A Case Series and Review of Febrile-Infection Related Epilepsy Syndrome (FIRES)
Abstract
:1. Introduction
Status Epilepticus (SE) | Generalized seizure lasting longer than 5 min Focal seizure with impaired consciousness lasting 10 min Absence seizure lasting 10–15 min |
Refractory Status Epilepticus (RSE) | Status epilepticus persists despite administration of 2 or more parenteral anti-seizure medications |
Super Refractory Status epilepticus (SRSE) | Status epilepticus persists at least 24 h after onset of anesthesia without interruption of appropriate anesthesia, recurring while on appropriate anesthesia or recurring after withdrawal of anesthesia, requiring re-introduction of anesthetic |
New Onset Refractory Status Epilepticus (NORSE) | The clinical presentation of new onset refractory status epilepticus, in a patient without history of epilepsy, that has no clear acute or active structural, toxic, or metabolic cause |
Febrile Infection-Related Epilepsy Syndrome (FIRES) | A subcategory of NORSE that requires a preceding febrile infection with fever occurring between 2 weeks and 24 h prior to the onset of RSE. Fever does not need to be present at onset of SE |
2. Materials and Methods
3. Results
3.1. Case Presentation
3.1.1. Case 1
3.1.2. Case 2
3.1.3. Case 3
4. Discussion
4.1. Proposed Pathogenesis
4.2. Recommended Evaluation
4.3. Proposed Treatment Guidelines
4.4. Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADEM | Acute demyelinating encephalomyelitis |
ADHD | Attention-deficit hyperactivity disorder |
AEDs | Anti-epileptic drugs |
ANA | Anti-nuclear antibody |
ANCA | Anti-neutrophil cytoplasmic antibody |
Anti-TPO | Anti-thyroid peroxidase |
BBB | Blood–brain barrier |
BID | Twice a day |
c-FIRES | Cryptogenic FIRES |
c-NORSE | Cryptogenic NORSE |
CRP | C-reactive protein |
CSF | Cerebral spinal fluid |
CT | Computed tomography |
DOAJ | Directory of open access journal |
DRVVT | Dilute Russell’s viper venom time |
ED | Emergency department |
EDB | Extreme delta brush |
EEG | Electroencephalogram |
FIRES | Febrile infection-related epilepsy syndrome |
FLAIR | Fluid-attenuated inversion recovery |
GAD | Glutamic acid decarboxylase |
HLH | Hemophagocytic lymphohistiocytosis |
HSV | Herpes simplex virus |
IFN | Interferon |
IgG | Immunoglobulin G |
IL-1R | Interleukin 1 receptor |
IL-2Rα | Interleukin 2 receptor alpha |
IVIG | Intravenous immunoglobulin |
JAKi | Janus kinase inhibitor |
MBP | Myelin basic protein |
MDPI | Multidisciplinary Digital Publishing Institute |
MOG | Myelin oligodendrocyte glycoprotein |
MRA | Magnetic resonance angiography |
MRI | Magnetic resonance imaging |
MRV | Magnetic resonance venography |
NMDA | N-methyl-D-aspartic acid |
NORSE | New onset refractory status epilepticus |
PICU | Pediatric intensive care unit |
PRES | Posterior reversible encephalopathy syndrome |
RBCs | Red blood cells |
RSE | Refractory status epilepticus |
SE | Status epilepticus |
SIT | Systemic immunotherapy |
SLE | Systemic lupus erythematosus |
Sq | subcutaneous |
SRSE | Super refractory status epilepticus |
SSA | Anti-Sjogren’s-syndrome-related antigen A |
TLR | Toll-like receptor |
TNF-α | Tumor necrosis factor alpha |
TPE | Therapeutic plasma exchange |
VUS | Variant of uncertain significance |
WBC | White blood cell |
References
