Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders
Abstract
1. Introduction
2. Methods
3. Antidepressants
3.1. Selective Serotonin Reuptake Inhibitors
3.2. Tricyclic Antidepressants
3.3. Serotonin and Norepinephrine Reuptake Inhibitors
3.3.1. Duloxetine
3.3.2. Venlafaxine
3.3.3. Milnacipran
3.4. Other Anti-Depressants
3.4.1. Bupropion
3.4.2. Mirtazapine
4. Alpha 2 Delta Ligands
5. Mood Stabilizers
5.1. Oxcarbazepine and Carbamazepine
5.2. Lamotrigine
5.3. Topiramate
5.4. Lithium Carbonate
5.5. Sodium Valproate
6. Antipsychotics
7. Anti-Sympathetic Agents
7.1. Beta-Blockers
7.2. Alpha-2 Agonists
8. Stimulants
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schechter, N.L. Functional pain: Time for a new name. JAMA Pediatr. 2014, 168, 693–694. [Google Scholar] [CrossRef]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef]
- Vinall, J.; Pavlova, M.; Asmundson, G.J.; Rasic, N.; Noel, M. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment. Children 2016, 3, 40. [Google Scholar] [CrossRef]
- Cooper, T.E.; Heathcote, L.C.; Clinch, J.; Gold, J.I.; Howard, R.; Lord, S.M.; Schechter, N.; Wood, C.; Wiffen, P.J. Antidepressants for chronic non-cancer pain in children and adolescents. Cochrane Database Syst. Rev. 2017, 8, CD012535. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; He, Y.; Yang, J.; Lv, Y.; Liu, H.; Liang, L.; Zheng, Q.; Li, L. The Impact of Placebo Response Rates on Clinical Trial Outcome: A Systematic Review and Meta-Analysis of Antidepressants in Children and Adolescents with Major Depressive Disorder. J. Child Adolesc. Psychopharmacol. 2019, 29, 712–720. [Google Scholar] [CrossRef]
- Hoekman, D.R.; Zeevenhooven, J.; van Etten-Jamaludin, F.S.; Douwes Dekker, I.; Benninga, M.A.; Tabbers, M.M.; Vlieger, A.M. The Placebo Response in Pediatric Abdominal Pain-Related Functional Gastrointestinal Disorders: A Systematic Review and Meta-Analysis. J Pediatr. 2017, 182, 155–163.e157. [Google Scholar] [CrossRef]
- Low Kapalu, C.M.; Hall, J.J.; Wallace, D.P. Neuropsychological Functioning of Youth Receiving Intensive Interdisciplinary Pain Treatment. J. Pediatr. Psychol. 2018, 43, 870–881. [Google Scholar] [CrossRef]
- Minen, M.T.; Begasse De Dhaem, O.; Kroon Van Diest, A.; Powers, S.; Schwedt, T.J.; Lipton, R.; Silbersweig, D. Migraine and its psychiatric comorbidities. J. Neurol. Neurosurg. Psychiatry 2016, 87, 741–749. [Google Scholar] [CrossRef]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Walker, A.K.; Kavelaars, A.; Heijnen, C.J.; Dantzer, R.; Daws, L.C. Neuroinflammation and Comorbidity of Pain and Depression. Pharmacol. Rev. 2013, 66, 80–101. [Google Scholar] [CrossRef]
- Sansone, R.A.; Sansone, L.A. Pain, Pain Go Away: Antidepressants and Pain Management. Psychiatry 2008, 5, 16–19. [Google Scholar]
- Baller, E.B.; Ross, D.A. Your System Has Been Hijacked: The Neurobiology of Chronic Pain. Biol. Psychiatry 2017, 82, e61–e63. [Google Scholar] [CrossRef][Green Version]
- Khouzam, H.R. Psychopharmacology of chronic pain: A focus on antidepressants and atypical antipsychotics. Postgrad. Med. 2016, 128, 323–330. [Google Scholar] [CrossRef]
- Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef]
- Van den Beuken-van Everdingen, M.H.; de Graeff, A.; Jongen, J.L.; Dijkstra, D.; Mostovaya, I.; Vissers, K.C. National Guideline Working Group. “Diagnosis treatment of cancer, pain.” Pharmacological treatment of pain in cancer patients: The role of adjuvant analgesics, a systematic review. Pain Pract. 2017, 17, 409–419. [Google Scholar] [CrossRef]
- Dharmshaktu, P.; Tayal, V.; Kalra, B.S. Efficacy of antidepressants as analgesics: A review. J. Clin. Pharmacol. 2012, 52, 6–17. [Google Scholar] [CrossRef]
- Bonilla, S.; Nurko, S. Focus on the use of antidepressants to treat pediatric functional abdominal pain: Current perspectives. Clin. Exp. Gastroenterol. 2018, 11, 365–372. [Google Scholar] [CrossRef]
- Antidepressant Medications: U.S. Food and Drug Administration-Approved Indications and Dosages for Use in Pediatric Patients. U.S Center for Medicare & Medicaid Services Website. Available online: https://www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-Materials/Downloads/ad-pediatric-dosingchart11-14.pdf (accessed on 14 September 2020).
