Challenges in Treating Low Blood Pressure in Preterm Infants
Abstract
:1. Introduction
2. Blood Pressure and Flow
3. Low Blood Pressure and Adverse Outcome
4. Assessment of Circulatory Well-Being
5. Prevention
6. Therapeutic Interventions
6.1. Volume
6.2. Catecholamines
Author | Number of Patients | Gestation/Wt | Definition |
---|---|---|---|
Roze | 20 | <32 weeks | >30 mmHg |
Klarr | 63 | <34 weeks | >30 mmHg |
Greenough | 40 | <33 weeks | Systolic < 40 mmHg |
Hentschel | 20 | 25–36 weeks | Not stated |
Chatterjee | 20 | <32 weeks | Not stated |
Ruelas-orozco | 63 | 1.0–1.5 Kg | <30 mmHg |
Fillipi | 35 | <0.75, <1.0, <1.5 Kg | <25, <30, <32 mmHg |
Osborn | 40 | <30 weeks | Low flow |
Study | No. | Gestation | Agents | RVO | LVO | SVC | Outcome |
---|---|---|---|---|---|---|---|
Roze | 20 | <32 weeks | Dop Dob | n | y | n | Dop: Reduction |
Chatterjee | 20 | <32 weeks | Dop Dob | y | y | n | No change |
Phillipos | 20 | >1750 g | Dop Epi | y | y | n | Dop: Reduction |
Osborn | 40 | <30 weeks | Dop Dob | y | n | y | Dop: Reduction |
Lundstrum | 36 | <33 weeks | Dop Vol | n | y | n | Dop: Increase |
Paradisis | 90 | <30 weeks | Mil Pla | y | n | y | No change |
6.3. Milrinone
6.4. Corticosteroids
7. Administration Challenges
8. Prospective Trials
9. Conclusions
Funding Source
Conflicts of Interest
References
- Al-Aweel, I.; Pursley, D.M.; Rubin, L.P.; Shah, B.; Weisberger, S.; Richardson, D.K. Variations in prevalence of hypotension, hypertension, and vasopressor use in NICUs. J. Perinatol. 2001, 21, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Batton, B.; Li, L.; Newman, N.S.; Das, A.; Watterberg, K.L.; Yoder, B.A.; Faix, R.G.; Laughon, M.M.; Stoll, B.J.; Van Meurs, K.P.; et al. Use of antihypotensive therapies in extremely preterm infants. Pediatrics 2013, 131, e1865–e1873. [Google Scholar] [CrossRef] [PubMed]
- Laughon, M.; Bose, C.; Allred, E.; O’Shea, T.M.; Van Marter, L.J.; Bednarek, F.; Leviton, A.; ELGAN Study Investigators. Factors associated with treatment for hypotension in extremely low gestational age newborns during the first postnatal week. Pediatrics 2007, 119, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stranak, Z.; Semberova, J.; Barrington, K.; O’Donnell, C.; Marlow, N.; Naulaers, G.; Dempsey, E.; HIP consortium. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur. J. Pediatr. 2014, 173, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Osborn, D.; McNamara, P.J. Cardiovascular support in preterm infants: A survey of practices in Australia and New Zealand. J. Paediatr. Child Health 2012, 48, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Bhojani, S.B.; Rahman, M. Management of neonatal hypotension—A national questionnaire survey. Infant 2010, 6, 152–154. [Google Scholar]
- Dempsey, E.M.; Barrington, K.J. Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J. Perinatol. 2006, 26, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Batton, B.; Zhu, X.; Fanaroff, J.; Kirchner, H.L.; Berlin, S.; Wilson-Costello, D.; Walsh, M. Blood pressure, anti-hypotensive therapy, and neurodevelopment in extremely preterm infants. J. Pediatr. 2009, 154, 351–357.e1. [Google Scholar] [CrossRef] [PubMed]
- Groves, A.M.; Kuschel, C.A.; Knight, D.B.; Skinner, J.R. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F24–F28. [Google Scholar] [CrossRef] [PubMed]
- Kluckow, M.; Evans, N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J. Pediatr. 1996, 129, 506–512. [Google Scholar] [CrossRef]
- Pladys, P.; Wodey, E.; Beuchee, A.; Branger, B.; Betremieux, P. Left ventricle output and mean arterial blood pressure in preterm infants during the 1st day of life. Eur. J. Pediatr. 1999, 158, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.M.; Condo, M.; Bowen, J.; Kluckow, M. Blood pressure or blood flow: Which is important in the preterm infant? A case report of twins. J. Paediatr. Child Health 2012, 48, E144–E146. [Google Scholar] [CrossRef] [PubMed]
- Miletin, J.; Pichova, K.; Dempsey, E.M. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur. J. Pediatr. 2009, 168, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Kluckow, M.; Evans, N. Superior vena cava flow in newborn infants: A novel marker of systemic blood flow. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 82, F182–F187. [Google Scholar] [CrossRef] [PubMed]