- Specchio, N.; Pietrafusa, N. New-Onset Refractory Status Epilepticus and Febrile Infection-Related Epilepsy Syndrome. Dev. Med. Child. Neurol. 2020, 62, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Wickstrom, R.; Taraschenko, O.; Dilena, R.; Payne, E.T.; Specchio, N.; Nabbout, R.; Koh, S.; Gaspard, N.; Hirsch, L.J.; Auvin, S.; et al. International Consensus Recommendations for Management of New Onset Refractory Status Epilepticus Including Febrile Infection-Related Epilepsy Syndrome: Statements and Supporting Evidence. Epilepsia 2022, 63, 2840–2864. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.J.; Gaspard, N.; van Baalen, A.; Nabbout, R.; Demeret, S.; Loddenkemper, T.; Navarro, V.; Specchio, N.; Lagae, L.; Rossetti, A.O.; et al. Proposed Consensus Definitions for New-Onset Refractory Status Epilepticus (NORSE), Febrile Infection-Related Epilepsy Syndrome (FIRES), and Related Conditions. Epilepsia 2018, 59, 739–744. [Google Scholar] [CrossRef]
- Gaspard, N.; Hirsch, L.J.; Sculier, C.; Loddenkemper, T.; van Baalen, A.; Lancrenon, J.; Emmery, M.; Specchio, N.; Farias-Moeller, R.; Wong, N.; et al. New-Onset Refractory Status Epilepticus (NORSE) and Febrile Infection–Related Epilepsy Syndrome (FIRES): State of the Art and Perspectives. Epilepsia 2018, 59, 745–752. [Google Scholar] [CrossRef]
- Lattanzi, S.; Leitinger, M.; Rocchi, C.; Salvemini, S.; Matricardi, S.; Brigo, F.; Meletti, S.; Trinka, E. Unraveling the Enigma of New-Onset Refractory Status Epilepticus: A Systematic Review of Aetiologies. Eur. J. Neurol. 2022, 29, 626–647. [Google Scholar] [CrossRef]
- Wu, J.; Lan, X.; Yan, L.; Hu, Y.; Hong, S.; Jiang, L.; Chen, J. A Retrospective Study of 92 Children with New-Onset Refractory Status Epilepticus. Epilepsy Behav. 2021, 125, 108413. [Google Scholar] [CrossRef]
- Kramer, U.; Chi, C.S.; Lin, K.L.; Specchio, N.; Sahin, M.; Olson, H.; Nabbout, R.; Kluger, G.; Lin, J.J.; Van Baalen, A. Febrile Infection-Related Epilepsy Syndrome (FIRES): Pathogenesis, Treatment, and Outcome: A Multicenter Study on 77 Children. Epilepsia 2011, 52, 1956–1965. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.H.; Kim, H.D.; Lee, J.S.; Ko, A.; Kang, H.C. Identification of Etiologies According to Baseline Clinical Features of Pediatric New-Onset Refractory Status Epilepticus in Single Center Retrospective Study. Seizure 2024, 120, 49–55. [Google Scholar] [CrossRef]
- Sculier, C.; Barcia Aguilar, C.; Gaspard, N.; Gaínza-Lein, M.; Sánchez Fernández, I.; Amengual-Gual, M.; Anderson, A.; Arya, R.; Burrows, B.T.; Brenton, J.N.; et al. Clinical Presentation of New Onset Refractory Status Epilepticus in Children (the PSERG Cohort). Epilepsia 2021, 62, 1629–1642. [Google Scholar] [CrossRef]
- Gaspard, N.; Foreman, B.P.; Alvarez, V.; Kang, C.C.; Probasco, J.C.; Jongeling, A.C.; Meyers, E.; Espinera, A.; Haas, K.F.; Schmitt, S.E.; et al. New-Onset Refractory Status Epilepticus Etiology, Clinical Features, and Outcome. Neurology 2024, 85, 1604–1613. [Google Scholar] [CrossRef]
