Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria and Definitions
2.3. Statistical Analysis
3. Results
Newborn Baseline Characteristics
4. Discussions
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a neonatal-specific consensus definition for sepsis. Pediatr. Crit. Care Med. 2014, 15, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.K.M.; Huskins, W.C.; Thaver, D.; Bhutta, Z.A.; Abbas, Z.; Goldmann, D.A. Hospital-acquired neonatal infections in developing countries. Lancet 2005, 365, 1175–1188. [Google Scholar] [CrossRef]
- United Nations; Interagency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2010: Estimates Developed by the UN Inter-Agency Group for Child Mortality Estimation; UNICEF: New York, NY, USA, 2019; Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/UN-IGME-Child-Mortality-Report-2019.pdf (accessed on 22 March 2024).
- Wang, H.; Liddell, C.A.; Coates, M.M.; Mooney, M.D.; Levitz, C.E.; Schumacher, A.E.; Apfel, H.; Iannarone, M.; Phillips, B.; Lofgren, K.T.; et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 957–979, Correction in Lancet 2014, 384, 956. [Google Scholar] [CrossRef]
- Abed, N.T.; Behiry, E.G.; El-Aty, B.F.A. The Role of Salivary C-Reactive Protein in Diagnosis of Neonatal Sepsis. J. Neonatol. 2023, 37, 31–37. [Google Scholar] [CrossRef]
- Singh, M.; Alsaleem, M.; Gray, C.P. Neonatal Sepsis; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Wynn, J.L.; Polin, R.A. Progress in the management of neonatal sepsis: The importance of a consensus definition. Pediatr. Res. 2018, 83, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fleiss, N.; Schwabenbauer, K.; Randis, T.M.; Polin, R.A. What’s new in the management of neonatal early-onset sepsis? Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.; Kornelisse, R.F.; Buonocore, G.; Maier, R.F.; Stocker, M. Culture-Negative Early-Onset Neonatal Sepsis—At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front. Pediatr. 2018, 6, 285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laccetta, G.; Ciantelli, M.; Tuoni, C.; Sigali, E.; Miccoli, M.; Cuttano, A. Early-onset sepsis risk calculator: A review of its effectiveness and comparative study with our evidence-based local guidelines. Ital. J. Pediatr. 2021, 47, 73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, P.; Zhou, Y.; Liu, B.; Jin, Z.; Zhuang, X.; Dai, W.; Yang, Z.; Feng, X.; Zhou, Q.; Liu, Y.; et al. Perinatal Antibiotic Exposure Affects the Transmission between Maternal and Neonatal Microbiota and Is Associated with Early-Onset Sepsis. Msphere 2020, 5, e00984-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stocker, M.; van Herk, W.; El Helou, S.; Dutta, S.; Fontana, M.S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: A multicentre, randomised controlled trial (NeoPIns). Lancet 2017, 390, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 2002, 347, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kingsley Manoj Kumar, S.; Vishnu Bhat, B. Current challenges and future perspectives in neonatal sepsis. Pediatr. Infect. Dis. 2015, 7, 41–46. [Google Scholar] [CrossRef]
- Perrone, S.; Lotti, F.; Longini, M.; Rossetti, A.; Bindi, I.; Bazzini, F.; Belvisi, E.; Sarnacchiaro, P.; Scapellato, C.; Buonocore, G. C reactive protein in healthy term newborns during the first 48 hours of life. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F163–F166. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, E.; Dolci, A.; Panteghini, M. Procalcitonin: Between evidence and critical issues. Clin. Chim. Acta. 2019, 496, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Mally, P.; Xu, J.; Hendricks-Muñoz, K. Biomarkers for neonatal sepsis: Recent developments. Res. Rep. Neonatol. 2014, 4, 157–168. [Google Scholar] [CrossRef]