- Kluckow, M.; Seri, I.; Evans, N. Functional echocardiography: An emerging clinical tool for the neonatologist. J. Pediatr. 2007, 150, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Groves, A.M.; Kuschel, C.A.; Knight, D.B.; Skinner, J.R. Cardiorespiratory stability during echocardiography in preterm infants. Arch. Dis. Child. 2005, 90, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.M.; Barrington, K.J. Treating hypotension in the preterm infant: When and with what: A critical and systematic review. J. Perinatol. 2007, 27, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.W.; O’Shea, T.M.; Allred, E.N.; Laughon, M.M.; Bose, C.L.; Dammann, O.; Batton, D.G.; Kuban, K.C.; Paneth, N.; Leviton, A.; et al. Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns. J. Perinatol. 2011, 31, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.W.; O’Shea, T.M.; Allred, E.N.; Laughon, M.M.; Bose, C.L.; Dammann, O.; Batton, D.G.; Engelke, S.C.; Leviton, A.; ELGAN Study Investigators. Early postnatal hypotension and developmental delay at 24 months of age among extremely low gestational age newborns. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F321–F328. [Google Scholar] [CrossRef] [PubMed]
- Alderliesten, T.; Lemmers, P.M.; van Haastert, I.C.; de Vries, L.S.; Bonestroo, H.J.; Baerts, W.; van Bel, F. Hypotension in preterm neonates: Low blood pressure alone does not affect neurodevelopmental outcome. J. Pediatr. 2014, 164, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Fanaroff, J.M.; Wilson-Costello, D.E.; Newman, N.S.; Montpetite, M.M.; Fanaroff, A.A. Treated hypotension is associated with neonatal morbidity and hearing loss in extremely low birth weight infants. Pediatrics 2006, 117, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Fanaroff, A.A.; Fanaroff, J.M. Short- and long-term consequences of hypotension in ELBW infants. Semin. Perinatol. 2006, 30, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Limperopoulos, C.; Bassan, H.; Kalish, L.A.; Ringer, S.A.; Eichenwald, E.C.; Walter, G.; Moore, M.; Vanasse, M.; DiSalvo, D.N.; Soul, J.S.; et al. Current definitions of hypotension do not predict abnormal cranial ultrasound findings in preterm infants. Pediatrics 2007, 120, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Barrington, K.J.; Stewart, S.; Lee, S.; the Canadian Neonatal Network. Differing blood pressure thresholds in preterm infants, effects on frequency of diagnosis of hypotension and intraventricular haemorrhage. Pediatr. Res. 2002, 51, 455A. [Google Scholar]
- Vincent, J.L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2014, 370, 583. [Google Scholar] [PubMed]
- Dempsey, E.M.; Al Hazzani, F.; Barrington, K.J. Permissive hypotension in the extremely low birthweight infant with signs of good perfusion. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F241–F244. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.A.; Evans, N.; Kluckow, M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F168–F173. [Google Scholar] [CrossRef] [PubMed]
- De Boode, W.P. Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum. Dev. 2010, 86, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sahni, M.; El-Khuffash, A.; Khadawardi, E.; Sehgal, A.; McNamara, P.J. Use of Targeted Neonatal Echocardiography to Prevent Postoperative Cardiorespiratory Instability after Patent Ductus Arteriosus Ligation. J. Pediatr. 2012, 160, 584–589. [Google Scholar] [CrossRef] [PubMed]
- De Waal, K.; Kluckow, M. Functional echocardiography; from physiology to treatment. Early Hum. Dev. 2010, 86, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; McNamara, P.J. Does point-of-care functional echocardiography enhance cardiovascular care in the NICU? J. Perinatol. 2008, 28, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Hyttel-Sorensen, S.; Austin, T.; van Bel, F.; Benders, M.; Claris, O.; Dempsey, E.; Fumagalli, M.; Greisen, G.; Grevstad, B.; Hagmann, C.; et al. A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): Study protocol for a randomized controlled trial. Trials 2013, 14, 120. [Google Scholar] [PubMed]
