Esophageal Atresia: Nutritional Status and Energy Metabolism to Maximize Growth Outcome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Measurements
2.3. Nutritional Assessment
2.3.1. Nutritional Status
2.3.2. Semistructured Interview for Eating Habits Assessment
2.3.3. Energy Metabolism
3. Statistical Analysis
4. Results
4.1. Features of Patients
4.2. Nutritional Assessment
4.3. Factors Associated with Malnutrition
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nassar, N.; Leoncini, E.; Amar, E.; Arteaga-Vázquez, J.; Bakker, M.K.; Bower, C.; Canfield, M.A.; Castilla, E.E.; Cocchi, G.; Correa, A.; et al. Prevalence of esophageal atresia among 18 international birth defects surveillance programs. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 893–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oddsberg, J.; Lu, Y.; Lagergren, J. Aspects of esophageal atresia in a population-based setting: Incidence, mortality, and cancer risk. Pediatr. Surg. Int. 2011, 28, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.N.; Calzolari, E.; Husby, S.; Garne, E. EUROCAT Working group* Oesophageal atresia: Prevalence, prenatal diagnosis and associated anomalies in 23 European regions. Arch. Dis. Child. 2012, 97, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Gross, R. The Surgery of Infancy and Childhood; W. B. Saunders: Philadelphia, PA, USA, 1953. [Google Scholar]
- Deurloo, J.A.; Ekkelkamp, S.; Schoorl, M.; Heij, H.A.; Aronson, D.C. Esophageal atresia: Historical evolution of management and results in 371 patients. Ann. Thorac. Surg. 2002, 73, 267–272. [Google Scholar] [CrossRef]
- Sfeir, R.; Bonnard, A.; Khen-Dunlop, N.; Auber, F.; Gelas, T.; Michaud, L.; Podevin, G.; Breton, A.; Fouquet, V.; Piolat, C.; et al. Esophageal atresia: Data from a national cohort. J. Pediatr. Surg. 2013, 48, 1664–1669. [Google Scholar] [CrossRef] [Green Version]
- Sulkowski, J.P.; Cooper, J.N.; Lopez, J.J.; Jadcherla, Y.; Cuenot, A.; Mattei, P.; Deans, K.J.; Minneci, P.C. Morbidity and mortality in patients with esophageal atresia. Surgery 2014, 156, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Lacher, M.; Froehlich, S.; Von Schweinitz, D.; Dietz, H.G. Early and Long Term Outcome in Children with Esophageal Atresia Treated Over the Last 22 Years. Klin. Pädiatr. 2010, 222, 296–301. [Google Scholar] [CrossRef]
- Connor, M.J.; Springford, L.R.; Kapetanakis, V.V.; Giuliani, S. Esophageal atresia and transitional care—Step 1: A systematic review and meta-analysis of the literature to define the prevalence of chronic long-term problems. Am. J. Surg. 2015, 209, 747–759. [Google Scholar] [CrossRef]
- Mahoney, L.; Rosen, R. Feeding Difficulties in Children with Esophageal Atresia. Paediatr. Respir. Rev. 2015, 19, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Ijsselstijn, H.; Gischler, S.J.; Toussaint, L.; Spoel, M.; Zijp, M.H.V.D.C.-V.; Tibboel, D. Growth and development after oesophageal atresia surgery: Need for long-term multidisciplinary follow-up. Paediatr. Respir. Rev. 2016, 19, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, D.L.; Frongillo, E.A.; Schroeder, D.G.; Habicht, J.P. The effects of malnutrition on child mortality in developing countries. Bull. World Health Organ. 1995, 73, 443–448. [Google Scholar] [PubMed]
- Pelletier, D.L. The Potentiating Effects of Malnutrition on Child Mortality: Epidemiologic Evidence and Policy Implications. Nutr. Rev. 2009, 52, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Traini, I.; Menzies, J.; Hughes, J.; Leach, S.T.; Krishnan, U. Oesophageal atresia: The growth gap. World J. Gastroenterol. 2020, 26, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Management of Severe Malnutrition: A Manual for Physicians and Other Senior Health Workers. Geneva. 1999. Available online: http://www.who.int/nutrition/publications/en/manage_severe_malnutrition_eng.pdf (accessed on 15 September 2020).