- Strawn, J.R.; Welge, J.A.; Wehry, A.M.; Keeshin, B.; Rynn, M.A. Efficacy and tolerability of antidepressants in pediatric anxiety disorders: A systematic review and meta-analysis. Depress. Anxiety 2015, 32, 149–157. [Google Scholar] [CrossRef]
- Cipriani, A.; Zhou, X.; Del Giovane, C.; Hetrick, S.E.; Qin, B.; Whittington, C.; Coghill, D.; Zhang, Y.; Hazell, P.; Leucht, S.; et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: A network meta-analysis. Lancet 2016, 388, 881–890. [Google Scholar] [CrossRef]
- Walitt, B.; Urrútia, G.; Nishishinya, M.B.; Cantrell, S.E.; Häuser, W. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2015, 2015, Cd011735. [Google Scholar] [CrossRef]
- Moulin, D.; Boulanger, A.; Clark, A.J.; Clarke, H.; Dao, T.; Finley, G.A.; Furlan, A.; Gilron, I.; Gordon, A.; Morley-Forster, P.K.; et al. Pharmacological management of chronic neuropathic pain: Revised consensus statement from the Canadian Pain Society. Pain Res. Manag. 2014, 19, 328–335. [Google Scholar] [CrossRef]
- Banzi, R.; Cusi, C.; Randazzo, C.; Sterzi, R.; Tedesco, D.; Moja, L. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of migraine in adults. Cochrane Database Syst. Rev. 2015, 4, Cd002919. [Google Scholar] [CrossRef]
- Bendtsen, L.; Evers, S.; Linde, M.; Mitsikostas, D.D.; Sandrini, G.; Schoenen, J. EFNS guideline on the treatment of tension-type headache—Report of an EFNS task force. Eur. J. Neurol. 2010, 17, 1318–1325. [Google Scholar] [CrossRef]
- Tai, Y.H.; Wang, Y.H.; Wang, J.J.; Tao, P.L.; Tung, C.S.; Wong, C.S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain 2006, 124, 77–86. [Google Scholar] [CrossRef]
- Sadeghi, H.; Hajhashemi, V.; Minaiyan, M.; Movahedian, A.; Talebi, A. A study on the mechanisms involving the anti-inflammatory effect of amitriptyline in carrageenan-induced paw edema in rats. Eur. J. Pharmacol. 2011, 667, 396–401. [Google Scholar] [CrossRef]
- Ashina, S.; Bendtsen, L.; Jensen, R. Analgesic effect of amitriptyline in chronic tension-type headache is not directly related to serotonin reuptake inhibition. Pain 2004, 108, 108–114. [Google Scholar] [CrossRef]
- Bendtsen, L.; Jensen, R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia Int. J. Headache 2000, 20, 603–610. [Google Scholar] [CrossRef]
- Uçeyler, N.; Häuser, W.; Sommer, C. A systematic review on the effectiveness of treatment with antidepressants in fibromyalgia syndrome. Arthritis Rheum. 2008, 59, 1279–1298. [Google Scholar] [CrossRef]
- Thorpe, J.; Shum, B.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Combination pharmacotherapy for the treatment of fibromyalgia in adults. Cochrane Database Syst. Rev. 2018, 2, Cd010585. [Google Scholar] [CrossRef]
- Talley, N.J.; Locke, G.R.; Saito, Y.A.; Almazar, A.E.; Bouras, E.P.; Howden, C.W.; Lacy, B.E.; DiBaise, J.K.; Prather, C.M.; Abraham, B.P.; et al. Effect of Amitriptyline and Escitalopram on Functional Dyspepsia: A Multicenter, Randomized Controlled Study. Gastroenterology 2015, 149, 340–349.e342. [Google Scholar] [CrossRef]
- Trinkley, K.E.; Nahata, M.C. Medication management of irritable bowel syndrome. Digestion 2014, 89, 253–267. [Google Scholar] [CrossRef]
- Nishishinya, B.; Urrútia, G.; Walitt, B.; Rodriguez, A.; Bonfill, X.; Alegre, C.; Darko, G. Amitriptyline in the treatment of fibromyalgia: A systematic review of its efficacy. Rheumatology 2008, 47, 1741–1746. [Google Scholar] [CrossRef]
