Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms
Abstract
:1. Introduction
2. Preclinical Studies of Infantile Spasms—Animal Models
2.1. Genetic Models
2.1.1. Decreased GABAergic Inhibition: ARX Mutations
Arx Knockout Model
Arx Expansion Model
2.1.2. Excessive GABAB Receptor-Mediated Potassium Currents: Ts65Dn Down Syndrome Model
2.1.3. Increased Synaptic Excitation: APC Conditional Knock-out
2.2. Acquired/Provoked Models
2.2.1. Stress in the Developing Brain: Corticotropin-Releasing Hormone Model
2.2.2. Sodium Channel Blockade: TTX Model
2.2.3. Increased Glutamate Receptor Activation: Prenatal Stress/NMDA Model
2.2.4. Severe Structural Lesions: Multiple-Hit Model
3. Pathophysiology of EEG Patterns in Infantile Spasms
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafstrom, C.E. Epileptic encephalopathies in children: Animal models may change the word “catastrophic” to “hopeful”. Atlas Sci. 2016, 1–3. Available online: https://atlasofscience.org/epileptic-encephalopathies-in-children-animal-models-may-change-the-word-catastrophic-to-hopeful/ (accessed on 27 December 2019).
- Kellaway, P.; Hrachovy, R.A.; Frost, J.D., Jr.; Zion, T. Precise characterization and classification of infantile spasms. Ann. Neurol. 1979, 6, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Traub, R.D.; Moeller, F.; Rosch, R.; Baldeweg, T.; Whittington, M.A.; Hall, S.P. Seizure initiation in infantile spasms vs. focal seizures: Proposed common cellular mechanisms. Rev. Neurosci. 2019. [Google Scholar] [CrossRef]
- Sorel, L.; Dusaucy-Bauloye, A. Findings in 21 cases of Gibbs’ hypsarrhythmia; spectacular effectiveness of ACTH. Acta Neurol. Psychiatr. Belg. 1958, 58, 130–141. [Google Scholar]
- Lux, A.L.; Osborne, J.P. A proposal for case definitions and outcome measures in studies of infantile spasms and West syndrome: Consensus statement of the West Delphi group. Epilepsia 2004, 45, 1416–1428. [Google Scholar] [CrossRef]
- Hrachovy, R.A.; Frost, J.D., Jr. Infantile spasms. Handb. Clin. Neurol. 2013, 111, 611–618. [Google Scholar]
- Mure, T.; Nakagawa, T.; Okizuka, Y.; Takami, Y.; Oyazato, Y.; Nagase, H.; Maruyama, A.; Adachi, M.; Takada, S.; Matsuo, M. Treatment of preterm infants with West syndrome: Differences due to etiology. Pediatr. Int. 2012, 54, 892–898. [Google Scholar] [CrossRef]
- Wallace, A.; Allen, V.; Park, K.; Knupp, K. Infantile spasms and injuries of prematurity: Short-term treatment-based response and long-term outcomes. J. Child Neurol. 2017, 32, 861–866. [Google Scholar] [CrossRef]
- Paciorkowski, A.R.; Thio, L.L.; Dobyns, W.B. Genetic and biologic classification of infantile spasms. Pediatr. Neurol. 2011, 45, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Michaud, J.L.; Lachance, M.; Hamdan, F.F.; Carmant, L.; Lortie, A.; Diadori, P.; Major, P.; Meijer, I.A.; Lemyre, E.; Cossette, P.; et al. The genetic landscape of infantile spasms. Hum. Mol. Genet. 2014, 23, 4846–4858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McTeague, A.; Howell, K.B.; Cross, J.H.; Kurian, M.; Scheffer, I.E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 2016, 15, 304–316. [Google Scholar] [CrossRef]
- Hong, A.M.; Turner, Z.; Hamdy, R.F.; Kossoff, E.H. Infantile spasms treated with the ketogenic diet: Prospective single-center experience in 104 consecutive infants. Epilepsia 2010, 51, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Eun, S.H.; Kang, H.C.; Kim, D.W.; Kim, H.D. Ketogenic diet for treatment of infantile spasms. Brain Dev. 2006, 28, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Dressler, A.; Benninger, F.; Trimmel-Schwahofer, P.; Gröppel, G.; Porsche, B.; Abraham, K.; Mühlebner, A.; Samueli, S.; Male, C.; Feucht, M. Efficacy and tolerability of the ketogenic diet versus high-dose adrenocorticotropic hormone for infantile spasms: A single-center parallel-cohort randomized controlled trial. Epilepsia 2019, 60, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R. A risk-benefit assessment of treatments for infantile spasms. Drug Saf. 2001, 4, 813–828. [Google Scholar] [CrossRef]
