Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Body Mass Index (BMI)
3.2. Adiponectin
3.3. Dyslipoproteinemia
3.4. New Potential Markers
3.4.1. Brain-Derived Neurotrophic Factor
3.4.2. Soluble CD40 Ligand
3.4.3. Inhibitor of Plasminogen Activator-1
3.4.4. Vascular Endothelial Growth Factor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whitehouse, W.; Agrawal, S. Management of children and young people with headache. Arch. Dis. Child. Educ. Pr. Ed. 2016, 102, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Mullally, W.J. Headache. Am. J. Med. 2018, 131, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Wöber-Bingöl, Ç. Epidemiology of Migraine and Headache in Children and Adolescents. Curr. Pain Headache Rep. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Conicella, E.; Raucci, U.; Vanacore, N.; Vigevano, F.; Reale, A.; Pirozzi, N.; Valeriani, M. The child with headache in a pediatric emergency department. Headache: J. Head Face Pain 2008, 48, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Abu-Arafeh, I.; Razak, S.; Sivaraman, B.; Graham, C. Prevalence of headache and migraine in children and adolescents: A systematic review of population-based studies. Dev. Med. Child Neurol. 2010, 52, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.W.; Ashwal, S.; Dahl, G.; Dorbad, D.; Hirtz, D.; Prensky, A.; Jarjour, I. Practice parameter: Evaluation of children and adolescents with recurrent headaches: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002, 59, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buse, D.C.; Loder, E.W.; Gorman, J.A.; Stewart, W.F.; Reed, M.L.; Fanning, K.M.; Serrano, D.; Lipton, R.B. Sex Differences in the Prevalence, Symptoms, and Associated Features of Migraine, Probable Migraine and Other Severe Headache: Results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache: J. Head Face Pain 2013, 53, 1278–1299. [Google Scholar] [CrossRef]
- Brna, P.; Dooley, J.; Gordon, K.; Dewan, T. The Prognosis of Childhood Headache. Arch. Pediatr. Adolesc. Med. 2005, 159, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Headache Classification Committee of the International Headache Society (IHS) the International Classification of Headache Disorders. Cephalalgia 2018, 38, 1–211. [CrossRef]
- Dao, J.M.; Qubty, W. Headache Diagnosis in Children and Adolescents. Curr. Pain Headache Rep. 2018, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Khrizman, M.; Pakalnis, A. Management of Pediatric Migraine: Current Therapies. Pediatr. Ann. 2018, 47, e55–e60. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, P.; Grazzi, L.; Egeo, G. Pharmacotherapy for acute migraines in children and adolescents. Expert Opin. Pharmacother. 2018, 20, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Santilli, F.; Martelletti, P.; Di Vincenzo, A.; Cipollone, F.; Davì, G.; Giamberardino, M.A. Correlation between Migraine Severity and Cholesterol Levels. Pain Pr. 2014, 15, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Reuter, C.P.; Da Silva, P.T.; Renner, J.D.P.; De Mello, E.D.; Valim, A.R.D.M.; Pasa, L.; Da Silva, R.; Burgos, M.S. Dyslipidemia is Associated with Unfit and Overweight-Obese Children and Adolescents. Arq. Bras. Cardiol. 2016, 106, 188–193. [Google Scholar] [CrossRef]
- Yang, S.; Hwang, J.S.; Park, H.K.; Lee, H.S.; Kim, H.S.; Kim, E.Y.; Lim, J.S. Serum Lipid Concentrations, Prevalence of Dyslipidemia, and Percentage Eligible for Pharmacological Treatment of Korean Children and Adolescents; Data from the Korea National Health and Nutrition Examination Survey IV (2007–2009). PLoS ONE 2012, 7, e49253. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Frumin, K.; Gabis, L.; Mazor-Aronovich, K.; Modan-Moses, D.; Reichman, B.; Lerner-Geva, L. Headaches in Overweight Children and Adolescents Referred to a Tertiary-care Center in Israel. Obesity 2008, 16, 659–663. [Google Scholar] [CrossRef]
