Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review
Abstract
:1. Introduction
2. Materials and Methods
- “necrotizing enterocolitis” AND (“artificial intelligence” OR “machine learning” OR “deep learning”);
- “biomarkers” AND “NEC” AND “neonates”;
- “clinical decision support systems” AND “NEC”;
- “spontaneous intestinal perforation” OR “sepsis” AND “machine learning”.
- Investigated the use of AI or ML techniques in NEC research or management.
- Focused on identifying the NEC risk factors, biomarkers, or predictive models.
- Evaluated ML applications in clinical decision making, such as severity stratification or treatment planning.
- Explored the differentiation of NEC from SIP, sepsis, or other neonatal conditions.
Definitions
3. Results
3.1. ML Methods for Determining Risk Factors for NEC
- -
- Patients characteristic and clinical data
- -
- Microbiome and Metabolic Profiling Integration
3.2. ML Methods for Clinical Decision Making in NEC Management
- -
- Imaging and Radiographic Analysis
3.3. ML Methods to Differentaite NEC from Spontaneous Intestinal Perforation (SIP) and Sepsis
4. Discussion
Challenges and Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Duci, M.; De Cesare, L.; Hochuli, A.H.D.; Muraca, M.; Cananzi, M.; Gamba, P.; Fascetti-Leon, F.; Pozzobon, M. Research Models to Mimic Necrotizing Enterocolitis and Inflammatory Bowel Diseases: Focus on Extracellular Vesicles Action. Stem Cells 2023, 41, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Schouten, J.S.; Kalden, M.A.C.M.; van Twist, E.; Reiss, I.K.M.; Gommers, D.A.M.P.J.; van Genderen, M.E.; Taal, H.R. From bytes to bedside: A systematic review on the use and readiness of artificial intelligence in the neonatal and pediatric intensive care unit. Intensive Care Med. 2024, 50, 1767–1777. [Google Scholar] [CrossRef]
- McElroy, S.J.; Lueschow, S.R. State of the art review on machine learning and artificial intelligence in the study of neonatal necrotizing enterocolitis. Front. Pediatr. 2023, 11, 1182597. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.S.; Taylor, S.N.; Wagner, C.L.; Mueller, M. Using an artificial neural network to predict necrotizing enterocolitis in premature infants. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, Ga, USA, 14–19 June 2009; pp. 2172–2175. [Google Scholar] [CrossRef]
- Pantalone, J.M.; Liu, S.; Olaloye, O.O.; Prochaska, E.C.; Yanowitz, T.; Riley, M.M.; Buland, J.R.; Brozanski, B.S.; Good, M.; Konnikova, L. Gestational Age-Specific Complete Blood Count Signatures in Necrotizing Enterocolitis. Front. Pediatr. 2021, 9, 604899. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Lee, E.H.; Lee, K.S.; Heo, J.S. Machine learning-based risk factor analysis of necrotizing enterocolitis in very low birth weight infants. Sci. Rep. 2022, 12, 21407. [Google Scholar] [CrossRef]
- Cui, K.; Changrong, S.; Maomin, Y.; Hui, Z.; Xiuxiang, L. Development of an artificial intelligence-based multimodal model for assisting in the diagnosis of necrotizing enterocolitis in newborns: A retrospective study. Front. Pediatr. 2024, 12, 1388320. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Z.; Wei, Q.; Mo, Y.; Luo, M.; Jing, L.; Li, Y. A prediction model for neonatal necrotizing enterocolitis in preterm and very low birth weight infants. Front. Pediatr. 2023, 11, 1242978. [Google Scholar] [CrossRef]
- Verhoeven, R.; Kupers, T.; Brunsch, C.L.; Hulscher, J.B.F.; Kooi, E.M.W. Using Vital Signs for the Early Prediction of Necrotizing Enterocolitis in Preterm Neonates with Machine Learning. Children 2024, 11, 1452. [Google Scholar] [CrossRef]