- Go, C.Y.; Mackay, M.T.; Weiss, S.K.; Stephens, D.; Adams-Webber, T.; Ashwal, S.; Snead, O.C. Evidence-based guideline update: Medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2012, 78, 1974–1980. [Google Scholar] [CrossRef]
- Wilmshurst, J.M.; Gaillard, W.D.; Vinayan, K.P.; Tsuchida, T.N.; Plouin, P.; Van Bogaert, P.; Carrizosa, J.; Elia, M.; Craiu, D.; Jovic, N.J.; et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia 2015, 56, 1185–1197. [Google Scholar] [CrossRef]
- O’Callaghan, F.J.K.; Edwards, S.W.; Dietrich Alber, F.; Cortina Borja, M.; Hancock, E.; Johnson, A.L.; Kennedy, C.R.; Likeman, M.; Lux, A.L.; Mackay, M.T.; et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc. Health 2018, 2, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Stafstrom, C.E.; Holmes, G.L. Infantile spasms: Criteria for an animal model. Int. Rev. Neurobiol. 2002, 49, 391–411. [Google Scholar]
- Carrasco, M.; Stafstrom, C.E. How early can a seizure happen? Pathophysiological considerations of extremely premature infant brain development. Dev. Neurosci. 2019, 40, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Clancy, B.; Finlay, B.L.; Darlington, R.B.; Anand, K.J.S. Extrapolating brain development from experimental species to humans. Neurotoxicology 2007, 28, 931–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Nobel-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, E.D.; Golden, J.A. Developing an animal model for infantile spasms: Pathogenesis, problems, and progress. Dis. Mod. Mech. 2009, 2, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsnelson, A.; Buzsáki, G.; Swann, J.W. Catastrophic childhood epilepsy: A recent convergence of basic and clinical neuroscience. Sci. Transl. Med. 2014, 6, 262ps13. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Arnason, B.G.W.; Baram, T.Z.; Catania, A.; Cortez, M.A.; Glauser, T.A.; Pranzatelli, M.R.; Riikonen, R.; Rogawski, M.A.; Shinnar, S.; et al. Treatment of infantile spasms: Emerging insights from clinical and basic science perspectives. J. Child Neurol. 2011, 26, 1411–1421. [Google Scholar] [CrossRef]
- Galanopoulou, A.S.; Moshé, S.L. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol. Dis. 2015, 79, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Colombo, E.; Collombat, P.; Colasante, G.; Bianchi, M.; Long, J.; Mansouri, A.; Rubenstein, J.L.; Broccoli, V. Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J. Neurosci. 2007, 27, 4786–4798. [Google Scholar] [CrossRef] [Green Version]
- Fulp, C.T.; Cho, G.; Marsh, E.D.; Nasrallah, I.M.; Labosky, P.A.; Golden, J.A. Identification of Arx transcriptional targets in the developing basal forebrain. Hum. Mol. Genet. 2008, 17, 3740–3760. [Google Scholar] [CrossRef] [Green Version]
- Olivetti, P.R.; Noebels, J.L. Interneuron, interrupted: Molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr. Opin. Neurobiol. 2012, 22, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Dobyns, W.B. X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: Proposal for a new term, “interneuronopathy”. J. Child Neurol. 2005, 20, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Yanazawa, M.; Sugiyama, N.; Miura, H.; Iizuka-Kogo, A.; Kusaka, M.; Omichi, K.; Suzuki, R.; Kato-Fukui, Y.; Kamiirisa, K.; et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 2002, 32, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.D.; Nasrallah, M.P.; Walsh, C.; Murray, K.A.; NicoleSunnen, C.; McCoy, A.; Golden, J.A. Developmental interneuron subtype deficits after targeted loss of Arx. BMC Neurosci. 2016, 17, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoubridge, C.; Fullston, T.; Gécz, J. ARX spectrum disorders: Making inroads into the molecular pathology. Hum. Mutat. 2010, 31, 889–900. [Google Scholar] [CrossRef]