- WHO, UNICEF, and SCN Informal Consultation on Community-Based Management of Severe Malnutrition in Children. SCN Nutrition Policy Paper No. 21. 2006. Available online: http://www.who.Int/child_adolescent_health/documents/pdfs/fnb_v27n3_suppl.pdf (accessed on 15 September 2020).
- WHO/UNICEF/WFP/SCN Joint statement. Community-Based Management of Severe Acute Malnutrition. Geneva, New York, Rome. 2007. Available online: http://www.who.int/child_adolescent_health/documents/pdfs/severe_acute_malnutrition_en.pd (accessed on 15 September 2020).
- World Health Organization (WHO). Growth Reference 5–19 Years. 2007. Available online: www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 7 March 2018).
- Sion-Sarid, R.; Cohen, J.; Houri, Z.; Singer, P. Indirect calorimetry: A guide for optimizing nutritional support in the critically ill child. Nutrition 2013, 29, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Chetcuti, P.; Phelan, P.D. Gastrointestinal morbidity and growth after repair of oesophageal atresia and tracheo-oesophageal fistula. Arch. Dis. Child. 1993, 68, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Puntis, J.W.; Ritson, D.G.; Holden, C.E.; Buick, R.G. Growth and feeding problems after repair of oesophageal atresia. Arch. Dis. Child. 1990, 65, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, F.; Ravà, L.; Valfré, L.; Braguglia, A.; Zaccara, A.; Gentile, S.; Bagolan, P.; Aite, L. Factors affecting short-term neurodevelopmental outcome in children operated on for major congenital anomalies. J. Pediatr. Surg. 2015, 50, 1125–1129. [Google Scholar] [CrossRef]
- Leibovitch, L.; Zohar, I.; Maayan-Mazger, A.; Mazkereth, R.; Strauss, T.; Bilik, R. Infants Born with Esophageal Atresia with or without Tracheo-Esophageal Fistula: Short- and Long-Term Outcomes. Isr. Med Assoc. J. IMAJ 2018, 20, 161–166. [Google Scholar]
- Gischler, S.J.; Zijp, M.H.V.D.C.-V.; Mazer, P.; Madern, G.C.; Bax, N.M.; De Jongste, J.C.; Van Dijk, M.; Tibboel, D.; Ijsselstijn, H. A prospective comparative evaluation of persistent respiratory morbidity in esophageal atresia and congenital diaphragmatic hernia survivors. J. Pediatr. Surg. 2009, 44, 1683–1690. [Google Scholar] [CrossRef] [Green Version]
- Vergouwe, F.W.T.; Spoel, M.; Van Beelen, N.W.G.; Gischler, S.J.; Wijnen, R.M.H.; Van Rosmalen, J.; Meijers-Ijsselstijn, H. Longitudinal evaluation of growth in oesophageal atresia patients up to 12 years. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 102, F417–F422. [Google Scholar] [CrossRef]
- Menzies, J.; Hughes, J.; Leach, S.T.; Belessis, Y.; Krishnan, U. Prevalence of Malnutrition and Feeding Difficulties in Children with Esophageal Atresia. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e100–e105. [Google Scholar] [CrossRef]
- de Oliveira, O.M.; Anderson, C.A.; Dearborn, J.L.; Ferranti, E.P.; Mozaffarian, D.; Rao, G.; Wylie-Rosett, J.; Lichtenstein, A.H. Correction to: Dietary Diversity: Implications for Obesity Prevention in Adult Populations: A Science Advisory From the American Heart Association. Circulation 2018, 138, e160–e168. [Google Scholar]