- Schubert-Bast, S.; Zöllner, J.P.; Ansorge, S.; Hapfelmeier, J.; Bonthapally, V.; Eldar-Lissai, A.; Rosenow, F.; Strzelczyk, A. Burden and Epidemiology of Status Epilepticus in Infants, Children, and Adolescents: A Population-Based Study on German Health Insurance Data. Epilepsia 2019, 60, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.D.; Gopaul, M.; Asbell, H.; Aydemir, S.; Basha, M.M.; Batra, A.; Damien, C.; Day, G.S.; Eka, O.; Eschbach, K.; et al. Comparative Analysis of Patients with New Onset Refractory Status Epilepticus Preceded by Fever (Febrile Infection-Related Epilepsy Syndrome) versus without Prior Fever: An Interim Analysis. Epilepsia 2024, 65, e87–e96. [Google Scholar] [CrossRef] [PubMed]
- Husari, K.S.; Labiner, K.; Huang, R.; Said, R.R. New-Onset Refractory Status Epilepticus in Children: Etiologies, Treatments, and Outcomes. Pediatr. Crit. Care Med. 2020, 21, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Wickström, R.; Taraschenko, O.; Dilena, R.; Payne, E.T.; Specchio, N.; Nabbout, R.; Koh, S.; Gaspard, N.; Hirsch, L.J.; Auvin, S.; et al. International Consensus Recommendations for Management of New Onset Refractory Status Epilepticus (NORSE) Including Febrile Infection-Related Epilepsy Syndrome (FIRES): Summary and Clinical Tools. Epilepsia 2022, 63, 2827–2839. [Google Scholar] [CrossRef]
- Sun, H.; Ma, D.; Cheng, Y.; Li, J.; Zhang, W.; Jiang, T.; Li, Z.; Li, X.; Meng, H. The JAK-STAT Signaling Pathway in Epilepsy. Curr. Neuropharmacol. 2022, 21, 2049–2069. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, W.J.; Lee, H.S.; Chu, K.; Lee, S.K.; Lee, S.T. Tofacitinib Treatment for Refractory Autoimmune Encephalitis. Epilepsia 2021, 62, e53–e59. [Google Scholar] [CrossRef]
- Harrar, D.B.; Genser, I.; Najjar, M.; Davies, E.; Sule, S.; Wistinghausen, B.; Goldbach-Mansky, R.; Wells, E. Successful Management of Febrile Infection–Related Epilepsy Syndrome Using Cytokine-Directed Therapy. J. Child. Neurol. 2024, 39, 440–445. [Google Scholar] [CrossRef]
- Vezzani, A.; Friedman, A.; Dingledine, R.J. The Role of Inflammation in Epileptogenesis. Neuropharmacology 2013, 69, 16–24. [Google Scholar] [CrossRef]
- Vezzani, A.; Maroso, M.; Balosso, S.; Sanchez, M.A.; Bartfai, T. IL-1 Receptor/Toll-like Receptor Signaling in Infection, Inflammation, Stress and Neurodegeneration Couples Hyperexcitability and Seizures. Brain Behav. Immun. 2011, 25, 1281–1289. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory Pathways as Treatment Targets and Biomarkers in Epilepsy. Nat. Rev. Neurol. 2019, 15, 459–472. [Google Scholar] [CrossRef]
- Tan, T.H.L.; Perucca, P.; O’Brien, T.J.; Kwan, P.; Monif, M. Inflammation, Ictogenesis, and Epileptogenesis: An Exploration through Human Disease. Epilepsia 2021, 62, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Di Mauro, P.; Cocuzza, S.; et al. Epilepsy and Innate Immune System: A Possible Immunogenic Predisposition and Related Therapeutic Implications. Hum. Vaccin. Immunother. 2015, 11, 2021–2029. [Google Scholar] [CrossRef]
- Riazi, K.; Galic, M.A.; Pittman, Q.J. Contributions of Peripheral Inflammation to Seizure Susceptibility: Cytokines and Brain Excitability. Epilepsy Res. 2010, 89, 34–42. [Google Scholar] [CrossRef]
- Kothur, K.; Bandodkar, S.; Wienholt, L.; Chu, S.; Pope, A.; Gill, D.; Dale, R.C. Etiology Is the Key Determinant of Neuroinflammation in Epilepsy: Elevation of Cerebrospinal Fluid Cytokines and Chemokines in Febrile Infection-Related Epilepsy Syndrome and Febrile Status Epilepticus. Epilepsia 2019, 60, 1678–1688. [Google Scholar] [CrossRef]
- Kothur, K.; Wienholt, L.; Brilot, F.; Dale, R.C. CSF Cytokines/Chemokines as Biomarkers in Neuroinflammatory CNS Disorders: A Systematic Review. Cytokine 2016, 77, 227–237. [Google Scholar] [CrossRef]