- Bonestroo, H.J.; Lemmers, P.M.; Baerts, W.; van Bel, F. Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics 2011, 128, e1502–e1510. [Google Scholar] [CrossRef] [PubMed]
- Van Bel, F.; Lemmers, P.; Naulaers, G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: Value and pitfalls. Neonatology 2008, 94, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Alderliesten, T.; Lemmers, P.M.; Baerts, W.; Groenendaal, F.; van Bel, F. Perfusion Index in Preterm Infants during the First 3 Days of Life: Reference Values and Relation with Clinical Variables. Neonatology 2015, 107, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Weisz, D.E.; Jain, A.; Ting, J.; McNamara, P.J.; El-Khuffash, A. Non-invasive cardiac output monitoring in preterm infants undergoing patent ductus arteriosus ligation: A comparison with echocardiography. Neonatology 2014, 106, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Rich, W.; Kim, J.H.; Finer, N.N.; Katheria, A.C. The use of electrical cardiometry for continuous cardiac output monitoring in preterm neonates: A validation study. Am. J. Perinatol. 2014, 31, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Blohm, M.; Obrecht, D.; Hartwich, J.; Mueller, G.; Kersten, J.; Weil, J.; Singer, D. Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: A prospective single-center observational study. Crit. Care 2014, 18, 603. [Google Scholar] [CrossRef] [PubMed]
- Rabe, H.; Diaz-Rossello, J.L.; Duley, L.; Dowswell, T. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2012, 8, CD003248. [Google Scholar] [PubMed]
- Sommers, R.; Stonestreet, B.S.; Oh, W.; Laptook, A.; Yanowitz, T.D.; Raker, C.; Mercer, J. Hemodynamic effects of delayed cord clamping in premature infants. Pediatrics 2012, 129, e667–e672. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.; Fanaroff, A.A.; Carlo, W.A.; Donovan, E.F.; McDonald, S.A.; Poole, W.K. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Effects of delayed cord clamping in very-low-birth-weight infants. J. Perinatol. 2011, 31 (Suppl. 1), S68–S71. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, S.; Batra, D.; Mercer, J.; Kugelman, A.; Hosono, S.; Oh, W.; Rabe, H.; Kirpalani, H. Effects of placental transfusion in extremely low birthweight infants: Meta-analysis of long- and short-term outcomes. Transfusion 2014, 54, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Katheria, A.C.; Leone, T.A.; Woelkers, D.; Garey, D.M.; Rich, W.; Finer, N.N. The effects of umbilical cord milking on hemodynamics and neonatal outcomes in premature neonates. J. Pediatr. 2014, 164, 1045–1050.e1. [Google Scholar] [CrossRef] [PubMed]
- Al-Wassia, H.; Shah, P.S. Efficacy and safety of umbilical cord milking at birth: A systematic review and meta-analysis. JAMA Pediatr. 2015, 169, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Alison, B.; Wallace, E.M.; Crossley, K.J.; Gill, A.W.; Kluckow, M.; te Pas, A.B.; Morley, C.J.; Polglase, G.R.; Hooper, S.B. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J. Physiol. 2013, 591, 2113–2126. [Google Scholar] [CrossRef] [PubMed]
- Popat, H.M.K.; Buchan, J.; Brown, R.; Cornthwaite, K.; de Waal, K.; Evans, N.; Gill, A.; Hague, W.; Hecker, T.; Jeffery, M.; et al. Australian Placental Transfusion Study Echo Sub-Study: Effect on Systemic Blood Flow. EPAS 2015, 2765, 4. [Google Scholar]
- Polglase, G.R.; Miller, S.L.; Barton, S.K.; Kluckow, M.; Gill, A.W.; Hooper, S.B.; Tolcos, M. Respiratory support for premature neonates in the delivery room: Effects on cardiovascular function and the development of brain injury. Pediatr. Res. 2014, 75, 682–688. [Google Scholar] [CrossRef] [PubMed]
- De Waal, K.A.; Evans, N.; Osborn, D.A.; Kluckow, M. Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Lakkundi, A.; Wright, I.; de Waal, K. Transitional hemodynamics in preterm infants with a respiratory management strategy directed at avoidance of mechanical ventilation. Early Hum. Dev. 2014, 90, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Gopel, W.; Kribs, A.; Ziegler, A.; Laux, R.; Hoehn, T.; Wieg, C.; Siegel, J.; Avenarius, S.; von der Wense, A.; Vochem, M.; et al. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): An open-label, randomised, controlled trial. Lancet 2011, 378, 1627–1634. [Google Scholar] [CrossRef]