- Tuzun, F.; Ozkan, H.; Cetinkaya, M.; Yucesoy, E.; Kurum, O.; Cebeci, B.; Cakmak, E.; Ozkutuk, A.; Keskinoglu, P.; Baysal, B.; et al. Is European Medicines Agency (EMA) sepsis criteria accurate for neonatal sepsis diagnosis or do we need new criteria? PLoS ONE 2019, 14, e0218002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hecht, J.L.; Fichorova, R.N.; Tang, V.; Allred, E.N.; McElrath, T.F.; Leviton, A. Relationship Between Neonatal Blood Protein Concentrations and Placenta Histologic Characteristics in Extremely Low GA Newborns. Pediatr. Res. 2011, 69, 68–73. [Google Scholar] [CrossRef]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Menon, K.; Schlapbach, L.J.; Akech, S.; Argent, A.; Biban, P.; Carrol, E.D.; Chiotos, K.; Jobayer Chisti, M.; Evans, I.V.R.; Inwald, D.P.; et al. Criteria for Pediatric Sepsis—A Systematic Review and Meta-Analysis by the Pediatric Sepsis Definition Taskforce. Crit. Care Med. 2022, 50, 21–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gan, M.Y.; Lee, W.L.; Yap, B.J.; Seethor, S.T.T.; Greenberg, R.G.; Pek, J.H.; Tan, B.; Hornik, C.P.V.; Lee, J.H.; Chong, S.L. Contemporary Trends in Global Mortality of Sepsis Among Young Infants Less Than 90 Days: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 890767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, D.N.; Sangild, P.T. Pathogenesis and biomarkers for necrotizing enterocolitis: Getting any closer? EBioMedicine 2019, 45, 13–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Sakhuja, A.; Kumar, G.; McGrath, E.; Nanchal, R.S.; Kashani, K.B. Culture-Negative Severe Sepsis: Nationwide Trends and Outcomes. Chest 2016, 150, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, J.L. Stewardship in sepsis. Rev Esp Quim. 2019, 32 (Suppl. S2), 42–46. [Google Scholar] [PubMed] [PubMed Central]
- van Herk, W.; el Helou, S.; Janota, J.; Hagmann, C.; Klingenberg, C.; Staub, E.; Giannoni, E.; Tissieres, P.; Schlapbach, L.J.; van Rossum, A.M.; et al. Variation in Current Management of Term and Late-preterm Neonates at Risk for Early-onset Sepsis: An International Survey and Review of Guidelines. Pediatr. Infect. Dis. J. 2016, 35, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Aeimcharnbanchong, K. Incidence Rate and Associated Factors of Early Onset Sepsis Among Neonate Born at ≥35 Weeks’ Gestation in Thai Tertiary Hospital. Infect. Drug Resist. 2023, 16, 4093–4100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Randis, T.M.; Rice, M.M.; Myatt, L.; Tita, A.T.N.; Leveno, K.J.; Reddy, U.M.; Varner, M.W.; Thorp, J.M.; Mercer, B.M.; Dinsmoor, M.J.; et al. Incidence of early-onset sepsis in infants born to women with clinical chorioamnionitis. J. Perinat. Med. 2018, 46, 926–933. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wortham, J.M.; Hansen, N.I.; Schrag, S.J.; Hale, E.; Van Meurs, K.; Sánchez, P.J.; Cantey, J.B.; Faix, R.; Poindexter, B.; Goldberg, R.; et al. Chorioamnionitis and Culture-Confirmed, Early-Onset Neonatal Infections. Pediatrics 2016, 137, e20152323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beck, C.; Gallagher, K.; Taylor, L.A.; Goldstein, J.A.; Mithal, L.B.; Gernand, A.D. Chorioamnionitis and Risk for Maternal and Neonatal Sepsis: A Systematic Review and Meta-analysis. Obs. Gynecol. 2021, 137, 1007–1022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhudasia, M.B.; Flannery, D.D.; Pfeifer, M.R.; Puopolo, K.M. Updated Guidance: Prevention and Management of Perinatal Group B Streptococcus Infection. Neoreviews 2021, 22, e177–e188. [Google Scholar] [CrossRef] [PubMed]