- Korterink, J.J.; Rutten, J.M.; Venmans, L.; Benninga, M.A.; Tabbers, M.M. Pharmacologic treatment in pediatric functional abdominal pain disorders: A systematic review. J. Pediatr. 2015, 166, 424–431.e426. [Google Scholar] [CrossRef]
- Powers, S.W.; Coffey, C.S.; Chamberlin, L.A.; Ecklund, D.J.; Klingner, E.A.; Yankey, J.W.; Korbee, L.L.; Porter, L.L.; Hershey, A.D. Trial of Amitriptyline, Topiramate, and Placebo for Pediatric Migraine. N. Engl. J. Med. 2017, 376, 115–124. [Google Scholar] [CrossRef]
- Locher, C.; Kossowsky, J.; Koechlin, H.; Lam, T.L.; Barthel, J.; Berde, C.B.; Gaab, J.; Schwarzer, G.; Linde, K.; Meissner, K. Efficacy, Safety, and Acceptability of Pharmacologic Treatments for Pediatric Migraine Prophylaxis: A Systematic Review and Network Meta-analysis. JAMA Pediatr. 2020, 174, 341–349. [Google Scholar] [CrossRef]
- Oskoui, M.; Pringsheim, T.; Billinghurst, L.; Potrebic, S.; Gersz, E.M.; Gloss, D.; Holler-Managan, Y.; Leininger, E.; Licking, N.; Mack, K.; et al. Practice guideline update summary: Pharmacologic treatment for pediatric migraine prevention: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2019, 93, 500–509. [Google Scholar] [CrossRef]
- Mowla, A.; Dastgheib, S.A.; Razeghian Jahromi, L. Comparing the Effects of Sertraline with Duloxetine for Depression Severity and Symptoms: A Double-Blind, Randomized Controlled Trial. Clin. Drug Investig. 2016, 36, 539–543. [Google Scholar] [CrossRef]
- Cymbalta (Duloxetine Extended Release) [Package Insert]. U.S. Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021427s049lbl.pdf (accessed on 14 September 2020).
- Meng, J.; Zhang, Q.; Yang, C.; Xiao, L.; Xue, Z.; Zhu, J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Farshchian, N.; Alavi, A.; Heydarheydari, S.; Moradian, N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother. Pharmacol. 2018, 82, 787–793. [Google Scholar] [CrossRef]
- Tesfaye, S.; Wilhelm, S.; Lledo, A.; Schacht, A.; Tolle, T.; Bouhassira, D.; Cruccu, G.; Skljarevski, V.; Freynhagen, R. Duloxetine and pregabalin: High-dose monotherapy or their combination? The “COMBO-DN study”—A multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain 2013, 154, 2616–2625. [Google Scholar] [CrossRef]
- Emslie, G.J.; Wells, T.G.; Prakash, A.; Zhang, Q.; Pangallo, B.A.; Bangs, M.E.; March, J.S. Acute and longer-term safety results from a pooled analysis of duloxetine studies for the treatment of children and adolescents with major depressive disorder. J. Child Adolesc. Psychopharmacol. 2015, 25, 293–305. [Google Scholar] [CrossRef]
- Jasiak, N.M.; Bostwick, J.R. Risk of QT/QTc prolongation among newer non-SSRI antidepressants. Ann. Pharmacol. 2014, 48, 1620–1628. [Google Scholar] [CrossRef]
- Upadhyaya, H.P.; Arnold, L.M.; Alaka, K.; Qiao, M.; Williams, D.; Mehta, R. Efficacy and safety of duloxetine versus placebo in adolescents with juvenile fibromyalgia: Results from a randomized controlled trial. Pediatr. Rheumatol. Online J. 2019, 17, 27. [Google Scholar] [CrossRef]
- Ozyalcin, S.N.; Talu, G.K.; Kiziltan, E.; Yucel, B.; Ertas, M.; Disci, R. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache 2005, 45, 144–152. [Google Scholar] [CrossRef]
- Effexor XR (Venlafaxine Extended-Release) [Package Insert]. U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020699s107lbl.pdf (accessed on 14 September 2020).
