Comparison of Virtual Reality-Assisted Visual Training with Conventional Strategies in the Treatment of Bilateral Refractive Amblyopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Treatment for Amblyopia
2.2.1. Training Programs Based on Perceptual Learning
2.2.2. Dichoptic Visual Training Assisted with Virtual Reality (VR) Device
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Treatment Outcomes
3.3. Analysis for Moderate Amblyopia
3.4. Factors Influencing Treatment Success
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hillis, A.; Flynn, J.T.; Hawkins, B.S. The evolving concept of amblyopia: A challenge to epidemiologists. Am. J. Epidemiol. 1983, 118, 192–205. [Google Scholar] [PubMed]
- de Zárate, B.R.; Tejedor, J. Current concepts in the management of amblyopia. Clin. Ophthalmol. 2007, 1, 403–414. [Google Scholar] [PubMed]
- Cotter, S.A.; Foster, N.C.; Holmes, J.M.; Melia, B.M.; Wallace, D.K.; Repka, M.X.; Tamkins, S.M.; Kraker, R.T.; Beck, R.W.; Hoover, D.L.; et al. Optical treatment of strabismic and combined strabismic-anisometropic amblyopia. Ophthalmology 2012, 119, 150–158. [Google Scholar] [PubMed]
- Rutstein, R.P.; Quinn, G.E.; Lazar, E.L.; Beck, R.W.; Bonsall, D.J.; Cotter, S.A.; Crouch, E.R.; Holmes, J.M.; Hoover, D.L.; Leske, D.A.; et al. A randomized trial comparing Bangerter filters and patching for the treatment of moderate amblyopia in children. Ophthalmology 2010, 117, 998–1004 e1006. [Google Scholar]
- Birch, E.E. Amblyopia and binocular vision. Prog. Retin. Eye Res. 2013, 33, 67–84. [Google Scholar]
- Huang, Y.T.; Lin, H.J.; Liao, W.L.; Tsai, Y.Y.; Hsieh, Y.C. Effects of Vision Therapy on Bilateral Amblyopia Unresponsive to Conventional Treatment: A Retrospective Comparative Study. Children 2022, 9. [Google Scholar]
- Klimek, D.L.; Cruz, O.A.; Scott, W.E.; Davitt, B.V. Isoametropic amblyopia due to high hyperopia in children. J. AAPOS 2004, 8, 310–313. [Google Scholar]
- Huang, C.B.; Zhou, Y.; Lu, Z.L. Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proc. Natl. Acad. Sci. USA 2008, 105, 4068–4073. [Google Scholar]
- Chen, P.L.; Chen, J.T.; Fu, J.J.; Chien, K.H.; Lu, D.W. A pilot study of anisometropic amblyopia improved in adults and children by perceptual learning: An alternative treatment to patching. Ophthalmic Physiol. Opt. 2008, 28, 422–428. [Google Scholar]
- Li, J.; Thompson, B.; Deng, D.; Chan, L.Y.; Yu, M.; Hess, R.F. Dichoptic training enables the adult amblyopic brain to learn. Curr. Biol. 2013, 23, R308–R309. [Google Scholar]
- Li, S.L.; Jost, R.M.; Morale, S.E.; Stager, D.R.; Dao, L.; Stager, D.; Birch, E.E. A binocular iPad treatment for amblyopic children. Eye 2014, 28, 1246–1253. [Google Scholar] [PubMed]
- Žiak, P.; Holm, A.; Halička, J.; Mojžiš, P.; Piñero, D.P. Amblyopia treatment of adults with dichoptic training using the virtual reality oculus rift head mounted display: Preliminary results. BMC Ophthalmol. 2017, 17, 105. [Google Scholar]
- Yazdani, N.; Sadeghi, R.; Momeni-Moghaddam, H.; Zarifmahmoudi, L.; Ehsaei, A. Comparison of cyclopentolate versus tropicamide cycloplegia: A systematic review and meta-analysis. J. Optom. 2018, 11, 135–143. [Google Scholar] [PubMed]
- Willshaw, H.E.; Malmheden, A.; Clarke, J.; Williams, A.; Dean, L. Experience with the CAM vision stimulator: Preliminary report. Br. J. Ophthalmol. 1980, 64, 339–341. [Google Scholar]
- Maddox, E.E. Demonstration of the Cheiroscope. Proc. R. Soc. Med. 1929, 23, 48–55. [Google Scholar]
- Lin, Y.; Tu, Y.; Wang, L.; Jia, L.; Zhang, Y. Effect of 2D and 3D Display on Visual Discomfort. SID Symp. Dig. Tech. Pap. 2020, 51, 85–88. [Google Scholar]