- Hanin, A.; Cespedes, J.; Huttner, A.; Strelnikov, D.; Gopaul, M.; DiStasio, M.; Vezzani, A.; Hirsch, L.J.; Aronica, E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J. Neurol. 2023, 270, 3688–3702. [Google Scholar] [CrossRef]
- Hsieh, M.Y.; Lin, J.J.; Hsia, S.H.; Huang, J.L.; Yeh, K.W.; Chang, K.W.; Lee, W.I. Diminished Toll-like Receptor Response in Febrile Infection-Related Epilepsy Syndrome (FIRES). Biomed. J. 2020, 43, 293–304. [Google Scholar] [CrossRef]
- Clarkson, B.D.S.; LaFrance-Corey, R.G.; Kahoud, R.J.; Farias-Moeller, R.; Payne, E.T.; Howe, C.L. Functional Deficiency in Endogenous Interleukin-1 Receptor Antagonist in Patients with Febrile Infection-Related Epilepsy Syndrome. Ann. Neurol. 2019, 85, 526–537. [Google Scholar] [CrossRef]
- Saitoh, M.; Kobayashi, K.; Ohmori, I.; Tanaka, Y.; Tanaka, K.; Inoue, T.; Horino, A.; Ohmura, K.; Kumakura, A.; Takei, Y.; et al. Cytokine-Related and Sodium Channel Polymorphism as Candidate Predisposing Factors for Childhood Encephalopathy FIRES/AERRPS. J. Neurol. Sci. 2016, 368, 272–276. [Google Scholar] [CrossRef]
- Langenbruch, L.; Wiendl, H.; Groß, C.; Kovac, S. Diagnostic Utility of Cerebrospinal Fluid (CSF) Findings in Seizures and Epilepsy with and without Autoimmune-Associated Disease. Seizure 2021, 91, 233–243. [Google Scholar] [CrossRef]
- Jin, H.; Lu, Q.; Gao, F.; Hao, H. Application of Oligoclonal Bands and Other Cerebrospinal Fluid Variables in Multiple Sclerosis and Other Neuroimmunological Diseases: A Narrative Review. Ann. Transl. Med. 2023, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, A.; Kanazawa, N.; Kaneko, J.; Kaneko, A.; Iwase, R.; Suga, H.; Nonoda, Y.; Onozawa, Y.; Kitamura, E.; Nishiyama, K.; et al. Clinically Based Score Predicting Cryptogenic NORSE at the Early Stage of Status Epilepticus. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e849. [Google Scholar] [CrossRef] [PubMed]
- Su, E.; Bell, M.J.; Kochanek, P.M.; Wisniewski, S.R.; Bayir, H.; Clark, R.S.B.; Adelson, P.D.; Tyler-Kabara, E.C.; Janesko-Feldman, K.L.; Berger, R.P. Increased CSF Concentrations of Myelin Basic Protein after TBI in Infants and Children: Absence of Significant Effect of Therapeutic Hypothermia. Neurocrit. Care 2012, 17, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.D.; Hoyle, N.R.; Brown, J.K.; Thomas, D.G.T. Cerebrospinal fluid myelin basic protein immunoreactivity as an indicator of brain damage in children. Dev. Med. Child. Neurol. 1985, 27, 807–813. [Google Scholar] [CrossRef]
- Whitaker, J.N. Myelin basic protein in cerebrospinal fluid and other body fluids. Mult. Scler. 1998, 4, 16–21. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y.; Pan, Y.; Wang, S.; Liu, G.; Gao, Y.; Xu, K. Multi-Proteomic Analysis Revealed Distinct Protein Profiles in Cerebrospinal Fluid of Patients Between Anti-NMDAR Encephalitis NORSE and Cryptogenic NORSE. Mol. Neurobiol. 2023, 60, 98–115. [Google Scholar] [CrossRef]
- Sakuma, H.; Tanuma, N.; Kuki, I.; Takahashi, Y.; Shiomi, M.; Hayashi, M. Intrathecal Overproduction of Proinflammatory Cytokines and Chemokines in Febrile Infection-Related Refractory Status Epilepticus. J. Neurol. Neurosurg. Psychiatry 2015, 86, 820–822. [Google Scholar] [CrossRef]