- Fitzgerald, D.A.; Kench, A.; Hatton, L.; Karpelowsky, J. Strategies for improving early nutritional outcomes in children with oesophageal atresia and congenital diaphragmatic hernia. Paediatr Respir Rev. 2018, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Birketvedt, K.; Mikkelsen, A.; Klingen, L.L.; Henriksen, C.; Helland, I.B.; Emblem, R. Nutritional Status in Adolescents with Esophageal Atresia. J. Pediatr. 2020, 218, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Mtaweh, H.; Tuira, L.; Floh, A.A.; Parshuram, C.S. Indirect Calorimetry: History, Technology, and Application. Front. Pediatr. 2018, 6, 257. [Google Scholar] [CrossRef] [PubMed]
- Kane, A.V.; Dinh, D.M.; Ward, H. Childhood malnutrition and the intestinal microbiome. Pediatr. Res. 2015, 77, 256–262. [Google Scholar] [CrossRef]
- Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017, 10, 18–26. [Google Scholar] [CrossRef] [Green Version]
Total (n = 21) | Adequate Nutritional Status (n = 15) | Undernutrition (n = 6) | p | |
---|---|---|---|---|
Age (yrs) | 8.51 (2.34) | 9.03 (2.34) | 7.2 (1.92) | 0.10 |
Sex (M/F) | 12/9 | 9/6 | 3/3 | 0.67 |
Weight kg | 24.30 (7.31) | 27.23 (5.99) | 16.9 (4.67) | <0.001 |
Weight z-score | −0.88 (−1.62–−0.5) | −0.65 (−1.3–0.01) | −2.73 (−3.21—2.18) | <0.001 |
Height cm | 127 (14.34) | 132 (11.33) | 115 (15.01) | 0.01 |
Height z-score | −0.55 (−1.36–0.41) | −0.28 (−1.09–0.7) | −1.525 (−1.96–−0.76) | 0.10 |
BMI kg/m2 | 14.68 (1.85) | 15.51 (1.48) | 12.6 (0.62) | <0.001 |
BMI z-score | −1.33 (1.41) | −0.64 (0.94) | −3.05 (0.7) | <0.001 |
Height-for-age (stunting) z-score | −0.1 (−1.1–0.5) | −0.1 (−0.7–1.6) | −1.2 (−1.9–0.1) | 0.14 |
Weight-for-height (wasting) z-score | 1.6 (−2–2.5) | 2 (0.4–2.9) | −2.9 (−3.2—2.5) | <0.001 |
MUAC cm | 17.78 (2.48) | 18.91 (1.81) | 14.97 (1.42) | <0.001 |
Waist circumference cm | 55.33 (6.12) | 58.07 (4.87) | 48.5 (2.19) | <0.001 |
Triceps skinfold mm | 8.56 (2.97) | 9.28 (3.19) | 6.77 (1.13) | 0.07 |
VO2 L/min | 0.15 (0.02) | 0.16 (0.01) | 0.13 (0.01) | <0.001 |
VCO2 mL/min | 0.13 (0.02) | 0.13 (0.02) | 0.11 (0.01) | 0.01 |
RQ | 0.84 (0.07) | 0.85 (0.09) | 0.82 (0.01) | 0.44 |
REE kcal/d | 1035 (142.64) | 1098.93 (101.23) | 856 (62.42) | <0.001 |
REE kcal/kg/d | 43.70 (8.06) | 50.49 (8.09) | 41.28 (6.76) | 0.02 |
Theoretical Basal Metabolic Rate kcal/d | 1037.16 (127.04) | 1081.07 (89.78) | 914.2 (144.16) | <0.01 |
Theoretical Basal Metabolic Rate kcal/kg/d | 43.95 (9.04) | 53.93 (8.3) | 40.58 (6.75) | <0.01 |
LARN REE 1 kcal/d | 1153.68 (174.01) | 1180 (184.14) | 1080 (129.81) | 0.28 |
Schofield formula weight 2 kcal/d | 1053.16 (163.33) | 1120.22 (131.18) | 885.5 (106.29) | <0.001 |
Schofield formula weight and height 3 cal/d | 1096.5 (908.72–1173) | 1157 (1042.7–1210.6) | 843.03 (813.42–876) | <0.001 |
Recorded Features | Total (n = 21) | Adequate Nutritional Status (n = 15) | Undernutrition (n = 6) | p |
---|---|---|---|---|
Perinatal features | ||||
Type of AE | ||||
Type A | 4 (19.05) | 1 (6.67) | 3 (50) | 0.03 |