- Price, M.G.; Yoo, J.W.; Burgess, D.L.; Deng, F.; Hrachovy, R.A.; Frost, J.D., Jr.; Noebels, J.L. A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J. Neurosci. 2009, 29, 8752–8763. [Google Scholar] [CrossRef] [Green Version]
- Olivetti, P.R.; Maheshwari, A.; Noebels, J.L. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci. Transl. Med. 2014, 6, 220ra12. [Google Scholar] [CrossRef] [Green Version]
- Stafstrom, C.E.; Konkol, R.J. Infantile spasms in children with Down syndrome. Dev. Med. Child Neurol. 1994, 36, 576–585. [Google Scholar] [CrossRef]
- Cortez, M.A.; Shen, L.; Wu, Y.; Aleem, I.S.; Trepanier, C.H.; Sadeghnia, H.R.; Ashraf, A.; Kanawaty, A.; Liu, C.-C.; Stewart, L.; et al. Infantile spasms and Down syndrome: A new animal model. Pediatr. Res. 2009, 65, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Harashima, C.; Jacobowitz, D.M.; Witta, J.; Borke, R.C.; Best, T.K.; Siarey, R.J.; Galdzicki, Z. Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: A model of Down syndrome. J. Comp. Neurol. 2006, 494, 815–833. [Google Scholar] [CrossRef] [Green Version]
- Best, T.K.; Siarey, R.J.; Galdzicki, Z. Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. J. Neurophysiol. 2007, 97, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Harkins, A.B.; Dlouhy, S.; Ghetti, B.; Cahill, A.L.; Won, L.; Heller, B.; Heller, A.; Fox, A.P. Evidence of elevated intracellular calcium levels in weaver homozygote mice. J. Physiol. 2000, 524 Pt 2, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Blichowski, M.; Shephard, A.; Armstrong, J.; Shen, L.; Cortez, M.A.; Eubanks, J.H.; Snead, O.C. The GIRK2 subunit is involved in IS-like seizures induced by GABA(B) receptor agonists. Epilepsia 2015, 56, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Joshi, K.; Shen, L.; Michaeli, A.; Salter, M.; Thibault-Messier, G.; Hashmi, S.; Eubanks, J.H.; Cortez, M.A.; Snead, O.C. Infantile spasms in Down syndrome: Rescue by knockdown of the GIRK2 channel. Ann. Neurol. 2016, 80, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Shen, L.; Cao, F.; Dong, S.; Jia, Z.; Cortez, M.A.; Snead, O.C. Kcnj6 (GIRK2) trisomy is not sufficient for conferring the susceptibility to infantile spasms seen in the Ts65Dn mouse model of Down syndrome. Epilepsy Res. 2018, 145, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Stern, S.; Segal, M.; Moses, E. Involvement of potassium and cation channels in hippocampal abnormalities of embryonic Ts65Dn and Tc1 mice. EBioMedicine 2015, 2, 1048–1062. [Google Scholar] [CrossRef] [Green Version]
- McLeod, F.; Salinas, P.C. Wnt proteins as modulators of synaptic plasticity. Curr. Opin. Clin. Neurobiol. 2018, 53, 90–95. [Google Scholar] [CrossRef]
- Yu, X.; Malenka, R.C. Multiple functions for the cadherin/catenin complex during neuronal development. Neuropharmacology 2004, 47, 779–786. [Google Scholar] [CrossRef]