- Hall, R.W.; Kronsberg, S.S.; Barton, B.A.; Kaiser, J.R.; Anand, K.J.; Group, N.T.I. Morphine, hypotension, and adverse outcomes among preterm neonates: Who’s to blame? Secondary results from the NEOPAIN trial. Pediatrics 2005, 115, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.N.; Chung, D.; Goldman, S.L.; Bancalari, E. The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J. Pediatr. 1980, 96, 1060–1063. [Google Scholar] [CrossRef]
- Van Marter, L.J.; Leviton, A.; Allred, E.N.; Pagano, M.; Kuban, K.C. Hydration during the first days of life and the risk of bronchopulmonary dysplasia in low birth weight infants. J. Pediatr. 1990, 116, 942–949. [Google Scholar] [CrossRef]
- Tammela, O.K.; Lanning, F.P.; Koivisto, M.E. The relationship of fluid restriction during the 1st month of life to the occurrence and severity of bronchopulmonary dysplasia in low birth weight infants: A 1-year radiological follow up. Eur. J. Pediatr. 1992, 151, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Evans, N. Volume expansion during neonatal intensive care: Do we know what we are doing? Semin. Neonatol. 2003, 8, 315–323. [Google Scholar] [CrossRef]
- Ewer, A.K.; Tyler, W.; Francis, A.; Drinkall, D.; Gardosi, J.O. Excessive volume expansion and neonatal death in preterm infants born at 27–28 weeks gestation. Paediatr. Perinat. Epidemiol. 2003, 17, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Hope, P. Pump up the volume? The routine early use of colloid in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1998, 78, F163–F165. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, O.; Waldvogel, K.; Ghelfi, D.; Arbenz, U.; Fanconi, S. Can dopamine prevent the renal side effects of indomethacin? A prospective randomized clinical study. Klin. Padiatr. 1999, 211, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Liet, J.M.; Boscher, C.; Gras-Leguen, C.; Gournay, V.; Debillon, T.; Roze, J.C. Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J. Pediatr. 2002, 140, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, L.; Yeh, T.F.; John, E.G.; Cuevas, D.; Plides, R.S. The effect of low-dose dopamine infusion on cardiopulmonary and renal status in premature newborns with respiratory distress syndrome. Am. J. Dis. Child. 1991, 145, 799–803. [Google Scholar] [PubMed]
- Greenough, A.; Emery, E.F. Randomized trial comparing dopamine and dobutamine in preterm infants. Eur. J. Pediatr. 1993, 152, 925–927. [Google Scholar] [CrossRef] [PubMed]
- Roze, J.C.; Tohier, C.; Maingueneau, C.; Lefevre, M.; Mouzard, A. Response to dobutamine and dopamine in the hypotensive very preterm infant. Arch. Dis. Child. 1993, 69, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Klarr, J.M.; Faix, R.G.; Pryce, C.J.; Bhatt-Mehta, V. Randomized, blind trial of dopamine versus dobutamine for treatment of hypotension in preterm infants with respiratory distress syndrome. J. Pediatr. 1994, 125, 117–122. [Google Scholar] [CrossRef]
- Ruelas-Orozco, G.; Vargas-Origel, A. Assessment of therapy for arterial hypotension in critically ill preterm infants. Am. J. Perinatol. 2000, 17, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.; Evans, N.; Kluckow, M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J. Pediatr. 2002, 140, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Pezzati, M.; Poggi, C.; Rossi, S.; Cecchi, A.; Santoro, C. Dopamine versus dobutamine in very low birthweight infants: Endocrine effects. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F367–F371. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, R.; Hensel, D.; Brune, T.; Rabe, H.; Jorch, G. Impact on blood pressure and intestinal perfusion of dobutamine or dopamine in hypotensive preterm infants. Biol. Neonate 1995, 68, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.B.M.; Leuschen, M.P.; et al. The pharmacodynamics of inotropic drugs in premature neonates. Pediatr. Res. 1993, 33, 206A. [Google Scholar]