- Doenhardt, M.; Seipolt, B.; Mense, L.; Winkler, J.L.; Thürmer, A.; Rüdiger, M.; Berner, R.; Armann, J. Neonatal and young infant sepsis by Group B Streptococci and Escherichia coli: A single-center retrospective analysis in Germany-GBS screening implementation gaps and reduction in antibiotic resistance. Eur. J. Pediatr. 2020, 179, 1769–1777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuzniewicz, M.W.; Puopolo, K.M.; Fischer, A.; Walsh, E.M.; Li, S.; Newman, T.B.; Kipnis, P.; Escobar, G.J. A Quantitative, Risk-Based Approach to the Management of Neonatal Early-Onset Sepsis. JAMA Pediatr. 2017, 171, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.D.; Kotadia, N.; English, L.; Kissoon, N.; Ansermino, J.M.; Kabakyenga, J.; Lavoie, P.M.; Wiens, M.O. Predictors of Mortality in Neonates and Infants Hospitalized with Sepsis or Serious Infections in Developing Countries: A Systematic Review. Front. Pediatr. 2018, 6, 277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collins, A.; Weitkamp, J.H.; Wynn, J.L. Why are preterm newborns at increased risk of infection? Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F391–F394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daskalakis, G.; Psarris, A.; Koutras, A.; Fasoulakis, Z.; Prokopakis, I.; Varthaliti, A.; Karasmani, C.; Ntounis, T.; Domali, E.; Theodora, M.; et al. Maternal Infection and Preterm Birth: From Molecular Basis to Clinical Implications. Children 2023, 10, 907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Committee on Fetus and Newborn.; Committee on Infectious Diseases. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.H.; Chang, H.Y.; Li, S.T.; Jim, W.T.; Chi, H.; Hsu, C.H.; Peng, C.C.; Lin, C.Y.; Chen, C.H.; Chang, J.H. An 18-year retrospective study on the epidemiology of early-onset neonatal sepsis—Emergence of uncommon pathogens. Pediatr. Neonatol 2021, 62, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H.A.; Safwat, N. Mean platelet volume in preterm: A predictor of early onset neonatal sepsis. J. Matern. Fetal Neonatal Med. 2020, 33, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Farias, J.S.; Villarreal, E.G.; Dhargalkar, J.; Kleinhans, A.; Flores, S.; Loomba, R.S. C-reactive protein and procalcitonin after congenital heart surgery utilizing cardiopulmonary bypass: When should we be worried? J. Card. Surg. 2021, 36, 4301–4307. [Google Scholar] [CrossRef]
- Arif, S.K.; Suyata, M.P.; Gaus, S.; Ahmad, M.R. Procalcitonin and C-Reactive Protein as a Predictor of Organ Dysfunction and Outcome of Sepsis and Septic Shock Patients in Intensive Care Unit. Glob. J. Health Sci. Can. Cent. Sci. Educ. 2017, 9, 169. [Google Scholar] [CrossRef]
- Mjelle, A.B.; Guthe, H.J.T.; Reigstad, H.; Bjørke-Monsen, A.L.; Markestad, T. Serum concentrations of C-reactive protein in healthy term-born Norwegian infants 48–72 hours after birth. Acta Paediatr. 2019, 108, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Takemura, Y.; Ishida, H.; Watanabe, K.; Kawai, T. C-reactive protein kinetics in newborns: Application of a high-sensitivity analytic method in its determination. Clin. Chem. 2002, 48, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Vogl, S.E.; Worda, C.; Egarter, C.; Bieglmayer, C.; Szekeres, T.; Huber, J.; Husslein, P. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG 2006, 113, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, T.; Wang, J.; Feng, Y.; Ren, C.; Xu, Z.; Yang, J.; Zhang, Q.; An, C. Clinical Value of C-Reactive Protein/Platelet Ratio in Neonatal Sepsis: A Cross-Sectional Study. J. Inflamm. Res. 2021, 14, 5123–5129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iroh Tam, P.Y.; Bendel, C.M. Diagnostics for neonatal sepsis: Current approaches and future directions. Pediatr. Res. 2017, 82, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Tiwari, S.; Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: An overview. Microb. Pathog. 2017, 107, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef] [PubMed]
- De Rose, D.U.; Ronchetti, M.P.; Martini, L.; Rechichi, J.; Iannetta, M.; Dotta, A.; Auriti, C. Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Trop. Med. Infect. Dis. 2024, 9, 199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nusman, C.M.; Snoek, L.; van Leeuwen, L.M.; Dierikx, T.H.; van der Weijden, B.M.; Achten, N.B.; Bijlsma, M.W.; Visser, D.H.; van Houten, M.A.; Bekker, V.; et al. Group B Streptococcus Early-Onset Disease: New Preventive and Diagnostic Tools to Decrease the Burden of Antibiotic Use. Antibiotics 2023, 12, 489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Snoek, L.; van Kassel, M.N.; Krommenhoek, J.F.; Achten, N.B.; Plötz, F.B.; van Sorge, N.M.; Brouwer, M.C.; van de Beek, D.; Bijlsma, M.W.; NOGBS study group. Neonatal early-onset infections: Comparing the sensitivity of the neonatal early-onset sepsis calculator to the Dutch and the updated NICE guidelines in an observational cohort of culture-positive cases. EClinicalMedicine 2022, 44, 101270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morris, R.; Jones, S.; Banerjee, S.; Collinson, A.; Hagan, H.; Walsh, H.; Thornton, G.; Barnard, I.; Warren, C.; Reid, J.; et al. Comparison of the management recommendations of the Kaiser Permanente neonatal early-onset sepsis risk calculator (SRC) with NICE guideline CG149 in infants ≥ 34 weeks’ gestation who developed early-onset sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Höller, D. The correct blood volume for paediatric blood cultures: A conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Woodford, E.C.; Dhudasia, M.B.; Puopolo, K.M.; Skerritt, L.A.; Bhavsar, M.; DeLuca, J.; Mukhopadhyay, S. Neonatal blood culture inoculant volume: Feasibility and challenges. Pediatr. Res. 2021, 90, 1086–1092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coggins, S.A.; Harris, M.C.; Srinivasan, L. Dual-site blood culture yield and time to positivity in neonatal late-onset sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Coggins, S.; Dhudasia, M.B.; Flannery, D.D.; Healy, T.; Puopolo, K.M.; Gerber, J.; Mukhopadhyay, S. Utility of Anaerobic Blood Cultures in Neonatal Sepsis Evaluation. J. Pediatr. Infect. Dis. Soc. 2024, 13, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, R.M.; Muller-Pebody, B.; Planche, T.; Johnson, A.; Hopkins, S.; Sharland, M.; Kennea, N.; Heath, P.T. Neonatal sepsis--many blood samples, few positive cultures: Implications for improving antibiotic prescribing. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F487–F488. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Baird, S.D. Ending the Culture of Culture-Negative Sepsis in the Neonatal ICU. Pediatrics 2017, 140, e20170044. [Google Scholar] [CrossRef] [PubMed]
Clinical Findings | Laboratory Findings |
---|---|