- Pirone, A.; Alexander, J.; Lau, L.A.; Hampton, D.; Zayachkivsky, A.; Yee, A.; Yee, A.; Jacob, M.H.; Dulla, C.G. APC conditional knock-out mouse is a model of infantile spasms with elevated neuronal β-catenin levels, neonatal spasms, and chronic seizures. Neurobiol. Dis. 2017, 98, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Pirone, A.; Alexander, J.M.; Koenig, J.B.; Cook-Snyder, D.R.; Palnati, M.; Wickham, R.J.; Eden, L.; Shrestha, N.; Reijmers, L.; Biederer, T.; et al. Social stimulus causes aberrant activation of the medial prefrontal cortex in a mouse model with autism-like behaviors. Front. Synaptic Neurosci. 2018, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Baram, T.Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 2016, 41, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Brunson, K.L.; Eghbal-Ahmadi, M.; Baram, T.Z. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev. 2001, 23, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Avishai-Eliner, S.; Brunson, K.L.; Sandman, C.A.; Baram, T.Z. Stressed-out, or in (utero)? Trends Neurosci. 2002, 25, 518–524. [Google Scholar] [CrossRef]
- Baram, T.Z.; Schultz, L. Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res. Dev. Brain Res. 1991, 61, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Brunson, K.L.; Khan, N.; Eghbal-Ahmadi, M.; Baram, T.Z. Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann. Neurol. 2001, 49, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dubé, C.M.; Rice, C.J.; Baram, T.Z. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotrophin-releasing hormone. J. Neurosci. 2008, 28, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Zou, L.P.; Yang, G.; Ding, Y.X. Prenatal stress exposure hypothesis for infantile spasms. Med. Hypotheses 2012, 78, 735–737. [Google Scholar] [CrossRef]
- Dubé, C.M.; Molet, J.; Singh-Taylor, A.; Ivy, A.; Maras, P.M.; Baram, T.Z. Hyper-excitability and epilepsy generated by chronic early-life stress. Neurobiol. Stress 2015, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Frost, J.D., Jr.; Hrachovy, R.A. Pathogenesis of infantile spasms: A model based on developmental desynchronization. J. Clin. Neurophysiol. 2005, 22, 25–36. [Google Scholar] [CrossRef]
- Lee, C.L.; Frost, J.D.; Swann, J.W.; Hrachovy, R.A. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 2008, 49, 298–307. [Google Scholar] [CrossRef]
- Frost, J.D., Jr.; Lee, C.L.; Hrachovy, R.A.; Swann, J.W. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011, 52, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Frost, J.D., Jr.; Lee, C.L.; Le, J.T.; Hrachovy, R.A.; Swann, J.W. Interictal high frequency oscillations in an animal model of infantile spasms. Neurobiol. Dis. 2012, 46, 377–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragin, A.; Mody, I.; Wilson, C.L.; Engel, J., Jr. Local generation of fast ripples in epileptic brain. J. Neurosci. 2002, 22, 2012–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swann, J.W.; Le, J.T.; Frost, J.D., Jr. Infantile spasms: ACTH dose response relationships. In Proceedings of the American Epilepsy Society Annual Meeting 2017, Washington, DC, USA, 1–5 December 2017. Abstract 1.023. [Google Scholar]
- Frost, J.D., Jr.; Le, J.T.; Lee, C.L.; Ballester-Rosado, C.; Hrachovy, R.A.; Swann, J.W. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms. Neurobiol. Dis. 2015, 82, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.N.; Swann, J. Abnormal cortical network excitability in an animal model of infantile spasms. In Proceedings of the American Epilepsy Society Annual Meeting 2015, Philadelphia, PA, USA, 3–7 December 2015. Abstract 3.046. [Google Scholar]
- Kábová, R.; Liptáková, S.; Slamberová, R.; Pometlová, M.; Velísek, L. Age-specific N-methyl-D-aspartate-induced seizures: Perspectives for the West syndrome model. Epilepsia 1999, 40, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Velísek, L.; Jehle, K.; Asche, S.; Velísková, J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann. Neurol. 2007, 61, 109–119. [Google Scholar] [CrossRef]
- Baek, H.; Yi, M.H.; Pandit, S.; Park, J.B.; Kwon, H.H.; Zhang, E.; Kim, S.; Shin, N.; Kim, E.; Lee, Y.H.; et al. Altered expression of KCC2 in GABAergic interneuron contributes prenatal stress-induced epileptic spasms in infant rat. Neurochem. Int. 2016, 97, 57–64. [Google Scholar] [CrossRef]
