremely low birth weight infants. J. Pediatr. 2023, 253, 63–71.e2. [Google Scholar] [PubMed]
- Senterre, T.; Abu Zahirah, I.; Pieltain, C.; de Halleux, V.; Rigo, J. Electrolyte and mineral homeostasis after optimizing early macronutrient intakes in VLBW infants on parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Senterre, T.; Terrin, G.; De Curtis, M.; Rigo, J. Parenteral nutrition in premature infants. In Textbook of Pediatric Gastroenterology, Hepatology and Nutrition; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–86. [Google Scholar]
- Taiwan Society of Neonatology. Recommendation on Nutritional Care of Taiwan Preterm Infants; Taiwan Society of Neonatology: Taichung City, Taiwan, 2015. [Google Scholar]
- Grantz, K.L.; Hediger, M.L.; Liu, D.; Buck Louis, G.M. Fetal growth standards: The NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization multicentre growth reference study. Am. J. Obstet. Gynecol. 2018, 218, S641–S655.e28. [Google Scholar] [CrossRef]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic bone disease of prematurity: Diagnosis and management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Isemann, B.; Mueller, E.W.; Narendran, V.; Akinbi, H. Impact of early sodium supplementation on hyponatremia and growth in premature infants: A randomized controlled trial. JPEN J. Parenter. Enteral Nutr. 2016, 40, 342–349. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Physiology and pathophysiology of potassium homeostasis. Adv. Physiol. Educ. 2016, 40, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Pediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Mulla, S.; Stirling, S.; Cowey, S.; Close, R.; Pullan, S.; Howe, R.; Radbone, L.; Clarke, P. Severe hypercalcemia and hypophosphatemia with an optimized preterm parenteral nutrition formulation in two epochs of differing phosphate supplementation. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F451–F455. [Google Scholar] [CrossRef] [PubMed]
- Ziobro, J.; Shellhaas, R.A. Neonatal Seizures: Diagnosis, Etiologies, and Management. Semin. Neurol. 2020, 40, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Brener Dik, P.H.; Galletti, M.F.; Fernández Jonusas, S.A.; Alonso, G.; Mariani, G.L.; Fustiñana, C.A. Early hypophosphatemia in preterm infants receiving aggressive parenteral nutrition. J. Perinatol. 2015, 35, 712–715. [Google Scholar] [CrossRef]
- Ozer Bekmez, B.; Oguz, S.S. Early vs late initiation of sodium glycerophosphate: Impact on hypophosphatemia in preterm infants <32 weeks. Clin. Nutr. 2022, 41, 415–423. [Google Scholar] [PubMed]
- Mazouri, A.; Khosravi, N.; Bordbar, A.; Khalesi, N.; Saboute, M.; Taherifard, P.; Mirzababaee, M.; Ebrahimi, M. Does adding intravenous phosphorus to parenteral nutrition has any effects on calcium and phosphorus metabolism and bone mineral content in preterm neonates. Acta. Med. Iran. 2017, 55, 395–398. [Google Scholar]