Body temperature (temperature irregularities, >38 °C, <36 °C) | Leukocyte count (>20.000/mm3 or <4000/mm3) |
Cardiovascular instability (tachycardia or bradycardia and/or rhythm irregularity; urine amount < 1 mL/kg/h; hypotension; impaired peripheral perfusion) | Immature/total neutrophil ratio (≥0.2) |
Skin and subcutaneous lesions (petechiae, scleredema) | Platelet count (<100.000/mm3) |
Respiratory instability (apnea or tachypnea or increased oxygen demand or increased need for ventilation support) | CRP > 15 mg/L (1.5 mg/dL) or PCT ≥ 2 ng/mL |
Gastrointestinal issues (nutritional intolerance, insufficient breastfeeding, abdominal distension) | In blood sugar monitoring at least twice (hyperglycemia > 180 mg/dL or 10 mMoL/L or hypoglycemia < 45 mg/dL or 2.5 mMoL/L) |
Non-specific symptoms (irritability, lethargy, hypotonia) | Metabolic acidosis (base deficit < 10 mEq/L or serum lactate > 2 mMoL/L) |
Variable | CN-EOS (n = 66) Mean ± SD/Freq. (%) | S-EOS (n = 65) Mean ± SD/Freq. (%) | p-Value | |
---|---|---|---|---|
Gestational age | 32.50 (±4.52) | 38.52 (±1.60) | 0.001 | |
Birth weight | 1998.56 (±920.02) | 3145.23 (±553.13) | 0.001 | |
Length | 42.68 (±5.82) | 49.04 (±2.24) | 0.001 | |
Head circumference | 29.54 (±3.99) | 33.13 (±1.56) | 0.001 | |
Ponderal index | 2.37 (±0.37) | 2.63 (±0.26) | 0.001 | |
Gender | Male | 37 (56.1%) | 37 (56.9%) | 0.92 |
Female | 29 (43.9%) | 28 (43.1%) |
Variable | CN-EOS (n = 66) Mean ± SD/Freq. (%) | S-EOS (n = 65) Mean ± SD/Freq. (%) | p-Value | |
---|---|---|---|---|
APGAR 1 min | 6.74 (±1.87) | 8.91 (±0.86) | 0.001 | |
APGAR 5 min | 7.80 (±1.39) | 9.45 (±0.61) | 0.001 | |
Vaginal delivery | Yes | 21 (31.8%) | 22 (33.8%) | 0.80 |
Maternal Characteristics and Clinical Findings | CN-EOS (n = 66) Mean ± SD/Freq (%) | S-EOS (n = 65) Mean ± SD/Freq (%) | p-Value | |
---|---|---|---|---|
Age | 30.35 (±6.42) | 28.17 (±5.87) | 0.04 | |
Investigated pregnancy | 43 (65.2%) | 43 (66.2%) | 0.90 | |
Antibiotherapy during pregnancy | 25 (37.9%) | 22 (33.8%) | 0.63 | |
Corthicotherapy for the risk of premature birth | 17 (±25.8%) | 6 (±9.2%) | 0.01 | |
PROM > 18 h | 38 (57.6%) | 8 (12.3%) | 0.001 | |
Urogenital infections during pregnancy | 29 (43.9%) | 31 (47.7%) | 0.54 | |
Alcohol consumption during pregnancy | 8 (12.1%) | 14 (21.5%) | 0.14 | |
Smoking during pregnancy | 40 (61.5%) | 20 (30.3%) | 0.001 | |
Socio-economic level | Low | 17 (25.8%) | 24 (36.9%) | 0.36 |
Medium | 34 (51.5%) | 27 (41.5%) | ||
High | 15 (22.7%) | 14 (21.5%) | ||
Leukocyte count | 12,854.5 (±4244.31) | 11,554.7 (±3282.1) | 0.052 | |
Neutrophil % | 70.15 (±11.83) | 73.20 (±11.34) | 0.13 | |
CRP | 19.71 (±43.12) | 7.69 (±9.64) | 0.32 | |
Fibrinogen | 580.86 (±136.4) | 516.02 (±112.85) | 0.004 |
Newborns’ Clinical Signs | CN-EOS (n = 66)/Freq. (%) | S-EOS (n = 65)/Freq. (%) | p-Value |
---|---|---|---|
Respiratory distress syndrome | 53 (80.3%) | 4 (6.2%) | 0.001 |
Pneumothorax | 8 (12.1%) | 0 (0%) | 0.004 |
Apnea | 44 (66.7%) | 3 (4.6%) | 0.001 |
Seizures | 10 (15.2%) | 0 (0%) | 0.001 |
Bleeding | 21 (31.8%) | 2 (3.1%) | 0.001 |
Feeding intolerance | 18 (27.3%) | 6 (9.2%) | 0.008 |
Newborns’ Laboratory Values | CN-EOS (n = 66) Mean ± SD/Freq. (%) | S-EOS (n = 65) Mean ± SD/Freq. (%) | p-Value |
---|---|---|---|
Leukocyte count—first 24 h | 14,165 (±9248.17) | 16,986.15 (±5225.71) | 0.03 |
Hemoglobin level—first 24 h | 15.24 (±2.67) | 16.14 (±2.13) | 0.03 |
Hematocrit level—first 24 h | 45.92 (±7.94) | 48.56 (±6.53) | 0.04 |
Platelet count—first 24 h | 238,984.85 (±75,998.07) | 289,292.31 (±66,471.02) | 0.001 |