- Hershey, A.; Powers, S.W.; Nelson, T.D.; Kabbouche, M.A.; Winner, P.; Yonker, M.; Linder, S.L.; Bicknese, A.; Sowel, M.K.; McClintock, W.; et al. Obesity in the Pediatric Headache Population: A Multicenter Study. Headache: J. Head Face Pain 2009, 49, 170–177. [Google Scholar] [CrossRef]
- Ravid, S.; Shahar, E.; Schiff, A.; Gordon, S. Obesity in Children With Headaches: Association With Headache Type, Frequency, and Disability. Headache: J. Head Face Pain 2013, 53, 954–961. [Google Scholar] [CrossRef]
- Kinik, S.T.; Alehan, F.; Erol, I.; Kanra, A.R. Obesity and pediatric migraine. Cephalalgia 2010, 30, 105–109. [Google Scholar] [CrossRef]
- Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. Metabotrophic potential of neurotrophins:implication in obesity and related diseases? Med. Sci. Monit. 2003, 9, 19–21. [Google Scholar]
- Nelson, K.B.; Richardson, A.K.; He, J.; Lateef, T.M.; Khoromi, S.; Merikangas, K.R. Headache and Biomarkers Predictive of Vascular Disease in a Representative Sample of US Children. Arch. Pediatr. Adolesc. Med. 2010, 164, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Rinaldi, L.; Tassorelli, C.; Sances, G.; Motta, M.; Samuele, A.; Fancellu, R.; Nappi, G.; Leon, A. Peripheral Levels of BDNF and NGF in Primary Headaches. Cephalalgia 2006, 26, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Tanure, M.T.A.; Gomez, R.S.; Hurtado, R.C.L.; Teixeira, A.L.; Domingues, R.B. Increased serum levels of brain-derived neurotropic factor during migraine attacks: A pilot study. J. Headache Pain 2010, 11, 427–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Wille, G.; Klien, S.; Shanib, H.; Holle, D.; Gaul, C.; Broessner, G. Brain-derived neurotrophic factor in primary headaches. J. Headache Pain 2012, 13, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guldiken, S.; Guldiken, B.; Demir, M.; Kabayel, L.; Ozkan, H.; Turgut, N.; Hunkar, R.; Kat, S. Soluble CD40 ligand and prolactin levels in migraine patients during interictal period. J. Headache Pain 2011, 12, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D. Association of Serum Levels of Calcitonin Gene-related Peptide and Cytokines during Migraine Attacks. Ann. Indian Acad. Neurol. 2019, 22, 277–281. [Google Scholar] [CrossRef]
- Bianchi, A.; Pitari, G.; Amenta, V.; Giuliano, F.; Gallina, M.; Costa, R.; Ferlito, S. Endothelial, haemostatic and haemorheological modifications in migraineurs. Artery 1996, 22, 93–100. [Google Scholar]
- Arngrim, N.; Schytz, H.W.; Britze, J.; Amin, F.M.; Vestergaard, M.B.; Hougaard, A.; Wolfram, F.; De Koning, P.J.H.; Olsen, K.S.; Secher, N.H.; et al. Migraine induced by hypoxia: An MRI spectroscopy and angiography study. Brain 2015, 139, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Osorio, X.; Sobrino, T.; Brea, D.; Martinez, F.; Castillo, J.; Leira, R. Endothelial progenitor cells: A new key for endothelial dysfunction in migraine. Neurology 2012, 79, 474–479. [Google Scholar] [CrossRef]