- Repka, M.X.; Beck, R.W.; Holmes, J.M.; Birch, E.E.; Chandler, D.L.; Cotter, S.A.; Hertle, R.W.; Kraker, R.T.; Moke, P.S.; Quinn, G.E.; et al. A randomized trial of patching regimens for treatment of moderate amblyopia in children. Arch. Ophthalmol. 2003, 121, 603–611. [Google Scholar]
- Repka, M.X.; Cotter, S.A.; Beck, R.W.; Kraker, R.T.; Birch, E.E.; Everett, D.F.; Hertle, R.W.; Holmes, J.M.; Quinn, G.E.; Sala, N.A.; et al. A randomized trial of atropine regimens for treatment of moderate amblyopia in children. Ophthalmology 2004, 111, 2076–2085. [Google Scholar]
- Cotter, S.A.; Edwards, A.R.; Wallace, D.K.; Beck, R.W.; Arnold, R.W.; Astle, W.F.; Barnhardt, C.N.; Birch, E.E.; Donahue, S.P.; Everett, D.F.; et al. Treatment of anisometropic amblyopia in children with refractive correction. Ophthalmology 2006, 113, 895–903. [Google Scholar]
- Ziylan, S.; Yabas, O.; Zorlutuna, N.; Serin, D. Isoametropic amblyopia in highly hyperopic children. Acta Ophthalmol. Scand. 2007, 85, 111–113. [Google Scholar]
- Wallace, D.K.; Chandler, D.L.; Beck, R.W.; Arnold, R.W.; Bacal, D.A.; Birch, E.E.; Felius, J.; Frazier, M.; Holmes, J.M.; Hoover, D.; et al. Treatment of bilateral refractive amblyopia in children three to less than 10 years of age. Am. J. Ophthalmol. 2007, 144, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, J.; Zhang, F.; Zhu, X.; Lu, F. Visual outcome in isoametropic amblyopic children with high hyperopia and the effect of therapy on retinal thickness. Am. J. Ophthalmol. 2013, 155, 536–543.e531. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.J. Perceptual learning. Annu. Rev. Psychol. 1963, 14, 29–56. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Lan, F.; Zhao, X.; Lu, Z.L.; Huang, C.B.; Zhao, W.; Li, M. The effects of monocular training on binocular functions in anisometropic amblyopia. Vision. Res. 2018, 152, 74–83. [Google Scholar] [CrossRef]
- Campbell, F.W.; Hess, R.F.; Watson, P.G.; Banks, R. Preliminary results of a physiologically based treatment of amblyopia. Br. J. Ophthalmol. 1978, 62, 748–755. [Google Scholar] [CrossRef]
- Huang, H.M.; Kuo, H.K.; Fang, P.C.; Lin, H.F.; Lin, P.W.; Lin, S.A. The effects of CAM vision stimulator for bilateral amblyopia of different etiologies. Chang. Gung Med. J. 2008, 31, 592–598. [Google Scholar]
- Holmes, J.M.; Manh, V.M.; Lazar, E.L.; Beck, R.W.; Birch, E.E.; Kraker, R.T.; Crouch, E.R.; Erzurum, S.A.; Khuddus, N.; Summers, A.I.; et al. Effect of a Binocular iPad Game vs Part-time Patching in Children Aged 5 to 12 Years with Amblyopia: A Randomized Clinical Trial. JAMA Ophthalmol. 2016, 134, 1391–1400. [Google Scholar] [CrossRef]
- Herbison, N.; MacKeith, D.; Vivian, A.; Purdy, J.; Fakis, A.; Ash, I.M.; Cobb, S.V.; Eastgate, R.M.; Haworth, S.M.; Gregson, R.M.; et al. Randomised controlled trial of video clips and interactive games to improve vision in children with amblyopia using the I-BiT system. Br. J. Ophthalmol. 2016, 100, 1511–1516. [Google Scholar] [CrossRef]
- Pourmand, A.; Davis, S.; Lee, D.; Barber, S.; Sikka, N. Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine. Games Health J. 2017, 6, 263–270. [Google Scholar] [CrossRef]
- Deutsch, J.E.; Westcott McCoy, S. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Pediatr. Phys. Ther. 2017, 29 (Suppl. 3), S23–S36. [Google Scholar] [CrossRef]
- Chen, Y.; Fanchiang, H.D.; Howard, A. Effectiveness of Virtual Reality in Children With Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys. Ther. 2018, 98, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P.; Coco-Martin, M.B.; Leal-Vega, L.; Hernández-Rodríguez, C.J.; Molina-Martín, A. Use of Virtual Reality Training in Amblyopia. Available online: https://europe.ophthalmologytimes.com/view/use-of-virtual-reality-training-in-amblyopia (accessed on 8 April 2021).
