Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jacob, E.; Mueller, B.U. Pain experience of children with sickle cell disease who had prolonged hospitalizations for acute painful episodes. Pain Med. 2008, 9, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Agency for Health Care Policy and Research (US); Steiner, C.A.; Miller, J.L. Sickle Cell Disease Patients in US Hospitals, 2004: Statistical Brief #21. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs (February 2006–December 2006). Available online: http://www.ncbi.nlm.nih.gov/books/NBK63489 (accessed on 13 August 2016).
- Plarr, O.S.; Thorington, B.D.; Brambilla, D.J.; Milner, P.F.; Rosse, W.F.; Vichinsky, E.; Kinney, T.R. Pain in sickle cell disease. Rates and risk factors. N. Engl. J. Med. 1991, 325, 1–16. [Google Scholar]
- Embury, S.H. Sickle Cell Disease: Basic Principles and Clinical Practice; Raven Press: New York, NY, USA, 1994. [Google Scholar]
- Poludasu, S.; Ramkissoon, K.; Salciccioli, L.; Kamran, H.; Lazar, J.M. Left ventricular systolic function in sickle cell anemia: A meta-analysis. J. Card. Fail. 2013, 19, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Das, B.B.; Raj, A.; Recto, M.; Kong, M.; Bertolone, S. Utility of impedance cardiography for the detection of hemodynamic changes in stable patients with sickle cell disease. J. Pediatr. Hematol. Oncol. 2012, 34, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Norozi, K.; Beck, C.; Osthaus, W.A.; Wille, I.; Wessel, A.; Bertram, H. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br. J. Anaesth. 2008, 100, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Bertolone, S.J.; Mangold, S.; Edmonds, H.L., Jr. Assessment of cerebral tissue oxygenation in patients with sickle cell disease: effect of transfusion therapy. J. Pediatr. Hematol. Oncol. 2004, 26, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Turner, J.A.; Romano, J.M. What is the maximum number of levels needed in pain intensity measurement? Pain 1994, 58, 387–392. [Google Scholar] [CrossRef]
- Pain Intensity Instruments. National Institutes of Health—Warren Grant Magnuson Clinical Center, July 2013. Available online: http://www.mvltca.net/presentations/mvltca.pdf (accessed on 12 February 2017).
- Buchanan, G.; Vichinsky, E.; Krishnamurti, L.; Shenoy, S. Severe sickle cell disease-Pathophysiology and therapy. Biol. Blood Marrow Transplant. 2010, 16, S64–S67. [Google Scholar] [CrossRef] [PubMed]
- Ballas, S.K. Pain management of sickle cell disease. Hematol. Oncol. Clin. N. Am. 2005, 19, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 1994, 330, 1639–1644. [Google Scholar] [PubMed]
- Todd, K.H.; Ducharme, J.; Choiniere, M.; Crandall, C.S.; Fosnocht, D.E.; Homel, P.; Tanabe, P. PEMI Study Group. Pain in the emergency department: Results of the pain and emergency medicine initiative (PEMI) multicenter study. J. Pain 2007, 8, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Berkenbosch, J.W.; Lorenz, D.; Pierce, M.C. Evaluation of cerebral oxygenation during procedural sedation in children using near infrared spectroscopy. Ann. Emerg. Med. 2009, 54, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Eddine, A.C.; Alvarez, O.; Lipshultz, S.E.; Kardon, R.; Arheart, K.; Swaminathan, S. Ventricular structure and function in children with sickle cell disease using conventional and tissue echocardiography. Am. J. Cardiol. 2012, 109, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Coté, C.J.; Sui, J.; Anderson, T.A.; Bhattacharya, S.T.; Shank, E.S.; Tuason, P.M.; August, D.A.; Zibaitis, A.; Firth, P.G.; Fuzaylov, G. Continuous noninvasive cardiac output in children: Is this the next generation of operating room monitors? Initial experience in 402 pediatric patients. Paediatr. Anaesth. 2015, 25, 150–159. [Google Scholar] [CrossRef] [PubMed]
Variable | Baseline Mean (SD) | Maximum Level Mean (SD) | p-Value |
---|---|---|---|
Cardiac Output | 5.15 (2.5) | 6.87 (2.3) | <0.01 |
Cardiac Index | 3.70 (1.3) | 5.01 (1.2) | <0.01 |
Cerebral O2 | 49.8 (8.8) | 59.1 (8.5) | <0.01 |
Splanchnic O2 | 60.4 (15.6) | 72.0 (14.8) | <0.01 |
Hemoglobin | 9.25 (1.9) | - | - |
Hematocrit | 26.63 (5.9) | - | - |
Fluids Administered | 0.85 (0.5) | - | - |
Variable | Initial Cerebral Oxygenation | Minimum Cerebral Oxygenation | Maximum Cerebral Oxygenation | Time to Cerebral Oxygenation Max | Initial Splanchnic Oxygenation | Minimum Splanchnic Oxygenation | Maximum Splanchnic Oxygenation |
---|---|---|---|---|---|---|---|
Initial Cardiac Output | −0.125 | −0.070 | 0.158 | 0.158 | 0.151 | 0.147 | 0.182 |
Minimum Cardiac Output | −0.058 | −0.007 | 0.113 | 0.15 | 0.147 | 0.182 | −0.064 |
Maximum Cardiac Output | −0.156 | 0.019 | −0.067 | −0.038 | 0.162 | 0.198 | 0.067 |
Time to Max Cardiac Output | −0.199 | 0.100 | −0.016 | −0.088 | 0.185 | 0.120 | −0.021 |
Initial Cardiac Index | −0.193 | −0.059 | −0.048 | −0.109 | 0.143 | 0.090 | −0.006 |
Minimum Cardiac Index | 0.088 | 0.037 | 0.100 | −0.145 | −0.014 | −0.086 | −0.123 |
Maximum Cardiac Index | −0.362 | 0.146 | −0.350 * | 0.006 | 0.141 | 0.111 | −0.359 |
Time to Max Cardiac Index | −0.300 | 0.129 | 0.027 | 0.044 | 0.126 | −0.128 | −0.162 |
HB/HCT | −0.090 | 0.024 | 0.141 | −0.005 | −0.025 | −0.150 | 0.019 |
HB | −0.107 | −0.058 | −0.068 | 0.148 | −0.006 | 0.088 | −0.048 |
HCT | −0.088 | 0.158 | 0.176 | 0.007 | −0.193 | −0.007 | −0.109 |
Reticulocyte count | −0.166 | 0.170 | 0.161 | −0.199 | −0.070 | −0.016 | 0.185 |
Fluids | −0.231 | 0.123 | −0.156 | 0.165 | −0.067 | −0.088 | 0.198 |
Total White Blood Count | −0.083 | 0.073 | 0.123 | 0.213 | −0.038 | 0.162 | −0.115 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padmanabhan, P.; Oragwu, C.; Das, B.; Myers, J.A.; Raj, A. Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department. Children 2018, 5, 17. https://doi.org/10.3390/children5020017
Padmanabhan P, Oragwu C, Das B, Myers JA, Raj A. Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department. Children. 2018; 5(2):17. https://doi.org/10.3390/children5020017
Chicago/Turabian StylePadmanabhan, Pradeep, Chikelue Oragwu, Bibhuti Das, John A. Myers, and Ashok Raj. 2018. "Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department" Children 5, no. 2: 17. https://doi.org/10.3390/children5020017
APA StylePadmanabhan, P., Oragwu, C., Das, B., Myers, J. A., & Raj, A. (2018). Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department. Children, 5(2), 17. https://doi.org/10.3390/children5020017