- Hooven, T.A.; Lin, A.Y.C.; Salleb-Aouissi, A. Multiple Instance Learning for Predicting Necrotizing Enterocolitis in Premature Infants Using Microbiome Data. In Proceedings of the ACM Conference on Health, Inference, and Learning, Toronto, ON, Canada, 2–4 April 2020; pp. 99–109. [Google Scholar] [CrossRef]
- Lin, Y.C.; Salleb-Aouissi, A.; Hooven, T.A. Interpretable prediction of necrotizing enterocolitis from machine learning analysis of premature infant stool microbiota. BMC Bioinform. 2022, 23, 104. [Google Scholar] [CrossRef]
- Olm, M.R.; Bhattacharya, N.; Crits-Christoph, A.; Firek, B.A.; Baker, R.; Song, Y.S.; Morowitz, M.J.; Banfield, J.F. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 2019, 5, eaax5727. [Google Scholar] [CrossRef]
- Casaburi, G.; Wei, J.; Kazi, S.; Liu, J.; Wang, K.; Tao, G.Z.; Lin, P.Y.; Dunn, J.C.Y.; Henrick, B.M.; Frese, S.A.; et al. Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Front. Pediatr. 2022, 10, 893059. [Google Scholar] [CrossRef]
- Rusconi, B.; Jiang, X.; Sidhu, R.; Ory, D.S.; Warner, B.B.; Tarr, P.I. Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci. Rep. 2018, 8, 10984. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Ling, X.B.; Zhao, Y.; Hu, Z.; Zheng, X.; Xu, Z.; Wen, Q.; Kastenberg, Z.J.; Li, P.; Abdullah, F.; et al. A data-driven algorithm integrating clinical and laboratory features for the diagnosis and prognosis of necrotizing enterocolitis. PLoS ONE 2014, 9, e89860. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, K.G.; Ling, X.B.; Liu, G.Y.; Kastenberg, Z.J.; Ji, J.; Hu, Z.; Peng, S.; Lau, K.; Abdullah, F.; Brandt, M.L.; et al. A novel urine peptide biomarker-based algorithm for the prognosis of necrotising enterocolitis in human infants. Gut 2014, 63, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, Z.; Yao, G.; Wei, S.; Li, L.; Wu, H. Framework for feature selection of predicting the diagnosis and prognosis of necrotizing enterocolitis. PLoS ONE 2022, 17, e0273383. [Google Scholar] [CrossRef]
- Gao, W.; Pei, Y.; Huiying, L.; Junjian, L.v.; Chen, J.; Zhong, W. Multimodal AI System for the Rapid Diagnosis and Surgical Prediction of Necrotizing Enterocolitis. IEEE Access 2021, 1, 3069191. [Google Scholar] [CrossRef]
- Weller, J.H.; Scheese, D.; Tragesser, C.; Yi, P.H.; Alaish, S.M.; Hackam, D.J. Artificial Intelligence vs. Doctors: Diagnosing Necrotizing Enterocolitis on Abdominal Radiographs. J. Pediatr. Surg. 2024, 59, 161592. [Google Scholar] [CrossRef]
- Yung, K.W.; Sivaraj, J.; De Coppi, P.; Stoyanov, D.; Loukogeorgakis, S.; Mazomenos, E.B. Diagnosing Necrotizing Enterocolitis via Fine-Grained Visual Classification. IEEE Trans. Bio-Med. Eng. 2024, 71, 3160–3169. [Google Scholar] [CrossRef]
- Irles, C.; González-Pérez, G.; Carrera Muiños, S.; Michel Macias, C.; Sánchez Gómez, C.; Martínez-Zepeda, A.; Cordero González, G.; Laresgoiti Servitje, E. Estimation of Neonatal Intestinal Perforation Associated with Necrotizing Enterocolitis by Machine Learning Reveals New Key Factors. Int. J. Environ. Res. Public Health 2018, 15, 2509. [Google Scholar] [CrossRef]
- Lure, A.C.; Du, X.; Black, E.W.; Irons, R.; Lemas, D.J.; Taylor, J.A.; Lavilla, O.; de la Cruz, D.; Neu, J. Using machine learning analysis to assist in differentiating between necrotizing enterocolitis and spontaneous intestinal perforation: A novel predictive analytic tool. J. Pediatr. Surg. 2021, 56, 1703–1710. [Google Scholar] [CrossRef]