- Linet, M.S.; Stewart, W.F.; Celentano, D.D.; Ziegler, D.; Sprecher, M. An epidemiologic study of headache among adolescents and young adults. JAMA 1989, 261, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Abu-Arefeh, I.; Russell, G. Prevalence of headache and migraine in schoolchildren. BMJ 1994, 309, 765–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, M.J.; Kay, J.; Jaron, A. Epidemiology of headache and childhood migraine in an urban general practice using Ad Hoc, Vahlquist and IHS criteria. Dev. Med. Child Neurol. 1992, 34, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Vahlquist, B. Migraine in Children. Int. Arch. Allergy Immunol. 1955, 7, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M. Prevalence of migraine and other headache in finnish children starting school. Headache: J. Head Face Pain 1976, 15, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.W.; Patton, S.R.; Hommel, K.A.; Hershey, A. Quality of life in childhood migraines: Clinical impact and comparison to other chronic illnesses. Pediatrics 2003, 112, e1–e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, K.; Wang, S.; Rupnow, M. Direct Cost Burden Among Insured US Employees With Migraine. Headache: J. Head Face Pain 2008, 48, 553–563. [Google Scholar] [CrossRef]
- Peterlin, B.L.; Rosso, A.L.; Williams, M.A.; Rosenberg, J.R.; Haythornthwaite, J.A.; Merikangas, K.R.; Gottesman, R.F.; Bond, D.S.; He, J.-P.; Zonderman, A.B. Episodic migraine and obesity and the influence of age, race, and sex. Neurology 2013, 81, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Robberstad, L.; Dyb, G.; Hagen, K.; Stovner, L.J.; Holmen, T.L.; Zwart, J.A. An unfavourable lifestyle and recurrent headaches among adolescents: The HUNT study. Neurology 2010, 75, 712–717. [Google Scholar] [CrossRef]
- Pakalnis, A.; Kring, D. Chronic daily headache, medication overuse, and obesity in children andadolescents. J. Child Neurol. 2012, 27, 577–580. [Google Scholar] [CrossRef]
- Lu, S.-R.; Fuh, J.-L.; Wang, S.-J.; Juang, K.-D.; Chen, S.-P.; Liao, Y.-C.; Wang, Y.-F. Incidence and risk factors of chronic daily headache in young adolescents: A school cohort study. Pediatrics 2013, 132, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanci, F.; Kabakuş, N.; Türay, S.; Bala, K.A.; Dilek, M. The role of obesity and vitamin D deficiency in primary headaches in childhood. Acta Neurol. Belg. 2020, 120, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Agostinelli, S.; D’Egidio, C.; Di Fonzo, A.; Carotenuto, M.; Parisi, P.; Esposito, M.; Tozzi, E.; Belcastro, V.; Mohn, A.; et al. Impact of a weight loss program on migraine in obese adolescents. Eur. J. Neurol. 2012, 20, 394–397. [Google Scholar] [CrossRef]
- Chai, N.C.; Scher, A.I.; Moghekar, A.; Bond, D.S.; Peterlin, B.L. Obesity and Headache: Part I— a systematic review of the epidemiology of obesity and headache. Headache 2014, 54, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Chai, N.C.; Bond, D.S.; Moghekar, A.; Scher, A.I.; Peterlin, B.L. Obesity and headache: Part II--potential mechanism and treatment considerations. Headache 2014, 54, 459–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, F.R. Weight change associated with the use of migraine-preventive medications. Clin. Ther. 2008, 30, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Kossoff, E.H.; Huffman, J.; Turner, Z.; Gladstein, J. Use of the modified Atkins diet for adolescents with chronic daily headache. Cephalalgia 2010, 30, 1014–1016. [Google Scholar]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Chai, N.C.; Gelaye, B.; Tietjen, G.E.; Dash, P.D.; Gower, B.A.; White, L.W.; Ward, T.N.; Scher, A.I.; Peterlin, B.L. Ictal adipokines are associated with pain severity and treatment response in episodic migraine. Neurology 2015, 84, 1409–1418. [Google Scholar] [CrossRef] [Green Version]