- Jang, Y.; Ahn, S.H.; Park, K.-I.; Jang, B.-S.; Lee, H.S.; Bae, J.-H.; Lee, Y.; Sunwoo, J.-S.; Jun, J.-S.; Kim, K.T.; et al. Prognosis Prediction and Immunotherapy Optimisation for Cryptogenic New-Onset Refractory Status Epilepticus. J. Neurol. Neurosurg. Psychiatry 2024, 96, 26–37. [Google Scholar] [CrossRef]
- Hanin, A.; Cespedes, J.; Dorgham, K.; Pulluru, Y.; Gopaul, M.; Gorochov, G.; Hafler, D.A.; Navarro, V.; Gaspard, N.; Hirsch, L.J. Cytokines in New-Onset Refractory Status Epilepticus Predict Outcomes. Ann. Neurol. 2023, 94, 75–90. [Google Scholar] [CrossRef]
- Goh, Y.; Tay, S.H.; Yeo, L.L.L.; Rathakrishnan, R. Bridging the Gap: Tailoring an Approach to Treatment in Febrile Infection-Related Epilepsy Syndrome. Neurology 2023, 100, 1151–1155. [Google Scholar] [CrossRef]
- Dilena, R.; Mauri, E.; Aronica, E.; Bernasconi, P.; Bana, C.; Cappelletti, C.; Carrabba, G.; Ferrero, S.; Giorda, R.; Guez, S.; et al. Therapeutic Effect of Anakinra in the Relapsing Chronic Phase of Febrile Infection–Related Epilepsy Syndrome. Epilepsia Open 2019, 4, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Culleton, S.; Talenti, G.; Kaliakatsos, M.; Pujar, S.; D’Arco, F. The Spectrum of Neuroimaging Findings in Febrile Infection-Related Epilepsy Syndrome (FIRES): A Literature Review. Epilepsia 2019, 60, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Farias-Moeller, R.; Bartolini, L.; Staso, K.; Schreiber, J.M.; Carpenter, J.L. Early Ictal and Interictal Patterns in FIRES: The Sparks before the Blaze. Epilepsia 2017, 58, 1340–1348. [Google Scholar] [CrossRef]
- Haikazian, S.; Olson, M.F. MICAL1 Monooxygenase in Autosomal Dominant Lateral Temporal Epilepsy: Role in Cytoskeletal Regulation and Relation to Cancer. Genes 2022, 13, 715. [Google Scholar] [CrossRef]
- Sanchez-Conde, F.G.; Jimenez-Vazquez, E.N.; Auerbach, D.S.; Jones, D.K. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front. Mol. Neurosci. 2022, 15, 890368. [Google Scholar] [CrossRef]
- Della Vecchia, S.; Tessa, A.; Dosi, C.; Baldacci, J.; Pasquariello, R.; Antenora, A.; Astrea, G.; Bassi, M.T.; Battini, R.; Casali, C.; et al. Monoallelic KIF1A-Related Disorders: A Multicenter Cross Sectional Study and Systematic Literature Review. J. Neurol. 2022, 269, 437–450. [Google Scholar] [CrossRef]
- Kessi, M.; Liu, F.; Zhan, Y.; Tang, Y.; Wu, L.; Yang, L.; Zhang, C.L.; Yin, F.; Peng, J. Efficacy of Different Treatment Modalities for Acute and Chronic Phases of the Febrile Infection-Related Epilepsy Syndrome: A Systematic Review. Seizure 2020, 79, 61–68. [Google Scholar] [CrossRef]
- Nosadini, M.; Thomas, T.; Eyre, M.; Anlar, B.; Armangue, T.; Benseler, S.M.; Cellucci, T.; Deiva, K.; Gallentine, W.; Gombolay, G.; et al. International Consensus Recommendations for the Treatment of Pediatric NMDAR Antibody Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1052. [Google Scholar] [CrossRef]
- Eyre, M.; Hacohen, Y.; Barton, C.; Hemingway, C.; Lim, M. Therapeutic Plasma Exchange in Paediatric Neurology: A Critical Review and Proposed Treatment Algorithm. Dev. Med. Child. Neurol. 2018, 60, 765–779. [Google Scholar] [CrossRef]
- Hanin, A.; Muscal, E.; Hirsch, L.J. Second-Line Immunotherapy in New Onset Refractory Status Epilepticus. Epilepsia 2024, 65, 1203–1223. [Google Scholar] [CrossRef]