- Pellicer, A.; Valverde, E.; Elorza, M.D.; Madero, R.; Gaya, F.; Quero, J.; Cabañas, F. Cardiovascular support for low birth weight infants and cerebral hemodynamics: A randomized, blinded, clinical trial. Pediatrics 2005, 115, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Phillipos, E.Z.; Barrington, K.J.; Robertson, M.A. Dopamine versus epinephrine for inotropic support in the neonate: A randomised blinded trial. Peditric Res. 1996, 39, A238. [Google Scholar]
- Rios, D.R.; Kaiser, J.R. Vasopressin versus Dopamine for Treatment of Hypotension in Extremely Low Birth Weight Infants: A Randomized, Blinded Pilot Study. J. Pediatr. 2015, 166, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K.; Pryds, O.; Greisen, G. The haemodynamic effects of dopamine and volume expansion in sick preterm infants. Early Hum. Dev. 2000, 57, 157–163. [Google Scholar] [CrossRef]
- Subhedar, N.V.; Shaw, N.J. Dopamine versus dobutamine for hypotensive preterm infants. Cochrane Database Syst. Rev. 2000, CD001242. [Google Scholar]
- Osborn, D.A.; Evans, N.; Kluckow, M.; Bowen, J.R.; Rieger, I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 2007, 120, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, A.; Bravo, M.C.; Madero, R.; Salas, S.; Quero, J.; Cabanas, F. Early systemic hypotension and vasopressor support in low birth weight infants: Impact on neurodevelopment. Pediatrics 2009, 123, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Artman, M.; Kithas, P.A.; Wike, J.S.; Strada, S.J. Inotropic responses change during postnatal maturation in rabbit. Am. J. Physiol. 1988, 255, H335–H342. [Google Scholar] [PubMed]
- Bassler, D.; Choong, K.; McNamara, P.; Kirpalani, H. Neonatal persistent pulmonary hypertension treated with milrinone: Four case reports. Biol. Neonate 2006, 89, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bassler, D.; Kreutzer, K.; McNamara, P.; Kirpalani, H. Milrinone for persistent pulmonary hypertension of the newborn. Cochrane Database Syst. Rev. 2010, CD007802. [Google Scholar]
- McNamara, P.J.; Laique, F.; Muang-In, S.; Whyte, H.E. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J. Crit. Care 2006, 21, 217–222. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P.J.; Shivananda, S.P.; Sahni, M.; Freeman, D.; Taddio, A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr. Crit. Care Med. 2013, 14, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Paradisis, M.; Evans, N.; Kluckow, M.; Osborn, D. Randomized trial of milrinone versus placebo for prevention of low systemic blood flow in very preterm infants. J. Pediatr. 2009, 154, 189–195. [Google Scholar] [CrossRef] [PubMed]
- El-Khuffash, A.F.; Jain, A.; Weisz, D.; Mertens, L.; McNamara, P.J. Assessment and treatment of post patent ductus arteriosus ligation syndrome. J. Pediatr. 2014, 165, 46–52.e1. [Google Scholar] [CrossRef] [PubMed]
- James, A.T.; Bee, C.; Corcoran, J.D.; McNamara, P.J.; Franklin, O.; El-Khuffash, A.F. Treatment of premature infants with pulmonary hypertension and right ventricular dysfunction with milrinone: A case series. J. Perinatol. 2015, 35, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Finer, N.N.; Powers, R.J.; Ou, C.H.; Durand, D.; Wirtschafter, D.; Gould, J.B.; California Perinatal Quality Care Collaborative Executive Committee. Prospective evaluation of postnatal steroid administration: A 1-year experience from the California Perinatal Quality Care Collaborative. Pediatrics 2006, 117, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, A.E.; Moise, A.A.; Holbert, D.; Hegemier, S.E. A single very early dexamethasone dose improves respiratory and cardiovascular adaptation in preterm infants. J. Pediatr. 1999, 135, 345–350. [Google Scholar] [CrossRef]
- Efird, M.M.; Heerens, A.T.; Gordon, P.V.; Bose, C.L.; Young, D.A. A randomized-controlled trial of prophylactic hydrocortisone supplementation for the prevention of hypotension in extremely low birth weight infants. J. Perinatol. 2005, 25, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Bourchier, D.; PJ, W. Randomised trial of dopamine compared with hydrocortisone for the treatment of hypotensive very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 76, F174–F178. [Google Scholar] [CrossRef] [PubMed]
- Osiovich, H.P.E.; Lemke, P. A short course of hydrocortisone in Hypotensive neonates: A randomised double blind control trial. Pediatr. Res. 2000, 43, A422. [Google Scholar]