- Peterlin, B.L.; Sacco, S.; Bernecker, C.; Scher, A.I. Adipokines and Migraine: A Systematic Review. Headache: J. Head Face Pain 2016, 56, 622–644. [Google Scholar] [CrossRef]
- Jeffery, A.N.; Murphy, M.J.; Metcalf, B.S.; Hosking, J.; Voss, L.D.; English, P.; Sattar, N.; Wilkin, T. Adiponectin in childhood. Pediatr. Obes. 2008, 3, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Asayama, K.; Hayashibe, H.; Dobashi, K.; Uchida, N.; Nakane, T.; Kodera, K.; Shirahata, A.; Taniyama, M. Decrease in Serum Adiponectin Level Due to Obesity and Visceral Fat Accumulation in Children. Obes. Res. 2003, 11, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Duarte, H.; Teixeira, A.L.; Rocha, N.P.; Domingues, R.B. Increased serum levels of adiponectin in migraine. J. Neurol. Sci. 2014, 342, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Domingues, R.B.; Duarte, H.; Senne, C.; Bruniera, G.; Brunale, F.; Rocha, N.P.; Teixeira, A.L. Serum levels of adiponectin, CCL3/MIP-1α, and CCL5/RANTES discriminate migraine from tension-type headache patients. Arq. Neuropsiquiatr. 2016, 74, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearborn, J.L.; Schneider, A.L.C.; Gottesman, R.F.; Kurth, T.; Pankow, J.S.; Couper, D.; Rose, K.M.; Williams, M.A.; Peterlin, B.L. Adiponectin and leptin levels in migraineurs in the Atherosclerosis Risk in Communities Study. Neurology 2014, 83, 2211–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Horke, S.; Forstermann, U. Vascular oxidative stress, nitric oxide andatherosclerosis. Atherosclerosis 2014, 237, 208–219. [Google Scholar] [CrossRef]
- Zárate, A.; Manuel-Apolinar, L.; Saucedo, R.; Hernández-Valencia, M.; Acevedo, M.B. Hypercholesterolemia As a Risk Factor for Cardiovascular Disease: Current Controversial Therapeutic Management. Arch. Med. Res. 2016, 47, 491–495. [Google Scholar] [CrossRef]
- Glueck, M.D.; Bates, S.R. Migraine in children: Association with primary and familial dyslipoproteinaemias. Pediatrics 1986, 3, 316–321. [Google Scholar]
- Sordyl, J.; Kopyta, I.; Sarecka-Hujar, B.; Francuz, T.; Matusik, P.; Małecka-Tendera, E. Lipid levels and selected biomarkers of vascular changes in children with idiopathic headaches - a preliminary report. Arch. Med. Sci. 2019, 15, 120–125. [Google Scholar] [CrossRef]
- Goulart, A.C.; Lotufo, A.P.; Santos, I.S.; Bittencourt, M.S.; Santos, R.D.; Blaha, M.J.; Jones, S.; Toth, P.P.; Kulkarni, K.; Benseñor, I.M. The relationship between migraine and lipid sub-fractions among individuals without cardiovascular disease: A cross-sectional evaluation in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cephalalgia 2017, 38, 528–542. [Google Scholar] [CrossRef]
- Winsvold, B.S.; Hagen, K.; Aamodt, A.H.; Stovner, L.J.; Holmen, J.; Zwart, J.-A. Headache, migraine and cardiovascular risk factors: The HUNT study. Eur. J. Neurol. 2010, 18, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Scher, A.I.; Gudmundsson, L.S.; Sigurdsson, S.; Ghambaryan, A.; Aspelund, T.; Eiriksdottir, G.; Van Buchem, M.A.; Gudnason, V.; Launer, L. Migraine Headache in Middle Age and Late-Life Brain Infarcts. JAMA 2009, 301, 2563–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-L.; Chou, C.-H.; Lee, P.-J.; Yin, J.-H.; Chen, S.-Y.; Lin, C.-C.; Sung, Y.-F.; Yang, F.-C.; Chung, C.-H.; Chien, W.-C.; et al. The potential impact of primary headache disorders on stroke risk. J. Headache Pain 2016, 17, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrosa, D.; Ramón-Carbajo, C.; Para-Prieto, M.; Calleja-Puerta, S.; Cernuda-Morollón, E.; Pascual, J. Migraine as a vascular risk factor. Rev. Neurol. 2012, 55, 349–358. [Google Scholar]
