Objective and Subjective Physical Activity Assessment in Adolescents with Motor Difficulties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Materials
2.2.1. The Movement Assessment Battery for Children—Second Edition
2.2.2. The “Godin–Shephard” Leisure-Time Physical Activity Questionnaire
2.2.3. Yamax Power Walker EX-510 Pedometers (Yamax, Kumamoto, Japan)
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Motor Difficulty Prevalence Using MABC-2
3.2. Pearson’s Correlations Among Study Variables
3.3. Differences in the “Godin–Shephard” Leisure-Time Physical Activity Questionnaire Scores Between MD and Non-MD Groups
3.4. Differences in Yamax Power Walker EX-510 Pedometer Scores Between MD and Non-MD Groups
4. Discussion
4.1. Limitations and Strengths
4.2. Future Considerations
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCD | Developmental coordination disorder |
PA | Physical activity |
PE | Physical education |
MVPA | Moderate to vigorous physical activity |
GSLTPAQ | Godin–Shephard Leisure Time Physical Activity Questionnaire |
MABC-2 | Movement Assessment Battery for Children-2 |
WHO | World Health Organization |
CDC | Center for Disease Control |
References
- American Psychiatric Association (APA). DSM-5: Diagnostic and Statistical Manual of Mental Disorder, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Blank, R.; Barnett, A.L.; Cairney, J.; Green, D.; Kirby, A.; Polatajko, H.; Rosenblum, S.; Smits-Engelsman, B.; Sugden, D.; Wilson, P.; et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev. Med. Child. Neurol. 2019, 61, 242–285. [Google Scholar] [CrossRef] [PubMed]
- Blank, R.; Smits-Engelsman, B.C.; Polatajko, H.; Wilson, P.H. European Academy for Childhood Disability. European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev. Med. Child. Neurol. 2012, 54, 54–93. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ke, X.; Huang, D.; Xu, X.; Tian, H.; Gao, J.; Jiang, C.; Song, W. The prevalence of developmental coordination disorder in children: A systematic review and meta-analysis. Front. Pediatr. 2024, 12, 1387406. [Google Scholar] [CrossRef] [PubMed]
- Girish, S.; Raja, K.; Kamath, A. Prevalence of developmental coordination disorder among mainstream school children in India. J. Pediatr. Rehabil. Med. 2016, 9, 107–116. [Google Scholar] [CrossRef]
- Monastiridi, S.; Katartzi, E.; Kourtessis, T.; Vlachopoulos, S.P. A core-stabilization program for motor performance in adolescents with motor difficulties. Health Fit. J. Can. 2021, 14, 3–24. [Google Scholar] [CrossRef]
- Grace, T.; Bulsara, M.; Robinson, M.; Hands, B. Early life events and motor development in childhood and adolescence: A longitudinal study. Acta Paediatr. 2016, 105, e219–e227. [Google Scholar] [CrossRef]
- Cancer, A.; Minoliti, R.; Crepaldi, M.; Antonietti, A. Identifying Developmental Motor Difficulties: A Review of Tests to Assess Motor Coordination in Children. J. Funct. Morphol. Kinesiol. 2020, 5, 16. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children, 2nd ed.; The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Samara, S.; Tsanaktsidis, K.; Katartzi, E.S.; Kontou, M.G.; Kourtessis, T.; Tzetzis, G. Health and skill-related physical fitness in adolescents with motor difficulties compared to their peers without motor difficulties. J. Adv. Sports Phys. Edu. 2022, 5, 58–67. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Church, T.S.; Thomas, D.M.; Tudor-Locke, C.; Katzmarzyk, P.T.; Earnest, C.P.; Rodarte, R.Q.; Martin, C.K.; Blair, S.N.; Bouchard, C. Trends over five decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE 2011, 6, e19657. [Google Scholar] [CrossRef]
- Troiano, R.P.; Pettee Gabriel, K.K.; Welk, G.J.; Owen, N.; Sternfeld, B. Reported physical activity and sedentary behavior: Why do you ask? J. Phys. Act. Health 2012, 9 (Suppl. S1), S68–S75. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Recommendations on Physical Activity for Health; WHO: Geneva, Italy, 2020. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, A.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Craig, C.L.; Beets, M.W.; Belton, S.; Cardon, G.M.; Duncan, S.; Hatano, Y.; Lubans, D.R.; Olds, T.S.; Raustorp, A.; et al. How many steps/day are enough for children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Parra-Saldías, M.; Mayorga-Vega, D.; López-Fernández, I.; Viciana, J. How many daily steps are really enough for adolescents? A cross-validation study. Retos 2018, 33, 241–246. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe (WHO/Europe) Greece Country Physical Activity Factsheet. 2024. Available online: https://www.diatrofikoiodigoi.gr/?Page=systaseis (accessed on 13 December 2024).