Neutrophil %—first 24 h | 51.34 (±18.34) | 59.89 (±12.43) | 0.002 |
Serum lactate—first 24 h | 3.36 (±2.09) | 2.59 (±1.15) | 0.34 |
Hypoglycemia | 19 (28.8%) | 8 (12.3%) | 0.02 |
Positive peripheric cultures | 16 (24.63%) | 0 (0%) | 0.001 |
CRP at 24 h | 7.28 (16.2) | 10.94 (±14.33) | 0.36 |
PCT at 24 h | 23.19 (±21.54) | 16.91 (±17.38) | 0.07 |
CRP at 72 h | 5.19 (±10.64) | 3.49 (±5.35) | 0.70 |
PCT at 72 h | 5.57 (±5.86) | 1.01 (±2.07) | 0.001 |
Newborns’ Therapeutic Strategies | CN- EOS (n = 66) Mean ± Standard Deviation | S- EOS (n =65) Mean ± Standard Deviation | p-Value |
---|---|---|---|
NICU admission (days) | 20.26 (27.04) | 0.45 (1.46) | 0.001 |
Hospitalization time (days) | 33.76 (33.00) | 5.23 (3.66) | 0.001 |
Duration of invasive mechanical ventilation (h) | 83.00 (211.86) | 0.00 (0.00) | 0.001 |
Duration of oxygen therapy (h) | 214.36 (464.68) | 1.21 (4.45) | 0.001 |
Duration of endovenous perfusion (days) | 14.78 (17.84) | 0.26 (0.85) | 0.001 |
Duration of total parenteral nutrition (days) | 5.59 (9.42) | 0.07 (0.36) | 0.001 |
Total duration of antibiotic therapy (days) | 18.06 (17.08) | 3.32 (1.14) | 0.001 |
Need for inotropic therapy | 3.44 (7.37) | 0.00 (0.00) | 0.001 |
Fresh frozen plasma transfusion | 0.80 (1.53) | 0.00 (0.00) | 0.001 |
Erythrocyte transfusion | 1.27 (2.41) | 0.00 (0.00) | 0.001 |
Phototherapy | 28.39 (27.25) | 5.08 (12.33) | 0.001 |
IVIG administration | 6 (9.1%) | 0 (0%) | 0.01 |
Sedation | 24 (36.4%) | 0 (0%) | 0.001 |
Risk Factor | OR, 95% CI, p |
---|---|
Mother’s age | OR = 1.06, 1.00–1.12, p = 0.04 |
Gestational age | OR = 0.52, 0.41–0.66, p = 0.001 |
Birth weight | OR = 0.99, 0.99–0.98, p = 0.001 |
PROM > 18 h | OR = 9.67, 3.98–23.46, p = 0.001 |
Body temperature on NICU admission | OR = 6.17, 1.56–24.39, p = 0.009 |
APGAR at 1 min | OR = 0.20, 0.11–0.36, p = 0.001 |
APGAR at 5 min | OR = 0.09, 0.04–0.22, p = 0.001 |
Risk Factor | OR, 95% CI, p |
---|---|
Low levels of hemoglobin at 24 h | OR = 0.85, 0.73–0.99, p = 0.04 |
Low hematocrit at 24 h | OR = 0.95, 0.90–0.99, p = 0.04 |
Low level of neutrophil count | OR = 0.96, 0.94–0.98, p = 0.004 |
Hypoglycemia | OR = 2.88, 1.15–7.16, p = 0.02 |
Respiratory distress syndrome | OR = 62.17, 19.11–202.24, p = 0.001 |
Apnea | OR = 41.33, 11.64–146.68, p = 0.001 |
Bleeding | OR = 14.70, 3.28–65.88, p = 0.001 |
Total parenteral nutrition (days) | OR = 7.88, 3.27–18.96, p = 0.001 |
Meropenem as first-line antibiotherapy | OR = 3.49, 1.25–9.73, p = 0.01 |
Antibiotherapy duration | OR = 4.36, 2.41–7.89, p = 0.001 |
NICU stay (days) | OR = 2.01, 1.56–2.58, p = 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilescu, D.I.; Dan, A.M.; Stefan, L.A.; Vasilescu, S.L.; Dima, V.; Cîrstoiu, M.M. Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers. Children 2025, 12, 355. https://doi.org/10.3390/children12030355
Vasilescu DI, Dan AM, Stefan LA, Vasilescu SL, Dima V, Cîrstoiu MM. Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers. Children. 2025; 12(3):355. https://doi.org/10.3390/children12030355
Chicago/Turabian StyleVasilescu, Diana Iulia, Adriana Mihaela Dan, Laura Andreea Stefan, Sorin Liviu Vasilescu, Vlad Dima, and Monica Mihaela Cîrstoiu. 2025. "Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers" Children 12, no. 3: 355. https://doi.org/10.3390/children12030355
APA StyleVasilescu, D. I., Dan, A. M., Stefan, L. A., Vasilescu, S. L., Dima, V., & Cîrstoiu, M. M. (2025). Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers. Children, 12(3), 355. https://doi.org/10.3390/children12030355