- Guillán, M.; Alonso-Canovas, A.; Gonzalez-Valcarcel, J.; Barragán, N.G.; Caldentey, J.G.; Hernández-Medrano, I.; DeFelipe-Mimbrera, A.; Sanchez-Gonzalez, V.; Terecoasa, E.; De Leciñana, M.A.; et al. Stroke Mimics Treated with Thrombolysis: Further Evidence on Safety and Distinctive Clinical Features. Cerebrovasc. Dis. 2012, 34, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Partap, S. Stroke and Cerebrovascular Complications in Childhood Cancer Survivors. Semin. Pediatr. Neurol. 2012, 19, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sarecka-Hujar, B.; Kopyta, I.; Machnikowska-Sokołowska, M.; Gruszczyńska, K.; Raczkiewicz, D. Lipid and coagulation profiles in children with arterial ischemic stroke depending on the presence of focal cerebral arteriopathy. Eur. J. Med. Technol. 2018, 1, 41–50. [Google Scholar]
- Sultan, S.; DeVeber, G.; Linds, A.; Elkind, M.S.V.; Bernard, T.; Dowling, M.; Hernández, M.; Rivkin, M.; Kopyta, I.; Ichord, R.; et al. Dyslipidemia in Children With Arterial Ischemic Stroke: Prevalence and Risk Factors. Pediatr. Neurol. 2017, 78, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Manni, L.; Nikolova, V.; Vyagova, D.; Chaldakov, G.N.; Aloe, L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int. J. Cardiol. 2005, 102, 169–171. [Google Scholar] [CrossRef]
- Li, S.-T.; Pan, J.; Hua, X.-M.; Liu, H.; Shen, S.; Liu, J.-F.; Li, B.; Tao, B.-B.; Ge, X.-L.; Wang, X.-H.; et al. Endothelial Nitric Oxide Synthase Protects Neurons against Ischemic Injury through Regulation of Brain-Derived Neurotrophic Factor Expression. CNS Neurosci. Ther. 2014, 20, 154–164. [Google Scholar] [CrossRef]
- Fu, C.-P.; Sheu, W.H.-H.; Lee, I.-T.; Tsai, I.-C.; Lee, W.-J.; Liang, K.-W.; Lin, S.-Y.; Lee, W.-L. Effects of weight loss on epicardial adipose tissue thickness and its relationship between serum soluble CD40 ligand levels in obese men. Clin. Chim. Acta 2013, 421, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Baena-Fustegueras, J.A.; Pardina, E.; Balada, E.; Ferrer, R.; Catalán, R.; Rivero, J.; Casals, I.; Lecube, A.; Fort, J.M.; Vargas, V.; et al. Soluble CD40 Ligand in Morbidly Obese Patients Effect of Body Mass Index on Recovery to Normal Levels After Gastric Bypass Surgery. JAMA Surg. 2013, 2, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unek, I.T.; Bayraktar, F.; Solmaz, D.; Ellidokuz, H.; Sisman, A.R.; Yuksel, F.; Yesil, S. The Levels of Soluble CD40 Ligand and C-Reactive Protein in Normal Weight, Overweight and Obese People. Clin. Med. Res. 2010, 8, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-H.; Zhang, Y.-W.; Zhang, P.; Deng, B.-Q.; Ding, S.; Wang, Z.-K.; Wu, T.; Wang, J. CD40 ligand as a potential biomarker for atherosclerotic instability. Neurol. Res. 2013, 35, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, B.; Rodemer, C.; Grudzenski, S.; Couraud, P.-O.; Weksler, B.; Romero, I.A.; Meairs, S.; Bugert, P.; Hennerici, M.G.; Fatar, M. Temporal Profile of Matrix Metalloproteinases and Their Inhibitors in a Human Endothelial Cell Culture Model of Cerebral Ischemia. Cerebrovasc. Dis. 2013, 35, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Karasek, D.; Vaverkova, H.; Halenka, M.; Jackuliaková, D.; Frysak, Z.; Slavik, L.; Novotny, D. Prothrombotic markers in asymptomatic dyslipidemic subjects. J. Thromb. Thrombolysis 2010, 31, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Soinne, L.; Saimanen, E.; Malmberg-Céder, K.; Kovanen, P.; Lindsberg, P.J.; Kaste, M.; Lassila, R. Association of the Fibrinolytic System and Hemorheology with Symptoms in Patients with Carotid Occlusive Disease. Cerebrovasc. Dis. 2005, 20, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.W.N.; Bennett, D.L.H.; Kerr, B.J.; Bradbury, E.J.; McMahon, S.B. Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl. Acad. Sci. USA 1999, 96, 7714–7718. [Google Scholar] [CrossRef] [Green Version]