- Son, J.; Kim, D.; Na, J.Y.; Jung, D.; Ahn, J.H.; Kim, T.H.; Park, H.K. Development of artificial neural networks for early prediction of intestinal perforation in preterm infants. Sci. Rep. 2022, 12, 12112. [Google Scholar] [CrossRef] [PubMed]
- Robi, Y.G.; Sitote, T.M. Neonatal Disease Prediction Using Machine Learning Techniques. J. Healthc. Eng. 2023, 2023, 3567194. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Beirnaert, C.; Mahieu, L.; Laukens, K.; Meysman, P.; Mulder, A.; Van Laere, D. Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis. J. Pediatr. 2024, 266, 113869. [Google Scholar] [CrossRef]
- Shu, C.H.; Zebda, R.; Espinosa, C.; Reiss, J.; Debuyserie, A.; Reber, K.; Aghaeepour, N.; Pammi, M. Early prediction of mortality and morbidities in VLBW preterm neonates using machine learning. Pediatr. Res. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cuna, A.; Kumar, N.; Sampath, V. Understanding Necrotizing Enterocolitis Endotypes and Acquired Intestinal Injury Phenotypes from a Historical and Artificial Intelligence Perspective. Front. Pediatr. 2024, 12, 1432808. [Google Scholar] [CrossRef]
- Lueschow, S.R.; Boly, T.J.; Jasper, E.; Patel, R.M.; McElroy, S.J. A Critical Evaluation of Current Definitions of Necrotizing Enterocolitis. Pediatr. Res. 2022, 91, 590–597. [Google Scholar] [CrossRef]
1. ML Methods for Identifying Risk Factors and Biomarkers | |||
---|---|---|---|
Citation | ML Methods Used | Dataset Size | Key Findings |
Mueller et al., 2009 [4] | Artificial neural networks (ANNs) | Small | Identified being small for gestational age and requiring artificial ventilation as key risk factors. |
Pantalone et al., 2021 [5] | Random forest (RF) | Small | Used CBC data to distinguish between surgical and medical NEC, with a lower sensitivity in classification. |
Cho et al., 2022 [6] | Logistic regression (LR), RF | Large | Identified 10 key features essential for NEC differentiation, including birth weight and gestational age. |
Cui et al., 2024 [7] | ResNet34 + CNN (multimodal AI model) | Large | Integrated imaging and laboratory data for NEC diagnosis, achieving 94% accuracy and AUROC of 0.91, outperforming traditional methods. |
Feng et al., 2023 [8] | Support vector machines (SVMs), RF | Small | Identified predictors like temperature, Apgar score, formula feeding, and gestational diabetes mellitus. |
Verhoeven et al., 2024 [9] | Machine learning + NIRS data analysis | Medium | Identified abdominal oxygen saturation (ArSO2) < 50% as a significant NEC predictor. Combined NIRS data with ML to enhance early NEC detection. |
Hooven et al., 2020 [10] | Multilayer neural network (MIL) | Small | Predicted NEC 24 h before onset using stool microbiome data. |
Lin et al., 2022 [11] | MIL, unsupervised learning | Medium | Integrated microbiome and clinical data, achieving an 8.3-day prediction window before NEC onset. |
Olm et al., 2019 [12] | Gradient boosted classifier (GBM) | Medium | Identified metabolic and taxonomic features, such as Klebsiella, as NEC predictors. |
Casaburi et al., 2022 [13] | RF | Medium | Used metagenomic data to identify NEC-associated bacteria. |
Rusconi et al. 2018 [14] | K-nearest neighbors (KNNs) | Small | Identified stool sphingolipid biomarkers improving NEC diagnosis. |
2. ML Methods for Clinical Decision Making in NEC Management | |||
Citation | ML Methods Used | Dataset Size | Key Findings |
Ji et al., 2014 [15] | Linear discriminant analysis (LDA) | Small | Automated NEC risk stratification, achieving 100% accuracy for Stage I, 83.3% for Stage III. |