- Betto, M.; Gaio, P.; Ferrini, I.; De Terlizzi, F.; Zambolin, M.; Scattolin, S.; Pasinato, A.; Verlato, G. Assessment of bone health in preterm infants through quantitative ultrasound and biochemical markers. J. Matern. Fetal Neonatal Med. 2014, 27, 1343–1347. [Google Scholar] [CrossRef]
- Tinnion, R.J.; Embleton, N.D. How to use…alkaline phosphatase in neonatology. Arch. Dis. Child. Educ. Pract. Ed. 2012, 97, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.L.; Chen, P.C.; Jeng, S.F.; Hsieh, C.J.; Peng, S.S.; Yen, R.F.; Chou, H.-C.; Chen, C.-Y.; Tsao, P.-N.; Hsieh, W.-S. Serial measurements of serum alkaline phosphatase for early prediction of osteopenia in preterm infants. J. Paediatr. Child Health 2011, 47, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Figueras-Aloy, J.; Álvarez-Domínguez, E.; Pérez-Fernández, J.M.; Moretones-Suñol, G.; Vidal-Sicart, S.; Botet-Mussons, F. Metabolic bone disease and bone mineral density in very preterm infants. J. Pediatr. 2014, 164, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Strømmen, K.; Blakstad, E.W.; Almaas, A.N.; Westerberg, A.C.; Brække, K.; Rønnestad, A.; Nakstad, B.; Berg, J.P.; Veierød, M.B.; et al. Enhanced feeding in very-low-birthweight infants may cause electrolyte disturbances and septicemia—A randomized controlled trial. Clin. Nutr. 2013, 32, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Agarwal, R.; Sankar, M.J.; Deorari, A.; Paul, V.K. Hypocalcemia in the newborn. Indian J. Pediatr. 2010, 77, 1123–1128. [Google Scholar] [CrossRef]
- Mansoor, G.; Abbasi, S.Q.; Bashir, Z.; Hafeez, S.; Qurat-Ul-Ain; Ali, Z.; Akbar, A. Association between lipid peroxidation and hypocalcemia in patients with pregnancy-induced hypertension (PIH) in a local population of Pakistan. PJMHS 2020, 14, 802–805. [Google Scholar]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; Fuleihan, G.E.-H.; Josse, R.G.; Lips, P.; Morales-Torres, J.; et al. Global vitamin D status and determinants of hypovitaminosis. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar]
- Mehrotra, P.; Marwaha, R.K.; Aneja, S.; Seth, A.; Singla, B.M.; Ashraf, G.; Sharma, B.; Sastry, A.; Tandon, N. Hypovitaminosis D and hypocalcemic seizures during infancy. Indian Pediatr. 2010, 47, 581–586. [Google Scholar]
- Balasubramanian, S.; Shivbalan, S.; Kumar, P.S. Hypocalcemia due to vitamin D deficiency in exclusively breastfed infants. Indian Pediatr. 2006, 43, 247–251. [Google Scholar] [PubMed]
- Forrester, S.D.; Moreland, K.J. Hypophosphatemia. Causes and clinical consequences. J. Vet. Intern. Med. 1989, 3, 149–159. [Google Scholar]
- Silvis, S.E.; Paragas, P.D. Paresthesia, weakness, seizures, and hypophosphatemia in patients receiving hyperalimentation. Gastroenterology 1972, 62, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Håglin, L. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbances. Nutr. Neurosci. 2016, 19, 213–223. [Google Scholar] [PubMed]