- Jun, J.S.; Lee, S.T.; Kim, R.; Chu, K.; Lee, S.K. Tocilizumab Treatment for New Onset Refractory Status Epilepticus. Ann. Neurol. 2018, 84, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Cooles, F.A.; Isaacs, J.D. Basic Mechanisms of JAK Inhibition. Mediterr. J. Rheumatol. 2020, 31, 100–1404. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, A.; Spinelli, F.R.; Telliez, J.B.; O’Shea, J.J.; Silvennoinen, O.; Gadina, M. JAK Inhibitor Selectivity: New Opportunities, Better Drugs? Nat. Rev. Rheumatol. 2024, 20, 649–665. [Google Scholar] [CrossRef]
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Age in Years/Sex | 10/M | 6/M | 8/F |
Symptoms prior to SE (days) | Headache (6) Fever (6) | Fever (6) Fatigue (6) Anorexia (6) Chest pain (0) | Sore throat (6) Abdominal pain (6) Fever (4) Anorexia (4) Fatigue (0) Headache (0) |
Family history of autoimmune disease | Sister with juvenile idiopathic arthritis | None | Father with history of juvenile idiopathic arthritis |
EEG findings | Background: Generalized polymorphic 2–4 Hz slowing. Seizure: Excessive beta frequencies. Right temporoparietooccipital seizures and focal seizure with secondary generalized seizures. | Background: Diffuse high-amplitude delta slowing. Seizures: Occasional small spikes from the left temporal central area or right central parietal area, which progressed to generalized seizures. | Background: High-amplitude delta slowing (2–3 Hz) with intermittent frontal central spindles. Seizures: Originating in the left centrotemporal region that spread to the contralateral hemisphere. Evolved into seizures with diffuse onset. |
MRI findings | Initial: Symmetric restricted diffusion in the hippocampus Repeat: Bilateral hippocampal volume loss and diffuse generalized cerebral volume loss. | Initial: Symmetric T2/FLAIR hyperintensities in the bilateral basal ganglia and right nuclei. Repeat after prolonged SE: Cytotoxic edema with scattered petechial hemorrhages and vasogenic edema in bilateral parietooccipital parenchyma and posterior cingulate gyri (hemorrhagic PRES). | Initial: FLAIR hyperintensity of the sulci. |
CSF | Initial: RBC 95, glucose 84 Repeat: RBC 420, glucose 91 MBP 6.11 | Initial: Glucose 106 Repeat: RBC 2000, protein 82 IgG synthesis 7.9 (N 0–2.2 mg/24 h) MBP 29.4 | Initial: neutrophil 53%, glucose 85% Repeat: RBC 124 |
Autoantibodies | CSF: GAD 65: 0.09 (N < 0.02 nmol/L) Serum: Anti-thyroglobulin ab 2.4 (N < 0.4 U/mL) TPO 52.2 (N < 20 IU/mL) GAD 65: 44.9 (N < 5 IU/mL) DRVVT positive SSA 21 (N < 20 U) | CSF: GAD 65: 0.05 (N < 0.02 nmol/L) Serum: Anti-thyroglobulin ab 0.7 (N < 0.4 U/mL) | CNS: GAD 65: 0.16 (N < 0.02 mmol/L) Serum: SSA 50 (N < 20 U) |
Genetics | VUS in KIF1A | VUS in KCNH2 and MICAL1 | Not obtained |
Antiepileptics used in sequence | Levetiracetam Lacosamide Fosphenytoin Perampanel Clobazam Brivaracetam Cenobamate Felbamate Ganloxone | Levetiracetam Valproate Fosphenytoin Lacosamide Perampanel Epidiolex Diazepam Phenobarbital Cenobamate Felbamate Topiramate | Levetiracetam Fospheytoin Lacosamide Valproate Brivaracetam Clobazam Phenobarbital Cenobamate Cannabidiol Perampanel |
Continuous IV anesthetics (duration in days) | Midazolam (4) Pentobarbital (14) Ketamine (58) | Midazolam (6) Pentobarbital (42) Ketamine (85) Propofol (13) Dexmedetomidine (22) | Midazolam (17) Pentobarbital (24) Dexmedetomidine (6) |