- Mannion, R.J.; Costigan, M.; Decosterd, I.; Amaya, F.; Ma, Q.-P.; Holstege, J.C.; Ji, R.-R.; Acheson, A.; Lindsay, R.M.; Wilkinson, G.A.; et al. Neurotrophins: Peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc. Natl. Acad. Sci. USA 1999, 96, 9385–9390. [Google Scholar] [CrossRef] [Green Version]
- Siniscalco, D.; Giordano, C.; Rossi, F.; Maione, S.; De Novellis, V. Role of Neurotrophins in Neuropathic Pain. Curr. Neuropharmacol. 2011, 9, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Buldyrev, I.; Tanner, N.M.; Hsieh, H.-Y.; Dodd, E.G.; Nguyen, L.T.; Balkowiec, A. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J. Neurochem. 2006, 99, 1338–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Shi, X.; Zhang, X.; Zhang, A.; Zheng, M.; Fang, Y. The association between brain-derived neurotrophic factor gene polymorphism and migraine: A meta-analysis. J. Headache Pain 2017, 18, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrazzino, S.; Cargnin, S.; Viana, M.; Sances, G.; Tassorelli, C. Brain-Derived Neurotrophic Factor Val66Met Gene Polymorphism Impacts on Migraine Susceptibility: A Meta-analysis of Case–Control Studies. Front. Neurol. 2017, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, Z.; Yu, Z.; Yang, Z.; Zhao, H.; Liu, L.; Zhao, J. rAAV-mediated delivery of brain-derived neurotrophic factor promotes neurite outgrowth and protects neurodegeneration in focal ischemic model. Int. J. Clin. Exp. Pathol. 2011, 4, 496–504. [Google Scholar] [PubMed]
- Chassot, M.; Dussan-Sarria, J.A.; Sehn, F.C.; Deitos, A.; De Souza, A.; Vercelino, R.; Torres, I.L.S.; Fregni, F.; Caumo, W. Electroacupuncture analgesia is associated with increased serum brain-derived neurotrophic factor in chronic tension-type headache: A randomized, sham controlled, crossover trial. BMC Complement. Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merighi, A.; Salio, C.; Ghirri, A.; Lossi, L.; Ferrini, F.; Betelli, C.; Bardoni, R. BDNF as a pain modulator. Prog. Neurobiol. 2008, 85, 297–317. [Google Scholar] [CrossRef]
- Tao, J.; Chen, B.; Gao, Y.; Yang, S.; Huang, J.; Jiang, X.; Wu, Y.; Peng, J.; Hong, Z.; Chen, L. Electroacupuncture enhances hippocampal NSCs proliferation in cerebral ischemia-reperfusion injured rats via activation of notch signaling pathway. Int. J. Neurosci. 2013, 124, 204–212. [Google Scholar] [CrossRef]
- Ikeda, O.; Murakami, M.; Ino, H.; Yamazaki, M.; Koda, M.; Nakayama, C.; Moriya, H. Effects of Brain-Derived Neurotrophic Factor (BDNF) on Compression-Induced Spinal Cord Injury: BDNF Attenuates Down-Regulation of Superoxide Dismutase Expression and Promotes Up-Regulation of Myelin Basic Protein Expression. J. Neuropathol. Exp. Neurol. 2002, 61, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, R.; Hewitt, K.; Lesiuk, H.; Mealing, G.; Morley, P.; Durkin, J.P. Evidencethat brain-derived neurotrophic factor neuroprotection is linked to its abilityto reverse the NMDA-induced inactivation of protein kinase C in corticalneurons. J. Neurochem. 1999, 72, 102–111. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef]
- Blanquet, P.; Mariani, J.; Derer, P. A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic amp-responsive transcription factor in the rat hippocampus. Neuroscience 2003, 118, 477–490. [Google Scholar] [CrossRef]