- Godin, G.; Shephard, R.J. A simple method to assess exercise behaviour in the community. Can. J. Sport. Sci. 1985, 10, 141–146. [Google Scholar]
- Godin, G. The Godin-Shephard Leisure-Time Physical Activity Questionnaire. Health Fit. J. Can. 2011, 4, 18–22. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef]
- Skender, S.; Ose, J.; Chang-Claude, J.; Paskow, M.; Brühmann, B.; Siegel, E.M.; Steindorf, K.; Ulrich, C.M. Accelerometry and physical activity questionnaires—A systematic review. BMC Public Health 2016, 16, 515. [Google Scholar] [CrossRef]
- Chinapaw, M.J.; Mokkink, L.B.; Van Poppel, M.N.M.; Van Mechelen, W.; Terwee, C.B.; Chinapaw, M.J.M. Physical Activity Questionnaires for Youth. Sports Med. 2010, 40, 539–563. [Google Scholar] [CrossRef]
- Gionet, N.J.; Godin, G. Self-reported exercise behavior of employees: A validity study. J. Occup. Environ. Med. 1989, 31, 969–973. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Gorely, T.; Pearson, N.; Bull, F.C. An assessment of self-reported physical activity instruments in young people for population surveillance: Project ALPHA. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Zelener, J.; Schneider, M. Adolescents and self-reported physical activity: Anevaluation of the modified Godin Leisure-Time Exercise Questionnaire. Int. J. Exerc. Sci. 2016, 9, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Amireault, S.; Godin, G. The Godin-Shephard Leisure-Time Physical Activity Questionnaire: Validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Percept Mot. Ski. 2015, 120, 604–622. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, Y.; Hassandra, M. Smoking and Exercise, Part ΙΙ: Differences between Exercisers and Non-Exercisers. Inq. Sport. Phys. Educ. 2005, 3, 239–248. [Google Scholar]
- Katartzi, E.S.; Kontou, M.G.; Pappas, I.; Monastriridi, S.G.; Girousi, G. The Consequences of the Restrictive Measures Due to Two Strict COVID-19 Lockdowns on Self-Reported Pfysical Activity in Adolescents. Int. J. Kines. Sports Sci. 2022, 10, 47–56. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Aguiar, E.J.; Han, H.; Ducharme, S.W.; Schuna, J.M., Jr.; Barreira, T.V.; Moore, C.C.; Busa, M.A.; Lim, J.; Sirard, J.R.; et al. Walking cadence (steps/min) and intensity in 21–40 year olds: CADENCE-adults. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 8. [Google Scholar] [CrossRef]
- Hidding, L.M.; Chinapaw, M.J.M.; Van Poppel, M.N.M.; Mokkink, L.B.; Altenburg, T.M. An Updated Systematic Review of Childhood Physical Activity Questionnaires. Sports Med. 2018, 48, 2797–2842. [Google Scholar] [CrossRef]
- Kraus, W.E.; Janz, K.F.; Powell, K.E.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Daily Step Counts for Measuring Physical Activity Exposure and Its Relation to Health. Med. Sci. Sports Exerc. 2019, 51, 1206–1212. [Google Scholar] [CrossRef]
- Thorup, C.B.; Grønkjær, M.; Spindler, H.; Andreasen, J.J.; Hansen, J.; Dinesen, B.; Nielsen, G.; Sørensen, E. Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: A qualitative study. BMC Sports Sci. Med. Rehabil. 2016, 8, 24. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Williams, J.E.; Reis, J.P.; Pluto, D. Utility of pedometers for assessing physical activity: Convergent validity. Sports Med. 2002, 32, 795–808. [Google Scholar] [CrossRef]