- Ng, P.C.; Lee, C.H.; Bnur, F.L.; Chan, I.H.; Lee, A.W.; Wong, E.; Chan, H.B.; Lam, C.W.; Lee, B.S.; Fok, T.F. A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 2006, 117, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Bonsante, F.; Latorre, G.; Iacobelli, S.; Forziati, V.; Laforgia, N.; Esposito, L.; Mautone, A. Early low-dose hydrocortisone in very preterm infants: A randomized, placebo-controlled trial. Neonatology 2007, 91, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Gaissmaier, R.E.; Pohlandt, F. Single-dose dexamethasone treatment of hypotension in preterm infants. J. Pediatr. 1999, 134, 701–705. [Google Scholar] [CrossRef]
- Hochwald, O.; Pelligra, G.; Osiovich, H. Adding hydrocortisone as 1st line of inotropic treatment for hypotension in very low birth weight infants: Authors’ reply. Indian J. Pediatr. 2014, 81, 988. [Google Scholar] [CrossRef] [PubMed]
- Krediet, T.; van den ENT, K.; Rademaker, K. Rapid increase of blood pressure after low dose hydorcrtisone in low birth weight neonates with hypotension refractory to high doses of cardiac inotropes. Pediatr. Res. 1998, 38(210A). [Google Scholar]
- Batton, B.J.; Li, L.; Newman, N.S.; Das, A.; Watterberg, K.L.; Yoder, B.A.; Faix, R.G.; Laughon, M.M.; Van Meurs, K.P.; Carlo, W.A.; et al. Feasibility study of early blood pressure management in extremely preterm infants. J. Pediatr. 2012, 161, 65–69.e1. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Stone, R.J.; Morley, C.J. Unlicensed and off-label drug use in an Australian neonatal intensive care unit. Pediatrics 2002, 110, e52. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.A.; Duncan, J.C.; Shah, U.; Metsvaht, T.; Varendi, H.; Nellis, G.; Lutsar, I.; Yakkundi, S.; McElnay, J.C.; Pandya, H.; et al. Risk assessment of neonatal excipient exposure: Lessons from food safety and other areas. Adv. Drug Deliv. Rev. 2014, 73, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.A.; Duncan, J.; Shah, U.; Metsvaht, T.; Varendi, H.; Nellis, G.; Lutsar, I.; Vaconsin, P.; Storme, T.; Rieutord, A.; Nunn, A.J. European Study of Neonatal Exposure to Excipients: An update. Int. J. Pharm. 2013, 457, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Saez, C.; Seri, I.; Maturana, A. Impact of syringe size on the performance of infusion pumps at low flow rates. Pediatr. Crit. Care Med. 2010, 11, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Seyberth, H.W.; Kauffman, R.E. Basics and dynamics of neonatal and pediatric pharmacology. Handb. Exp. Pharmacol. 2011, 205, 3–49. [Google Scholar] [PubMed]
- Sherwin, C.M.; Medlicott, N.J.; Reith, D.M.; Broadbent, R.S. Intravenous drug delivery in neonates: Lessons learnt. Arch. Dis. Child. 2014, 99, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Van der Eijk, A.C.; van Rens, R.M.; Dankelman, J.; Smit, B.J. A literature review on flow-rate variability in neonatal IV therapy. Paediatr. Anaesth. 2013, 23, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Vain, N.E.; Barrington, K.J. Feasibility of evaluating treatment of early hypotension in extremely low birth weight infants. J. Pediatr. 2012, 161, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.M.; Barrington, K.J.; Marlow, N.; O’Donnell, C.P.; Miletin, J.; Naulaers, G.; Cheung, P.Y.; Corcoran, D.; Pons, G.; Stranak, Z.; et al. Management of hypotension in preterm infants (The HIP Trial): A randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology 2014, 105, 275–281. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dempsey, E.M. Challenges in Treating Low Blood Pressure in Preterm Infants. Children 2015, 2, 272-288. https://doi.org/10.3390/children2020272
Dempsey EM. Challenges in Treating Low Blood Pressure in Preterm Infants. Children. 2015; 2(2):272-288. https://doi.org/10.3390/children2020272
Chicago/Turabian StyleDempsey, Eugene M. 2015. "Challenges in Treating Low Blood Pressure in Preterm Infants" Children 2, no. 2: 272-288. https://doi.org/10.3390/children2020272
APA StyleDempsey, E. M. (2015). Challenges in Treating Low Blood Pressure in Preterm Infants. Children, 2(2), 272-288. https://doi.org/10.3390/children2020272