- Ridker, P.M. Role of inflammatory biomarkers in prediction of coronary heart disease. Lancet 2001, 358, 946–948. [Google Scholar] [CrossRef]
- Schönbeck, U.; Varo, N.; Libby, P.; Buring, J.; Ridker, P.M. Soluble CD40L and Cardiovascular Risk in Women. Circulation 2001, 104, 2266–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.S.S.; Andre, P.; Yan, Y.; Phillips, D.R. The platelet CD40L/GP IIb-IIIa axis in atherothrombotic disease. Curr. Opin. Hematol. 2003, 10, 356–361. [Google Scholar] [CrossRef]
- André, P.; Nannizzi-Alaimo, L.; Prasad, S.K.; Phillips, D.R. Platelet-Derived CD40L. Circulation 2002, 106, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Schönbeck, U.; Bonnefoy, J.Y.; Pober, J.S.; Libby, P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: Induction of collagenase, stromelysin, and tissue factor. Circulation 1997, 96, 396–399. [Google Scholar] [CrossRef]
- Blake, G.J.; Ostfeld, R.J.; Yucel, E.K.; Varo, N.; Schönbeck, U.; Blake, M.A.; Gerhard, M.; Ridker, P.M.; Libby, P.; Lee, R.T. Soluble CD40 Ligand Levels Indicate Lipid Accumulation in Carotid Atheroma. Arter. Thromb. Vasc. Biol. 2003, 23, e11–e14. [Google Scholar] [CrossRef]
- Ny, T.; Sawdey, M.; Lawrence, D.; Millan, J.L.; Loskutoff, D.J. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor. Proc. Natl. Acad. Sci. USA 1986, 83, 6776–6780. [Google Scholar] [CrossRef] [Green Version]
- Kooistra, T.; Sprengers, E.D.; Van Hinsbergh, V.W.; Berg, J.V.D.; Töns, A.; Platenburg, G.; Rijken, D.C.; Hanemaaijer, R.; Koolwijk, P.; Le Clercq, L.; et al. Rapid inactivation of the plasminogen-activator inhibitor upon secretion from cultured human endothelial cells. Biochem. J. 1986, 239, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Owensby, A.D.; Morton, A.P.; Wun, T.C.; Schwartz, A.L. Binding of plasminogen activator inhibitor type-1 to extracellular matrix of Hep G2 cells. Evidence that the binding protein is vitronectin. J. Biol. Chem. 1991, 266, 4334–4340. [Google Scholar]
- Arts, J.; Grimbergen, J.; Toet, K.; Kooistra, T. On the Role of c-Jun in the Induction of PAI-1 Gene Expression by Phorbol Ester, Serum, and IL-1α in HepG2 Cells. Arter. Thromb. Vasc. Biol. 1999, 19, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Fujii, S.; Goto, D.; Furumoto, T.; Kaneko, T.; Zaman, T.A.; Nakai, Y.; Mishima, T.; Imagawa, S.; Kitabatake, A. Increased Expression of Plasminogen Activator Inhibitor-1 by Mediators of the Acute Phase Response: A Potential Progenitor of Vasculopathy in Hypertensives. Hypertens. Res. 2003, 26, 723–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfelda, K.; Weiss, T.W.; Kaun, C.; Breuss, J.M.; Zorn, G.; Oberndorfer, U.; Voegele-Kadletz, M.; Huber-Beckmann, R.; Ullrich, R.; Binder, B.R.; et al. Plasminogen activator inhibitor 1 expression is regulated by the inflammatory mediators interleukin-1alpha, tumor necrosis factor-alpha, transforming growth factor-beta and oncostatin M in human cardiac myocytes. J. Mol. Cell. Cardiol. 2002, 34, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, A.; Jurkowski, P.; Kotschy, M.; Ciecierski, M.; Jawień, A. Level of antithrombin III, protein C, protein S and other selected parameters of coagulation and fibrinolysis in the blood of the patients with recurrent deep venous thrombosis. Med. Sci. Monit. 2002, 8, 263–268. [Google Scholar]
- Thögersen, A.M.; Jansson, J.-H.; Boman, K.; Nilsson, T.K.; Weinehall, L.; Huhtasaari, F.; Hallmans, G. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: Evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998, 98, 2241–2247. [Google Scholar] [CrossRef] [Green Version]