- Crouter, S.; Schneider, P.; Karabulut, M.; Bassett, D. Validity of 10 Electronic Pedometers for Measuring Steps, Distance, and Energy Cost. Med. Sci. Sports Exerc. 2003, 35, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.L.; Crouter, S.E.; Lukajic, O.; Bassett, D.R., Jr. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 2003, 35, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Le Masurier, G.; Lee, S.; Tudor-Locke, C. Motion sensor accuracy under controlled and freeliving conditions. Med. Sci. Sports Exerc. 2004, 36, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.L.; Crouter, S.; Bassett, D.R. Pedometer measures of free-living physical activity: Comparison of 13 models. Med. Sci. Sports Exerc. 2004, 36, 331–335. [Google Scholar] [CrossRef]
- Pappas, I.A.; Katartzi, E.S.; Monastiridi, S.G.; Argiriadou, E.; Lourenço, C.C.V. Assessment of physical activity using pedometers in a structured Greek traditional dance session in adults: A pilot study. J. Adv. Sports Phys. Educ. 2022, 5, 16–23. [Google Scholar] [CrossRef]
- Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.J. A practical guide to measuring physical activity. J. Acad. Nutr. Diet. 2014, 114, 199–208. [Google Scholar] [CrossRef]
- Marasso, D.; Lupo, C.; Collura, S.; Rainoldi, A.; Brustio, P.R. Subjective versus Objective Measure of Physical Activity: A Systematic Review and Meta-Analysis of the Convergent Validity of the Physical Activity Questionnaire for Children (PAQ-C). Int. J. Environ. Res. Public Health 2021, 18, 3413. [Google Scholar] [CrossRef]
- Li, Y.C.; Wu, S.K.; Cairney, J.; Hsieh, C.Y. Motor coordination and health-related physical fitness of children with developmental coordination disorder: A three-year follow-up study. Res. Dev. Disabil. 2011, 32, 2993–3002. [Google Scholar] [CrossRef]
- Tamplain, P.; Miller, H.L.; Peavy, D.; Cermak, S.; Williams, J.; Licari, M. The impact for DCD—USA study: The current state of developmental coordination disorder (DCD) in the United States of America. Res. Dev. Disabil. 2024, 145, 104658. [Google Scholar] [CrossRef]
- Rivilis, I.; Hay, J.; Cairney, J.; Klentrou, P.; Liu, J.; Faught, B.E. Physical activity and fitness in children with developmental coordination disorder: A systematic review. Res. Dev. Disabil. 2011, 32, 894–910. [Google Scholar] [CrossRef]
- Izadi-Najafabadi, S.; Ryan, N.; Ghafooripoor, G.; Gill, K.; Zwicker, J.G. Participation of children with developmental coordination disorder. Res. Dev. Disabil. 2019, 84, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.L.; Hill, E. Understanding Motor Behavior in Developmental Coordination Disorder, 1st ed.; Routledge: London, UK, 2019. [Google Scholar] [CrossRef]
- Noordstar, J.J.; Volman, M.J.M. Self-perceptions in children with probable developmental coordination disorder with and without overweight. Res. Dev. Disabil. 2020, 99, 103601. [Google Scholar] [CrossRef] [PubMed]
- Zaragas, H.; Fragkomichelaki, O.; Geitona, M.; Sofologi, M.; Papantoniou, G.; Sarris, D.; Pliogou, V.; Charmpatsis, C.; Papadimitropoulou, P. The effects of physical activity in children and adolescents with developmental coordination disorder. Neurol. Int. 2023, 15, 804–820. [Google Scholar] [CrossRef] [PubMed]