Type B | 1 (4.76) | 0 (0) | 1(16.67) | |
Type C | 15 (71.4) | 13 (86.67) | 2 (33.33) | |
Type D | 1 (4.76) | 1 (6.67) | 0 (0) | |
SGA | 2 (9.52) | 0 (0) | 2 (33.3) | 0.01 |
Surgical procedures | ||||
Deferred anastomosis for long gap * | 7 (33.33) | 3 (20) | 4 (66.67) | 0.04 |
Primary anastomosis | 14 (66.67) | 12 (80) | 2 (33.33) | 0.04 |
Gastric mobilization and “limited” pull-up | 7 (33.33) | 3 (20) | 4 (66.67) | 0.04 |
Jejunostomy | 4 (19.05) | 1 (6.67) | 3 (50) | 0.02 |
Pyloromyotomy | 3 (14.29) | 0 (0) | 3 (50) | <0.01 |
Gastric transposition | 1 (4.76) | 0 (0) | 1 (16.67) | 0.10 |
Gastrostomy | 8 (38.1) | 4 (26.67) | 4 (66.67) | 0.08 |
Dilatations | 12 (57.14) | 9 (60) | 3 (50) | 0.67 |
Fundoplication | 6 (28.57) | 5 (33.33) | 1 (16.67) | 0.44 |
Gastrointestinal symptoms | ||||
Varied diet | 11 (61.11) | 9 (64.29) | 2 (50) | 0.60 |
Poor appetite | 10 (55.56) | 7 (50) | 3 (75) | 0.37 |
Swallowing difficulty | 5 (27.78) | 4 (28.57) | 1 (25) | 0.88 |
Retrosternal pain | 6 (33.33) | 4 (28.57) | 2 (50) | 0.42 |
Regurgitations of food | 10 (55.56) | 8 (57.14) | 2 (50) | 0.79 |
Nausea | 3 (16.67) | 2 (14.29) | 1 (25) | 0.61 |
Vomiting during meal | 4 (22.22) | 3 (21.43) | 1 (25) | 0.87 |
Epigastric pain | 5 (27.78) | 4 (28.57) | 1 (25) | 0.88 |
Diarrhea | 7 (38.89) | 4 (28.57) | 3 (75) | 0.09 |
Other conditions | ||||
Recurrent respiratory diseases | 13 (61.9) | 9 (60) | 4 (66.67) | 0.77 |
Asthma | 8 (38.1) | 5 (33.33) | 3 (50) | 0.47 |
Sleep disorders | 5 (27.78) | 4 (28.57) | 1 (25) | 0.60 |
Dental problems | 4 (22.22) | 4 (28.57) | 0 (0) | 0.22 |
Voice changes | 6 (33.33) | 6 (42.86) | 0 (0) | 0.10 |
Recurrent acute otitis media | 1 (5.56) | 1 (7.14) | 0 (0) | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelizzo, G.; Destro, F.; Selvaggio, G.G.O.; Maestri, L.; Roveri, M.; Bosetti, A.; Borsani, B.; Pendezza, E.; Meroni, M.; Pansini, A.; et al. Esophageal Atresia: Nutritional Status and Energy Metabolism to Maximize Growth Outcome. Children 2020, 7, 228. https://doi.org/10.3390/children7110228
Pelizzo G, Destro F, Selvaggio GGO, Maestri L, Roveri M, Bosetti A, Borsani B, Pendezza E, Meroni M, Pansini A, et al. Esophageal Atresia: Nutritional Status and Energy Metabolism to Maximize Growth Outcome. Children. 2020; 7(11):228. https://doi.org/10.3390/children7110228
Chicago/Turabian StylePelizzo, Gloria, Francesca Destro, Giorgio Giuseppe Orlando Selvaggio, Luciano Maestri, Margherita Roveri, Alessandra Bosetti, Barbara Borsani, Erica Pendezza, Milena Meroni, Andrea Pansini, and et al. 2020. "Esophageal Atresia: Nutritional Status and Energy Metabolism to Maximize Growth Outcome" Children 7, no. 11: 228. https://doi.org/10.3390/children7110228
APA StylePelizzo, G., Destro, F., Selvaggio, G. G. O., Maestri, L., Roveri, M., Bosetti, A., Borsani, B., Pendezza, E., Meroni, M., Pansini, A., La Pergola, E., Riccipetitoni, G., De Silvestri, A., Cena, H., & Calcaterra, V. (2020). Esophageal Atresia: Nutritional Status and Energy Metabolism to Maximize Growth Outcome. Children, 7(11), 228. https://doi.org/10.3390/children7110228