- Park, K.H.; Hwang, J.M.; Ahn, J.K. Efficacy of amblyopia therapy initiated after 9 years of age. Eye 2004, 18, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.W.; Chang, H.W.; Lai, I.C.; Teng, M.C. Visual outcomes after spectacles treatment in children with bilateral high refractive amblyopia. Clin. Exp. Optom. 2016, 99, 550–554. [Google Scholar] [CrossRef] [PubMed]
Overall | CAM Training | VR Training | Control | p Value |
---|---|---|---|---|
Number of patients | 30 | 14 | 26 | |
Age (years, mean ± SD) | 5.02 ± 0.91 | 4.79 ± 0.89 | 4.62 ± 0.85 | 0.245 |
Gender (no of male, %) | 14 (46.7%) | 6 (42.9%) | 15 (57.7%) | 0.6 |
Baseline BCVA (logMAR, mean ± SD) | 0.32 ± 0.14 | 0.27 ± 0.09 | 0.37 ± 0.21 | 0.206 |
Severe (<20/100) | 0 | 0 | 1 (3.8%) | |
Moderate (≥20/100 and ≤20/40) | 18 (60%) | 7 (50%) | 15 (57.7%) | |
Mild (>20/40) | 12 (40%) | 7 (50%) | 10 (38.5%) | |
Refractive errors (n) | 0.027 # | |||
Hypermetropia ≥ +3.5 D | 1 (3.3%) 1 + 0 | 2 (14.3%) 2 + 0 | 7 (26.9%) 4 + 3 | |
Myopia ≤ −5.0 D | 1 (3.3%) 1 + 0 | 1 (7.1%) 1 + 0 | 1 (3.8%) 1 + 0 | |
Astigmatism ≤ −2.0 D | 16 (53.3%) 6 + 10 | 6 (42.9%) 2 + 4 | 15 (57.7%) 8 + 7 | |
Hypermetropia + Astigmatism | 9 (30%) 7 + 2 | 1 (7.1%) 0 + 1 | 3 (11.5%) 2 + 1 | |
Myopia + Astigmatism | 3 (10%) 3 + 0 | 4 (28.6%) 2 + 2 | 0 (0%) 0 + 0 | |
BCVA at 24 weeks (logMAR, mean ± SD) | 0.11 ± 0.14 | 0.05 ± 0.05 | 0.13 ± 0.16 | 0.204 |
Treatment Success | 21 (70%) | 13 (92.9%) | 14 (53.8%) | 0.039 * |
Moderate Amblyopia | CAM Training | VR Training | Control | p Value |
---|---|---|---|---|
Number of patients | 18 | 7 | 15 | |
Age (years, mean ± SD) | 4.92 ± 0.97 | 4.71 ± 1.25 | 4.47 ± 0.73 | 0.407 |
Gender (no of male, %) | 8 (44.4%) | 5 (71.4%) | 9 (60%) | 0.422 |
Baseline BCVA (logMAR, mean ± SD) | 0.40 ± 0.13 | 0.36 ± 0.05 | 0.45 ± 0.13 | 0.195 |
Refractive errors (n) | 0.144 | |||
Hypermetropia ≥ +3.5 D | 1 (5.6%) | 2 (28.6%) | 4 (26.7%) | |
Myopia ≤ −5.0 D | 1 (5.6%) | 1 (14.3%) | 1 (6.7%) | |
Astigmatism ≤ −2.0 D | 6 (33.3%) | 2 (28.6%) | 8 (53.3%) | |
Hypermetropia + Astigmatism | 7 (38.9%) | 0 (0%) | 2 (13.3%) | |
Myopia + Astigmatism | 3 (16.7%) | 2 (28.6%) | 0 (0%) | |
BCVA at 24 weeks (logMAR, mean ± SD) | 0.13 ± 0.17 | 0.06 ± 0.06 | 0.16 ± 0.12 | 0.313 |
Treatment Success | 12 (66.7%) | 6 (85.7%) | 5 (33.3%) | 0.039 * |
Success | Nonsuccess | p Value | |
---|---|---|---|
Number of patients | 48 (68.6%) | 22 (31.4%) | |