- Takeda, E.; Ikeda, S.; Nakahashi, O. Lack of phosphorus intake and nutrition. Clin. Calcium 2012, 22, 1487–1491. [Google Scholar] [PubMed]
Inorganic Phosphate (n = 197) | Sodium Glycerophosphate (n = 205) | |||||
---|---|---|---|---|---|---|
N | % | N | % | p-Value | ||
Maternal factor | ||||||
GDM | 8 | 4.1 | 39 | 19.0 | <0.001 | |
PIH | 8 | 4.1 | 30 | 14.6 | 0.003 | |
Preeclampsia | 41 | 20.8 | 55 | 26.8 | 0.157 | |
IUGR | 21 | 10.7 | 28 | 13.7 | 0.358 | |
Antenatal corticosteroid use | 143 | 72.6 | 165 | 80.5 | 0.061 | |
Neonatal factor | ||||||
Sex | Male | 92 | 46.7 | 110 | 53.7 | 0.163 |
Female | 105 | 53.3 | 95 | 46.3 | ||
BW at birth (g) | <1000 | 50 | 25.4 | 58 | 28.3 | 0.687 |
1000–1499 | 76 | 38.6 | 81 | 39.5 | ||
>1500 | 71 | 36.0 | 66 | 32.2 | ||
Feeding type | Breast milk | 92 | 46.7 | 110 | 53.7 | 0.315 |
Premature formula milk | 53 | 26.9 | 52 | 25.3 | ||
Mixed | 52 | 26.4 | 43 | 21.0 | ||
Feeding with vitamin D | 168 | 85.3 | 194 | 94.6 | 0.002 | |
Diuretic use | 43 | 21.8 | 49 | 23.9 | 0.621 |
Mean (SD) | Inorganic Phosphate (n = 197) | Sodium Glycerophosphate (n = 205) | p-Value |
---|---|---|---|
Gestational age (weeks) | 30.5 (3.2) | 30.2 (3.1) | 0.304 |
Time to full feeding (days) | 18.4 (12.2) | 19.3 (11.3) | 0.095 |
PN duration (days) | 19.0 (13.4) | 20.0 (15.8) | 0.347 |
Length of hospital stay (days) | 58.7 (35.8) | 63.5 (40.4) | 0.307 |
Average calcium per week (mg/kg/day) | |||
Week 1 | 228.5 (53.2) | 340.6 (83.8) | <0.001 |
Week 2 | 172.4 (98.9) | 351.8 (144.0) | <0.001 |
Week 3 | 101.2 (108.1) | 249.0 (207.0) | <0.001 |
Week 4 | 55.3 (93.5) | 128.9 (192.8) | 0.014 |
Average phosphate per week (mg/kg/day) | |||
Week 1 | 12.8 (3.3) | 23.0 (6.6) | <0.001 |
Week 2 | 12.4 (8.8) | 27.5 (11.4) | <0.001 |
Week 3 | 7.1 (8.2) | 20.2 (17.0) | <0.001 |
Week 4 | 3.9 (7.2) | 11.2 (16.6) | 0.011 |
Average Ca/P ratio per week | |||
Week 1 | 1.3 (0.3) | 1.2 (0.2) | <0.001 |
Week 2 | 1.0 (0.5) | 0.9 (0.3) | <0.001 |
Week 3 | 0.7 (0.6) | 0.6 (0.5) | 0.007 |
Week 4 | 0.4 (0.6) | 0.3 (0.4) | 0.315 |
Mean (SD) | Inorganic Phosphate (n = 197) | Sodium Glycerophosphate (n = 205) | p-Value |
---|---|---|---|
At birth (Z-score) | |||
BW | −0.54 (1.15) | −0.50 (1.09) | 0.720 |
BL | −0.82 (1.24) | −0.79 (1.20) | 0.585 |
HC | −0.70 (1.10) | −0.69 (1.12) | 0.896 |
At 1 month old (Z-score) | |||
BW | −0.86 (1.39) | −0.77 (1.35) | 0.258 |
BL | −1.38 (1.68) | −1.40 (1.68) | 0.735 |
HC | −0.87 (1.57) | −0.97 (1.57) | 0.541 |
At 2 months old (Z-score) | |||
BW | −0.28 (1.44) | −0.17 (1.49) | 0.477 |
BL | −1.06 (1.88) | −1.17 (1.93) | 0.586 |
HC | −0.10 (1.76) | −0.34 (1.77) | 0.281 |
At 6 months old (Z-score) | |||
BW | −0.37 (1.29) | −0.19 (1.35) | 0.061 |