- Katartzi, E.; Vlachopoulos, S. Motivating children with developmental coordination disorder in school physical education: The self-determination theory approach. Res. Dev. Disabil. 2011, 32, 2674–2682. [Google Scholar] [CrossRef]
- Green, D.; Lingam, R.; Mattocks, C.; Riddoch, C.; Ness, A.; Emond, A. The risk of reduced physical activity in children with probable Developmental Coordination Disorder: A prospective longitudinal study. Res. Dev. Disabil. 2011, 32, 1332–1342. [Google Scholar] [CrossRef]
- Kambas, A.; Michalopoulou, M.; Fatouros, I.G.; Christoforidis, C.; Manthou, E.; Giannakidou, D.; Venetsanou, F.; Haberer, E.; Chatzinikolaou, A.; Gourgoulis, V.; et al. The relationship between motor proficiency and pedometer-determined physical activity in young children. Pediatr. Exerc. Sci. 2012, 24, 34–44. [Google Scholar] [CrossRef]
- Zwicker, J.G.; Suto, M.; Harris, S.R.; Vlasakova, N.; Missiuna, C. Developmental coordination disorder is more than a motor problem: Children describe the impact of daily struggles on their quality of life. Br. J. Occup. Ther. 2017, 81, 65–73. [Google Scholar] [CrossRef]
- Tan, J.L.K.; Ylä-Kojola, A.-M.; Eriksson, J.G.; Salonen, M.K.; Wasenius, N.; Hart, N.H.; Chivers, P.; Rantalainen, T.; Lano, A.; Piitulainen, H. Effect of childhood developmental coordination disorder on adulthood physical activity: Arvo Ylppö longitudinal study. Scand. J. Med. Sci. Sports 2022, 32, 1050–1063. [Google Scholar] [CrossRef]
- Smyth, M.M.; Anderson, H.I. Coping with clumsiness in the school playground: Social and physical play in children with coordination impairments. Br. J. Dev. Psychol. 2000, 18, 389–413. [Google Scholar] [CrossRef]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Wade, T.J.; Corna, L.; Flouris, A. Developmental coordination disorder, generalized self-efficacy toward physical activity, and participation in organized and free play activities. J. Pediatr. 2005, 147, 515–520. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority. Sencus Results of Greek Population 2021. 2023. Available online: https://elstat-outsourcers.statistics.gr/Census2022_GR.pdf (accessed on 27 January 2025).
- Calculator.net. Sample Size Calculator. Find Out The Sample Size. 2024. Available online: https://www.calculator.net/sample-size-calculator.html (accessed on 27 January 2025).
- Yamax Power-Walker EX-510. Instruction Manual. 2017. Available online: http://www.yamax-yamasa.com/wp/wp-content/uploads/2017/08/power-walker_ex_instruction_manual.pdf (accessed on 6 April 2025).
- Trost, S.G.; Mclver, K.L.; Pater, R.R. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sports Exerc. 2005, 37 (Suppl. S11), 531–543. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.S.; Evenson, K.R.; Vaughn, A.; Rodgers, A.B.; Troiano, R.P. Accelerometer Use in Physical Activity: Best Practices and Research Recommendations. Med. Sci. Sports Exerc. 2005, 37 (Suppl. S11), S582–S588. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G. Calibrating Your Pedometer Stride Length; Topend Sports Website: Mount Hawthorn, Australia, 2009. [Google Scholar]