Age (years, mean ± SD) | 4.76 ± 0.87 | 4.95 ± 0.95 | 0.41 |
Gender (no of male, %) | 26 (51%) | 9 (47.4%) | 0.788 |
Baseline BCVA (logMAR, mean ± SD) | 0.27 ± 0.09 | 0.46 ± 0.20 | <0.001 |
Severe (<20/100) | 0 (0%) | 1 (4.5%) | |
Moderate (≥20/100 and ≤20/40) | 23 (47.9%) | 17 (77.3%) | |
Mild (>20/40) | 25 (52.1%) | 4 (18.2%) | |
Refractive errors (n) | 0.575 | ||
Hypermetropia ≥ +3.5 D | 5 (10.4%) | 5 (22.7%) | |
Myopia ≤ −5.0 D | 2 (4.2%) | 1 (4.5%) | |
Astigmatism ≤ −2.0 D | 28 (58.3%) | 9 (40.9%) | |
Hypermetropia + Astigmatism | 9 (18.8%) | 4 (18.2%) | |
Myopia + Astigmatism | 4 (8.3%) | 3 (13.6%) | |
BCVA at 24 weeks (logMAR, mean ± SD) | 0.03 ± 0.05 | 0.26 ± 0.15 | <0.001 |
Treatment Groups (n) | 0.039 | ||
CAM training | 21 (70%) | 9 (30%) | |
VR training | 13 (92.9%) | 1 (7.1%) | |
Control | 14 (53.8%) | 12 (46.2%) |
Overall | Moderate Amblyopia | |||||
---|---|---|---|---|---|---|
n | Weeks to Reach Success (mean ± SD, Median, Range) | p Value (vs. Control) | n | Weeks to Reach Success (mean ± SD, Median, Range) | p Value (vs. Control) | |
CAM training | 21 | 14.19 ± 6.42 (14, 5–24) | <0.001 | 12 | 15.17 ± 5.64 (15, 5–24) | <0.001 |
VR training | 13 | 6.92 ± 5.22 (5, 2–16) | <0.001 | 6 | 11.5 ± 4.14 (12.5, 6–16) | 0.001 |
Control | 14 | 54.74 ± 47.12 (32, 1–159) | 5 | 56.11 ± 34.48 (36, 24–95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-M.; Hsiao, Y.-T.; Chen, Y.-H.; Yang, I.-H. Comparison of Virtual Reality-Assisted Visual Training with Conventional Strategies in the Treatment of Bilateral Refractive Amblyopia. Children 2025, 12, 447. https://doi.org/10.3390/children12040447
Huang H-M, Hsiao Y-T, Chen Y-H, Yang I-H. Comparison of Virtual Reality-Assisted Visual Training with Conventional Strategies in the Treatment of Bilateral Refractive Amblyopia. Children. 2025; 12(4):447. https://doi.org/10.3390/children12040447
Chicago/Turabian StyleHuang, Hsiu-Mei, Yu-Ting Hsiao, Yi-Hao Chen, and I-Hui Yang. 2025. "Comparison of Virtual Reality-Assisted Visual Training with Conventional Strategies in the Treatment of Bilateral Refractive Amblyopia" Children 12, no. 4: 447. https://doi.org/10.3390/children12040447
APA StyleHuang, H.-M., Hsiao, Y.-T., Chen, Y.-H., & Yang, I.-H. (2025). Comparison of Virtual Reality-Assisted Visual Training with Conventional Strategies in the Treatment of Bilateral Refractive Amblyopia. Children, 12(4), 447. https://doi.org/10.3390/children12040447