BL | −0.67 (1.42) | −0.45 (1.41) | 0.115 |
HC | −0.23 (1.33) | −0.16 (1.34) | 0.472 |
At 1 year old (Z-score) | |||
BW | −0.48 (1.25) | −0.40 (1.29) | 0.440 |
BL | −0.61 (1.32) | −0.39 (1.34) | 0.104 |
HC | −0.41 (1.27) | −0.38 (1.32) | 0.823 |
Growth difference at 1 year (Z-score) | |||
BW | 0.06 (1.39) | 0.10 (1.25) | 0.804 |
BL | 0.20 (1.45) | 0.40 (1.35) | 0.139 |
HC | 0.29 (1.45) | 0.30 (1.45) | 0.921 |
Serum calcium (mg/dL) * | 7.4 (1.1) | 7.3 (1.1) | 0.419 |
Serum phosphate (mg/dL) † | 3.5 (1.3) | 4.0 (1.2) | 0.001 |
Serum ALP (U/L) ‡ | 466.4 (228.6) | 402.8 (202.8) | 0.004 |
Serum creatinine (mg/dL) § | 1.1 (0.8) | 1.1 (0.6) | 0.337 |
Inorganic Phosphate (n = 197) | Sodium Glycerophosphate (n = 205) | |||||
---|---|---|---|---|---|---|
N | % | N | % | p-Value | ||
Serum ALP > 500 * | 71 | 37.6 | 50 | 24.6 | 0.007 | |
Hypocalcemia † | 62 | 31.5 | 85 | 41.5 | 0.038 | |
Hypophosphatemia ‡ | 165 | 84.2 | 160 | 78.0 | 0.117 | |
Hypernatremia | 33 | 16.8 | 29 | 14.1 | 0.470 | |
Hyponatremia | Mild | 102 | 51.8 | 108 | 52.7 | 0.955 |
Moderate | 66 | 33.5 | 64 | 31.2 | ||
Severe | 4 | 2.0 | 5 | 2.4 | ||
Hyper-/hypokalemia | Hyperkalemia | 8 | 4.1 | 3 | 1.5 | 0.371 |
Hypokalemia | 78 | 39.6 | 90 | 43.9 | ||
Both | 18 | 9.1 | 16 | 7.8 | ||
Retinopathy of prematurity | Stage 1 | 30 | 15.2 | 20 | 9.8 | 0.422 |
Stage 2 | 12 | 6.1 | 13 | 6.3 | ||
Stage 3 | 13 | 6.6 | 12 | 5.9 | ||
Stage 4 | 0 | 0.0 | 1 | 0.5 | ||
Bronchopulmonary dysplasia | 42 | 21.3 | 44 | 21.5 | 0.972 | |
Acute kidney injury | 33 | 16.8 | 25 | 12.2 | 0.194 | |
Metabolic bone diseases | 17 | 8.6 | 11 | 5.4 | 0.199 | |
Sepsis | 27 | 13.7 | 37 | 18.0 | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.-T.; Chang, Y.-J.; Chen, L.-J.; Lee, C.-H.; Chen, H.-N.; Chen, J.-Y.; Hsiao, C.-C. Sodium Glycerophosphate vs. Inorganic Phosphate Use in Parenteral Nutrition for Preterm Infants: A Retrospective Study. Children 2025, 12, 229. https://doi.org/10.3390/children12020229
Chang J-T, Chang Y-J, Chen L-J, Lee C-H, Chen H-N, Chen J-Y, Hsiao C-C. Sodium Glycerophosphate vs. Inorganic Phosphate Use in Parenteral Nutrition for Preterm Infants: A Retrospective Study. Children. 2025; 12(2):229. https://doi.org/10.3390/children12020229
Chicago/Turabian StyleChang, Jung-Ting, Yu-Jun Chang, Lih-Ju Chen, Cheng-Han Lee, Hsiao-Neng Chen, Jia-Yuh Chen, and Chien-Chou Hsiao. 2025. "Sodium Glycerophosphate vs. Inorganic Phosphate Use in Parenteral Nutrition for Preterm Infants: A Retrospective Study" Children 12, no. 2: 229. https://doi.org/10.3390/children12020229
APA StyleChang, J.-T., Chang, Y.-J., Chen, L.-J., Lee, C.-H., Chen, H.-N., Chen, J.-Y., & Hsiao, C.-C. (2025). Sodium Glycerophosphate vs. Inorganic Phosphate Use in Parenteral Nutrition for Preterm Infants: A Retrospective Study. Children, 12(2), 229. https://doi.org/10.3390/children12020229