- Staley, K. Wrong-way chloride transport: Is it a treatable cause of some intractable seizures? Epilepsy Curr. 2006, 6, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.H.; Neupane, C.; Shin, J.; Gwon, D.H.; Yin, Y.; Shin, N.; Shin, H.J.; Hong, J.; Park, J.B.; Yi, Y.; et al. Calpain-2 as a treatment target in prenatal stress-induced epileptic spasms in infant rats. Exp. Neurobiol. 2019, 28, 529–536. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Chachua, T.; Goletiani, C.; Sidyelyeva, G.; Velíšková, J.; Velíšek, L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: Insights from a novel animal model of infantile spasms. J. Neuroendocrinol. 2013, 25, 964–979. [Google Scholar] [CrossRef] [Green Version]
- Chachua, T.; Di Grazia, P.; Chern, C.R.; Johnkutty, M.; Hellman, B.; Lau, H.A.; Shakil, F.; Daniel, M.; Goletiani, C.; Velíšková, J.; et al. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia 2016, 57, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Chachua, T.; Yum, M.S.; Velíšková, J.; Velíšek, L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011, 52, 1666–1677. [Google Scholar] [CrossRef] [Green Version]
- Yum, M.S.; Lee, M.; Ko, T.S.; Velíšek, L. A potential effect of ganaxolone in an animal model of infantile spasms. Epilepsy Res. 2014, 108, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Yum, M.S.; Lee, M.; Woo, D.C.; Kim, D.W.; Ko, T.S.; Velíšek, L. β-Hydroxybutyrate attenuates NMDA-induced spasms in rats with evidence of neuronal stabilization on MR spectroscopy. Epilepsy Res. 2015, 117, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Terrone, G.; Salamone, A.; Vezzani, A. Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: Emerging evidence from preclinical and clinical studies. Neuropathol. Appl. Neurobiol. 2019, 44, 91–111. [Google Scholar]
- Iacobaş, D.A.; Chachua, T.; Iacobaş, S.; Benson, M.J.; Borges, K.; Velíšková, J.; Velíšek, L. ACTH and PMX53 recover synaptic transcriptome alterations in a rat model of infantile spasms. Sci. Rep. 2018, 8, 5722. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.J.; Thomas, N.K.; Talwar, S.; Hodson, M.P.; Lynch, J.W.; Woodruff, T.M.; Borges, K. A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol. Dis. 2015, 76, 87–97. [Google Scholar] [CrossRef]
- Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015, 96 Pt A, 70–82. [Google Scholar] [CrossRef]
- Chern, C.R.; Chern, C.J.; Velíšková, J.; Velíšek, L. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: Head-to-head comparison with ACTH. Epilepsy Res. 2019, 152, 31–34. [Google Scholar] [CrossRef]
- Silverstein, F.; Johnston, M.V. Cerebrospinal fluid monoamine metabolites in patients with infantile spasms. Neurology 1984, 34, 102–105. [Google Scholar] [CrossRef]
- Scantlebury, M.H.; Galanopoulou, A.S.; Chudomelova, L.; Raffo, E.; Betancourth, D.; Moshé, S.L. A model of symptomatic infantile spasms syndrome. Neurobiol. Dis. 2010, 37, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Briggs, S.W.; Mowrey, W.; Hall, C.B.; Galanopoulou, A.S. CPP-115, a vigabatrin analogue, decreases spasms in the multiple-hit rat model of infantile spasms. Epilepsia 2014, 55, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsarou, A.M.; Li, Q.; Liu, W.; Moshé, S.L.; Galanopoulou, A.S. Acquired parvalbumin-selective interneuronopathy in the multiple-hit model of infantile spasms: A putative basis for the partial responsiveness to vigabatrin analogs? Epilepsia Open 2018, 3 (Suppl. 2), 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabbout, R.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’Amato, L.; d’Augères, G.B.; de Vries, P.J.; et al. TOSCA Consortium and TOSCA Investigators. Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open 2018, 4, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curatolo, P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr. Neurol. 2015, 52, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Raffo, E.; Coppola, A.; Ono, T.; Briggs, S.W.; Galanopoulou, A.S. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol. Dis. 2011, 43, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Moshé, S.L.; Galanopoulou, A.S. Carisbamate acutely suppresses spasms in a rat model of symptomatic infantile spasms. Epilepsia 2011, 52, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Jequier Gygax, M.; Klein, B.D.; White, H.S.; Kim, M.; Galanopoulou, A.S. Efficacy and tolerability of the galanin analog NAX 5055 in the multiple-hit rat model of symptomatic infantile spasms. Epilepsy Res. 2014, 108, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Galanopoulou, A.S.; Mowrey, W.B.; Liu, W.; Li, Q.; Shandra, O.; Moshé, S.L. Preclinical screening for treatments for infantile spasms in the multiple hit rat model of infantile spasms: An update. Neurochem. Res. 2017, 42, 1949–1961. [Google Scholar] [CrossRef]
- Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol. Dis. 2013, 59, 183–193. [Google Scholar] [CrossRef]
- Marsh, E.; Fulp, C.; Gomez, E.; Nasrallah, I.; Minarcik, J.; Sudi, J.; Christian, S.L.; Mancini, G.; Labosky, P.; Dobyns, W.; et al. Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009, 132 Pt 6, 1563–1576. [Google Scholar] [CrossRef] [Green Version]
- Velísek, L.; Chachua, T.; Yum, M.S.; Poon, K.L.; Velísková, J. Model of cryptogenic infantile spasms after prenatal corticosteroid priming. Epilepsia 2010, 51 (Suppl. 3), 145–149. [Google Scholar] [CrossRef] [Green Version]
- Carracedo, L.M.; Kjeldsen, H.; Cunnington, L.; Jenkins, A.; Schofield, I.; Cunningham, M.O.; Davies, C.H.; Traub, R.D.; Whittington, M.A. A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J. Neurosci. 2013, 33, 10750–10761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, S.P.; Traub, R.D.; Adams, N.E.; Cunningham, M.O.; Schofield, I.; Jenkins, A.J.; Whittington, M.A. Enhanced interlaminar excitation or reduced superficial layer inhibition in neocortex generates different spike-and-wave-like electrographic events in vitro. J. Neurophysiol. 2018, 119, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.; Kaila, K.; Kullmann, D.M.; Miles, R. Cortical inhibition, pH and cell excitability in epilepsy: What are optimal targets for antiepileptic interventions? J. Physiol. 2013, 591, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Song, J.M.; Hahn, J.; Kim, S.H.; Chang, M.J. Efficacy of treatments for infantile spasms: A systematic review. Clin. Neuropharmacol. 2017, 40, 63–84. [Google Scholar] [CrossRef]
- Hollrigel, G.S.; Chen, K.; Baram, T.Z.; Soltesz, I. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience 1998, 84, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Nicita, F.; Spalice, A.; Raucci, U.; Iannetti, P.; Parisi, P. The possible use of the L-type calcium channel antagonist verapamil in drug-resistant epilepsy. Expert Rev. Neurother. 2016, 16, 9–15. [Google Scholar] [CrossRef]
- Shao, L.R.; Wang, G.; Stafstrom, C.E. The glycolytic metabolite, fructose-1,6-bisphosphate, blocks epileptiform bursts by attenuating voltage-activated calcium currents in hippocampal slices. Front. Cell Neurosci. 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Traub, R.D.; Vladimirov, N.; Jenkins, A.; Nicholson, C.; Whittaker, R.G.; Schofield, I.; Clowry, G.J.; Cunningham, M.O.; Whittington, M.A. Gap junction networks can generate both ripple-like and fast ripple-like oscillations. Eur. J. Neurosci. 2014, 39, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Traub, R.D.; Whittington, M.A.; Maier, N.; Schmitz, D.; Nagy, J.I. Could electrical coupling contribute to the formation of cell assemblies? Rev. Neurosci. 2019. [Google Scholar] [CrossRef] [Green Version]