- Wiman, B.; Andersson, T.; Hallqvist, J.; Reuterwall, C.; Ahlbom, A.; DeFaire, U. Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arter. Thromb. Vasc. Biol. 2000, 20, 2019–2023. [Google Scholar] [CrossRef] [Green Version]
- Båvenholm, P.; De Faire, U.; Landou, C.; Efendic, S.; Nilsson, J.; Wiman, B.; Hamsten, A. Progression of coronary artery disease in young male post-infarction patients is linked to disturbances of carbohydrate and lipoprotein metabolism and to impaired fibrinolytic function. Eur. Heart. J. 1998, 19, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, A.M.; Söderberg, S.; Jansson, J.-H.; Dahlén, G.; Boman, K.; Nilsson, T.K.; Lindahl, B.; Weinehall, L.; Stenlund, H.; Lundberg, V.; et al. Interactions between fibrinolysis, lipoproteins and leptin related to a first myocardial infarction. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 33–40. [Google Scholar] [CrossRef]
- Kes, V.B.; Jurasić, M.-J.; Zavoreo, I.; Corić, L.; Rotim, K. Migraine, carotid stiffness and genetic polymorphism. Acta Clin. Croat. 2015, 54, 409–416. [Google Scholar]
- Britze, J.; Arngrim, N.; Schytz, H.W.; Ashina, M. Hypoxic mechanisms in primary headaches. Cephalalgia 2016, 37, 372–384. [Google Scholar] [CrossRef]
- Prandota, J. Migraine Associated with Patent Foramen Ovale May Be Caused by Reactivation of Cerebral Toxoplasmosis Triggered by Arterial Blood Oxygen Desaturation. Int. J. Neurosci. 2010, 120, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Elias, I.; Franckhauser, S.; Bosch, F. New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2013, 2, 109–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerbel, R.S.; Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2002, 2, 727–739. [Google Scholar] [CrossRef]
- Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Ho, Q.T.; Kuo, C.J. Vascular endothelial growthfactor: Biology and therapeutic applications. Int. J. Biochem. Cell. Biol. 2007, 39, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.M.; Martins-Oliveira, A.; Speciali, J.G.; Izidoro-Toledo, T.C.; Luizon, M.R.; Dach, F.; Tanus-Santos, J.E. Vascular Endothelial Growth Factor Genetic Polymorphisms and Haplotypes in Women with Migraine. DNA Cell Biol. 2010, 29, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Michalak, S.; Kalinowska-Lyszczarz, A.; Wegrzyn, D.; Thielemann, A.; Osztynowicz, K.; Kozubski, W. The Levels of Circulating Proangiogenic Factors in Migraineurs. NeuroMolecular Med. 2017, 19, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Blann, A.D.; Belgore, F.M.; Constans, J.; Conri, C.; Lip, G.Y. Plasma vascular endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia and atherosclerosis and the effects of fluvastatin or fenofibrate. Am. J. Cardiol. 2001, 87, 1160–1163. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sordyl, J.; Małecka-Tendera, E.; Sarecka-Hujar, B.; Kopyta, I. Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches. Children 2020, 7, 167. https://doi.org/10.3390/children7100167
Sordyl J, Małecka-Tendera E, Sarecka-Hujar B, Kopyta I. Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches. Children. 2020; 7(10):167. https://doi.org/10.3390/children7100167
Chicago/Turabian StyleSordyl, Joanna, Ewa Małecka-Tendera, Beata Sarecka-Hujar, and Ilona Kopyta. 2020. "Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches" Children 7, no. 10: 167. https://doi.org/10.3390/children7100167
APA StyleSordyl, J., Małecka-Tendera, E., Sarecka-Hujar, B., & Kopyta, I. (2020). Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches. Children, 7(10), 167. https://doi.org/10.3390/children7100167