- Brydges, C.R. Effect size guidelines, sample size calculations, and statistical power in gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Santos, L.R.V.; Ferracioli, M.C. Prevalence of children identified with motor difficulties. Cad. Bras. Ter. Ocup. 2020, 28, 525–538. [Google Scholar] [CrossRef]
- Wilson, P.H.; Ruddock, S.; Smits-Engelsman, B.; Polatajko, H.; Blank, R. Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Dev. Med. Child. Neurol. 2013, 55, 217–228. [Google Scholar] [CrossRef]
- Wilson, P.H.; Smits-Engelsman, B.; Caeyenberghs, K.; Steenbergen, B.; Sugden, D.; Clark, J.; Mumford, N.; Blank, R. Cognitive and neuroimaging findings in developmental coordination disorder: New insights from a systematic review of recent research. Dev. Med. Child. Neurol. 2017, 59, 1117–1129. [Google Scholar] [CrossRef]
- Kaczkurkin, A.N.; Raznahan, A.; Satterthwaite, T.D. Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology 2019, 44, 71–85. [Google Scholar] [CrossRef]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Gender Differences in Motor Skill Proficiency From Childhood to Adolescence: A Longitudinal Study. Res. Q. Exerc. Sport. 2010, 81, 162–170. [Google Scholar] [CrossRef]
- Hendrix, C.G.; Prins, M.R.; Dekkers, H. Developmental coordination disorder and overweight and obesity in children: A systematic review. Obes. Rev. 2014, 15, 408–423. [Google Scholar] [CrossRef]
MD Group (N = 8) (M ± SD) | Non-MD Group (N = 7) (M ± SD) | ES g | t(1,13) | p | |
---|---|---|---|---|---|
Age (years) | 12.65 ± 1.04 | 13.11 ± 0.91 | 0.46 | −0.88 | 0.39 |
Body height (m) | 1.67 ± 0.12 | 1.62 ± 0.08 | 0.48 | 0.83 | 0.41 |
Body weight (kg) | 60.68 ± 14.84 | 49.3 ± 11.49 | 0.84 | 1.64 | 0.12 |
BMI (kg/m2) | 21.59 ± 4.05 | 18.54 ± 3.33 | 0.81 | 1.57 | 0.13 |
PA participation (times/week) | 4.4 ± 1.67 | 4.3 ± 1.38 | 0.06 | 0.13 | 0.89 |
PA session duration (h) | 1.20 ± 0.44 | 1.29 ± 0.49 | 0.19 | −0.31 | 0.76 |
Stride length (cm) | 0.62 ± 0.09 | 0.62 ± 0.08 | 0.00 | −0.05 | 0.95 |
Movement ABC-2 Zones of Motor Difficulty-“Traffic Light System” | Movement ABC-2 (Ν = 69) | |||
---|---|---|---|---|
Total Test Score | Manual Dexterity Score | Aiming and Catching Score | Static/Dynamic Balance Score | |
n (%) | n (%) | n (%) | n (%) | |
No motor difficulties (green zone) | 60 (87%) | 60 (85.7%) | 61 (88.4%) | 60 (87%) |
“At risk” (amber zone) | 4 (5.8%) | 0 (0%) | 4 (5.8%) | 8 (11.6%) |
Significant motor difficulties (red zone) | 5 (7.2%) | 9 (13%) | 4 (5.8%) | 1 (1.4%) |
Movement ABC-2 Zones of Motor Difficulty-“Traffic Light System” | Movement ABC-2 (Ν = 69; 39 Boys and 30 Girls) | |||||||
---|---|---|---|---|---|---|---|---|
Total Test Score n (%) | Manual Dexterity Score n (%) | Aiming and Catching Score n (%) | Static/Dynamic Balance Score n (%) | |||||
Boys | Girls | Boys | Girls | Boys | Girls | Boys | Girls | |
No motor difficulties (green zone) | 34 (87.2%) | 26 (86.7%) | 34 (87.2%) | 26 (86.7%) | 61 (88.4%) | 24 (80%) | 32 (82.1%) | 28 (93.3%) |
“At risk”(amber zone) | 3 (7.7%) | 1 (3.3%) | 0 (0%) | 0(0%) | 4 (5.8%) | 4 (13.3%) | 6 (15.4%) | 2 (6.7%) |
Significant motor difficulties (red zone) | 2 (5.1%) | 3 (10%) | 5 (12.8%) | 4 (13.3%) | 4 (5.8%) | 2 (6.7%) | 1 (2.1%) | 0 (0%) |