“Ideal” Criteria | Revised Criteria (Minimal/Sufficient) | |
---|---|---|
Seizure occurrence and semiology | Spasm-type seizures (generalized, flexion and/or extension) during 1st year equivalent | Seizures during defined window of brain development |
Spasms occur in clusters | ||
Spasms occur within relevant age window (mid-first year in humans) | ||
Spasms occur during sleep-wake transitions | ||
Drug responsiveness | Similar to humans (ACTH, corticosteroids, vigabatrin) | Similar to humans (ACTH, corticosteroids, vigabatrin) |
Etiology | Multiple relevant etiologies | Multiple etiologies |
EEG changes | Similar to humans: interictal hypsarrhythmia, ictal electrodecrement | Distinct interictal and ictal changes |
Cognition, behavior | Regression | Regression |
Model | Species, Induction Method | Pathophysiology | Major Advantage | Major Limitation | Selected References |
---|---|---|---|---|---|
Genetic Models | |||||
ARX deletion (knockout) | Mouse: Deletion of ARX from cortical GABAergic interneurons | ↓GABAergic interneurons | Relevant to human ARX mutation; males more affected | Spasms only in adult mice | [92] |
ARX expansion (knock-in) | Mouse: Expansion of poly-alanine tract in ARX gene, causing interneuronopathy | ↓GABAergic interneurons | Mimics known human ARX mutation; spontaneous spasms and other seizures later | No hypsarrhythmia | [35] |
Ts65Dn mice | Mouse: GABA-B receptor agonist i.p. | Overexpression of GIRK2 | Mimics human Down syndrome, which has high incidence of IS | Spasms occur late and not spontaneously | [38] |
APC knockout | Mouse: Deletion of APC | ↑ β-catenin → ↑ layer 5 glutamatergic synapses | Involves multiple relevant IS-susceptible genes | EEG changes not similar to human; drug effects not yet reported | [48] |
Acquired/Provoked Models | |||||
CRH/stress | Rat: i.p. or i.c.v. injection of CRH | Variety of “stressors” causes increased release of CRH, which increases neuronal hyperexcitability | CRH is endogenous convulsant in developing brain | Induced limbic seizures; spontaneous not spasms; ACTH is not effective | [53,57] |
TTX | Rat: Intracerebral injection of TTX by osmotic mini-pump | ↓ cerebral activity | EEG changes are concordant with human patterns | Spasms occur late in brain maturation; unknown why TTX-induced reduction of neuronal activity leads to spasms | [59,64] |
Prenatal stress/NMDA | Rat: Prenatal betamethasone or other stressor on E15, i.p. NMDA on P11 | NMDA receptor overactivation | Mimics human cryptogenic IS | Efficacious drug treatments (ACTH, VGB) are given before spasms induction | [66,93,56] |
Multiple hit | Rat: DOX, LPS on P3; PCPA on P5 | Severe cortical and subcortical structural brain damage | Mimics human symptomatic IS | ACTH has no effect; toxin vs seizure effects | [82,90] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicot, R.; Shao, L.-R.; Stafstrom, C.E. Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms. Children 2020, 7, 5. https://doi.org/10.3390/children7010005
Janicot R, Shao L-R, Stafstrom CE. Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms. Children. 2020; 7(1):5. https://doi.org/10.3390/children7010005
Chicago/Turabian StyleJanicot, Remi, Li-Rong Shao, and Carl E. Stafstrom. 2020. "Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms" Children 7, no. 1: 5. https://doi.org/10.3390/children7010005
APA StyleJanicot, R., Shao, L.-R., & Stafstrom, C. E. (2020). Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms. Children, 7(1), 5. https://doi.org/10.3390/children7010005