AEDs on discharge | Phenobarbital Cenobamate Felbamate Brivaracetam Lacosamide Clobazam Perampanel | Levetiracetam Lacosamide Diazepam Phenobarbital Cenobamate Topiramate Perampanel | Lacosamide Clobazam Phenobarbital Cenobamate Cannabidiol Divalproex Perampanel |
Adverse events | Tracheitis; ESBL UTI; ventilator-acquired pneumonia; bacteremia; drug-induced liver injury | PRES; drug-induced liver injury; ESBL UTI; bilateral renal calculi | Hypogammaglobulinemia; acute severe macroglossia; renal calculi; thrombocytopenia; UTI; pneumonia |
SIT | Case 1 | Case 2 | Case 3 |
---|---|---|---|
IV methylprednisolone (doses/days) | 1 g × 3 (9 doses) | 10 mg/kg BID (5 days) 20 mg/kg (1 dose) 30 mg/kg (2 doses) | 40 mg/kg (5 days) |
IVIG | 2 g/kg over 4 days | 2 g/kg over 2 days (2 doses) | 2 g/kg over 3 days |
Plasmapheresis | 5 days | 5 days on alternating days | 5 days |
Anakinra | 4 mg/kg/day (9 days) 8 mg/kg/day (12 days) | 5 mg/kg sq Q 12 (15 days) 2–4 mg/kg/day IV * | 4 mg/kg/day increased to 10 mg/kg/day |
Rituximab | 750 mg/m2 (2 doses) | ||
Tocilizumab | 8 mg/kg × 1 | 8 mg/kg every 14 days * | |
Baricitinib | 4 mg daily 2 mg daily * |
Case 1 | DOH: 8 Seizure: SE | DOH: 23; 28 Seizure: Subclinical Seizures | DOH: 50 Seizures: Subclinical Focal Seizures | DOH: 63 Seizures: None Weaning Sedation | DOH: 91 Seizures: 1 Subclinical Seizure. Off Sedation |
SIT to date | methylprednisolone, IVIG | anakinra, plasmapheresis, IVIG, tocilizumab | no active SIT | baricitinib | baricitinib |
Cytokines | Serum: * IL-6: 71 pg/mL * IL-8: 31 pg/mL | Serum + IL-6: 20.5 pg/mL; 12.4 pg/mL | Serum: * IL-6: 71 pg/mL ** CSF: Normal | Serum: * IL-6: 157 pg/mL * IL-8: 43 pg/mL | Serum: + IL-6: 4.6 pg/mL |
Case 2 | DOH: 38 Seizures: SE | DOH: 56 Seizures: Focal | DOH: 102 Seizure: None | ||
SIT to date | methylprednisolone IVIG plasmapheresis anakinra | anakinra | methylprednisolone anakinra | ||
Cytokines | CSF: ** IL-6: 71 pg/mL | Serum: ^ IL-2Rs: 2981 pg/mL + IL-6: 3.8 pg/mL | Serum: * IL-8: 26 pg/mL * IFN gamma: 2 pg/mL ** CSF: normal | ||
Case 3 | DOH: 6 Seizures: SE | DOH: 13 Seizures: Self-limited seizures | DOH: 40 Seizures: None | ||
SIT to date | methylprednisolone IVIG | plasmapheresis anakinra | rituximab tocilizumab | ||
Cytokines | Serum: + IL-6: 8.6 pg/mL + IL-8: 5.0 pg/mL | Serum: + IL-2 R soluble: 1308.6 pg/mL + IL-5: 9.5 pg/mL + IL-10: 10.9 pg/mL + IL-18: 1.8 pg/mL + IL-6: 21.7 pg/mL + IL-8: 3.5 pg/mL | Serum: + IL-2 Rs: 2071.2 pg/mL + IL-10: 7.8 pg/mL + IL-6: 37.8 pg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoden, T.; Hoftman, A.; Rascoff, N.; McCurdy, D. A Case Series and Review of Febrile-Infection Related Epilepsy Syndrome (FIRES). Children 2025, 12, 485. https://doi.org/10.3390/children12040485
Spoden T, Hoftman A, Rascoff N, McCurdy D. A Case Series and Review of Febrile-Infection Related Epilepsy Syndrome (FIRES). Children. 2025; 12(4):485. https://doi.org/10.3390/children12040485
Chicago/Turabian StyleSpoden, Tahnee, Alice Hoftman, Nanci Rascoff, and Deborah McCurdy. 2025. "A Case Series and Review of Febrile-Infection Related Epilepsy Syndrome (FIRES)" Children 12, no. 4: 485. https://doi.org/10.3390/children12040485
APA StyleSpoden, T., Hoftman, A., Rascoff, N., & McCurdy, D. (2025). A Case Series and Review of Febrile-Infection Related Epilepsy Syndrome (FIRES). Children, 12(4), 485. https://doi.org/10.3390/children12040485