Sylvester et al., 2014 [16] | Unsupervised ML, LDA | Small | Identified urinary peptide biomarkers, achieving perfect classification when combined with clinical data. |
Song et al., 2022 [17] | Ridge regression, Q-learning-based bee swarm optimization (RQBSO) | Small | Differentiated medical vs. surgical NEC, AUROC 0.91. |
Gao et al., 2021 [18] | Convolutional neural networks (CNNs) | Medium | Developed a multimodal AI system integrating radiographic images and clinical data. |
Weller et al., 2024 [19] | ResNet-50 deep convolutional neural network (DCNN), transfer learning | Small | Achieved AUROC of 0.918, matching senior residents’ performance in pneumatosis detection on NEC radiographs. Used Grad-CAM to confirm model interpretability. |
Yung et al. 2024 [20] | CNNs | Medium | Differentiated medical vs. surgical NEC using radiographs, AUROC 0.94. |
3. ML Methods for Differentiating NEC from SIP and Sepsis | |||
Citation | ML Methods Used | Dataset Size | Key Findings |
Irles et al., 2018 [21] | Back-propagated ANN | Small | Identified key predictors for intestinal perforation, including platelet and neutrophil counts. |
Lure et al., 2021 [22] | Ridge logistic regression, RF | Small | Identified radiographic differences distinguishing NEC from SIP. |
Son et al., 2022 [23] | ANN, multilayer perceptron (MLP) | Large | Achieved AUROC 1.0 for NEC with IP prediction. |
Robi et al., 2023 [24] | Stacking classifiers (XGBoost, RF, SVM) | Medium | Achieved high accuracy in predicting NEC and sepsis in neonatal diseases. |
Meeus et al., 2024 [25] | XGBoost | Large | Developed a real-time predictive model for NEC and sepsis, detecting severe cases 10 h before clinical diagnosis. |
Shu et al., 2024 [26] | XGBoost, RF, logistic regression, SVM, KNN | Large | Predicted NEC and sepsis morbidities in preterm infants, AUROC 0.73. |
Aspect | Pre-ML Approaches | ML-Driven Advances |
---|---|---|
Data integration | Isolated biomarkers or single-dimension data | Integrates microbiome, metabolic, clinical, and imaging data |
Predictive accuracy | Low | High (AUROC > 0.9 in many cases) |
Timeliness | Retrospective or concurrent with clinical events | Predictive capabilities with early warning systems |
Clinical decision making | Subjective interpretation, manual tools | Automated, data-driven tools enabling real-time decision-making |
Differential diagnosis | Overlapping symptoms of other conditions | High-performing models clearly differentiate related conditions |
Human bias | Prone to errors and inconsistencies due to subjective human data entry | ML models standardize interpretation and decision processes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duci, M.; Verlato, G.; Moschino, L.; Uccheddu, F.; Fascetti-Leon, F. Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review. Children 2025, 12, 498. https://doi.org/10.3390/children12040498
Duci M, Verlato G, Moschino L, Uccheddu F, Fascetti-Leon F. Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review. Children. 2025; 12(4):498. https://doi.org/10.3390/children12040498
Chicago/Turabian StyleDuci, Miriam, Giovanna Verlato, Laura Moschino, Francesca Uccheddu, and Francesco Fascetti-Leon. 2025. "Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review" Children 12, no. 4: 498. https://doi.org/10.3390/children12040498
APA StyleDuci, M., Verlato, G., Moschino, L., Uccheddu, F., & Fascetti-Leon, F. (2025). Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review. Children, 12(4), 498. https://doi.org/10.3390/children12040498