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Strenuous PA | 3.80 | 2.07 | - | |||||||||||
2. Moderate PA | 2.53 | 1.35 | −0.137 | - | ||||||||||
3. Mild PA | 3.93 | 2.52 | −0.139 | 0.555 * | - | |||||||||
4. Total PA health | 48.26 | 20.28 | 0.944 ** | 0.031 | 0.030 | - | ||||||||
5. Number of steps | 8445.81 | 2737.92 | 0.248 | 0.144 | −0.061 | 0.204 | - | |||||||
6. Distancetraveled (km) | 5.52 | 2.26 | 0.231 | 0.133 | −0.064 | 0.211 | 0.930 ** | - | ||||||
7. Calories (kcal) | 335.46 | 155.09 | 0.172 | 0.155 | −0.004 | 0.131 | 0.878 ** | 0.953 ** | - | |||||
8. Fat burn(g) | 46.68 | 21.39 | 0.170 | 0.153 | −0.012 | 0.128 | 0.883 ** | 0.953 ** | 1.00 ** | - | ||||
9. Time (min) | 78.88 | 25.69 | 0.272 | 0.115 | −0.099 | 0.221 | 0.988 ** | 0.951 ** | 0.904 ** | 0.908 ** | - | |||
10. Motor difficulties | _ | _ | 0.160 | −0.381 | −0.194 | 0.130 | −0.210 | −0.254 | −0.392 | −0.401 | −0.258 | - | ||
11. BMI | 20.17 | 3.92 | −0.048 | 0.039 | 0.071 | −0.156 | 0.328 | 0.338 | 0.583 * | 0.582 * | 0.336 | −0.401 | - | |
12. PA participation (times/week) | 4.33 | 1.43 | 0.780 ** | −0.365 | −0.326 | 0.576 * | 0.337 | 0.545 | 0.492 | 0.487 | 0.456 | −0.041 | 0.333 | - |
Self-Reported Weekly PA | MD (N = 8) (M ± SD) | Non-MD (N = 7) (M ± SD) | ES g | F | p | η2 |
---|---|---|---|---|---|---|
Strenuous PA | 3.5 ± 2.61 | 4.16 ± 1.34 | 0.31 | 6.75 | 0.025 * | 0.381 |
Moderate PA | 3.0 ± 0.75 | 2.0 ± 1.73 | 0.77 | 2.28 | 0.159 | 0.172 |
Mild PA | 4.37 ± 2.87 | 3.42 ± 2.14 | 0.37 | 1.19 | 0.298 | 0.098 |
Total PA Health | 45.87 ± 24.85 | 51.0 ± 14.94 | 0.24 | 10.73 | 0.007 * | 0.494 |
Pedometer Weekly Variables | MD (N = 8) (M ± SD) | Non-MD (N = 7) (M ± SD) | ES g | F | p | η2 |
---|---|---|---|---|---|---|
Number of steps | 8966.4 ± 2848.8 | 7850.8 ± 2692.2 | 0.40 | 1.72 | 0.216 | 0.135 |
Distance traveled (km) | 6.04 ± 2.52 | 4.93 ± 1.95 | 0.48 | 0.545 | 0.476 | 0.047 |
Calories (kcal) | 390.44 ± 159.7 | 272.6 ± 133.07 | 0.79 | 0.027 | 0.873 | 0.002 |
Fat burned (gr) | 54.43 ± 21.80 | 37.81 ± 18.48 | 0.81 | 0.015 | 0.904 | 0.001 |
Time (min) | 84.87 ± 26.54 | 72.02 ± 24.80 | 0.49 | 1.78 | 0.209 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katartzi, E.; Kontou, M.; Pappas, I.; Trigonis, I.; Kourtessis, T. Objective and Subjective Physical Activity Assessment in Adolescents with Motor Difficulties. Children 2025, 12, 488. https://doi.org/10.3390/children12040488
Katartzi E, Kontou M, Pappas I, Trigonis I, Kourtessis T. Objective and Subjective Physical Activity Assessment in Adolescents with Motor Difficulties. Children. 2025; 12(4):488. https://doi.org/10.3390/children12040488
Chicago/Turabian StyleKatartzi, Ermioni, Maria Kontou, Ioannis Pappas, Ioannis Trigonis, and Thomas Kourtessis. 2025. "Objective and Subjective Physical Activity Assessment in Adolescents with Motor Difficulties" Children 12, no. 4: 488. https://doi.org/10.3390/children12040488
APA StyleKatartzi, E., Kontou, M., Pappas, I., Trigonis, I., & Kourtessis, T. (2025). Objective and Subjective Physical Activity Assessment in Adolescents with Motor Difficulties. Children, 12(4), 488. https://doi.org/10.3390/children12040488