- Trouvin, A.P.; Perrot, S.; Lloret-Linares, C. Efficacy of Venlafaxine in Neuropathic Pain: A Narrative Review of Optimized Treatment. Clin. Ther. 2017, 39, 1104–1122. [Google Scholar] [CrossRef]
- Hosenbocus, S.; Chahal, R. SSRIs and SNRIs: A review of the Discontinuation Syndrome in Children and Adolescents. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 60–67. [Google Scholar]
- Cunningham, L.A. Once-daily venlafaxine extended release (XR) and venlafaxine immediate release (IR) in outpatients with major depression. Venlafaxine XR 208 Study Group. Ann. Clin. Psychiatry 1997, 9, 157–164. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Freeman, R.D.; Berk, M. Efficacy and adverse effects of venlafaxine in children and adolescents with ADHD: A systematic review of non-controlled and controlled trials. Rev. Recent Clin. Trials 2013, 8, 2–8. [Google Scholar] [CrossRef]
- March, J.S.; Entusah, A.R.; Rynn, M.; Albano, A.M.; Tourian, K.A. A Randomized controlled trial of venlafaxine ER versus placebo in pediatric social anxiety disorder. Biol. Psychiatry 2007, 62, 1149–1154. [Google Scholar] [CrossRef]
- Rynn, M.A.; Riddle, M.A.; Yeung, P.P.; Kunz, N.R. Efficacy and safety of extended-release venlafaxine in the treatment of generalized anxiety disorder in children and adolescents: Two placebo-controlled trials. Am. J. Psychiatry 2007, 164, 290–300. [Google Scholar] [CrossRef]
- Savella (Milncaipran) [Package Insert] US Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022256s011lbl.pdf (accessed on 14 September 2020).
- Lee, Y.H.; Song, G.G. Comparative efficacy and tolerability of duloxetine, pregabalin, and milnacipran for the treatment of fibromyalgia: A Bayesian network meta-analysis of randomized controlled trials. Rheumatol. Int. 2016, 36, 663–672. [Google Scholar] [CrossRef]
- Gmuca, S.; Sherry, D.D. Fibromyalgia: Treating Pain in the Juvenile Patient. Paediatr. Drugs 2017, 19, 325–338. [Google Scholar] [CrossRef]
- Arnold, L.M.; Bateman, L.; Palmer, R.H.; Lin, Y. Preliminary experience using milnacipran in patients with juvenile fibromyalgia: Lessons from a clinical trial program. Pediatr. Rheumatol. Online J. 2015, 13, 27. [Google Scholar] [CrossRef]
- Wellbutrin (Bupropion Hcl) [Package Insesrt] U.S. Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018644s052lbl.pdf (accessed on 14 September 2020).
- Cortese, S.; Adamo, N.; Del Giovane, C.; Mohr-Jensen, C.; Hayes, A.J.; Carucci, S.; Atkinson, L.Z.; Tessari, L.; Banaschewski, T.; Coghill, D.; et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: A systematic review and network meta-analysis. Lancet. Psychiatry 2018, 5, 727–738. [Google Scholar] [CrossRef]
- Shah, T.H.; Moradimehr, A. Bupropion for the treatment of neuropathic pain. Am. J. Hosp. Palliat. Care 2010, 27, 333–336. [Google Scholar] [CrossRef]
- Hamdy, M.M.; Elbadr, M.M.; Barakat, A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol. Rep. 2018, 70, 955–962. [Google Scholar] [CrossRef]
- Leitl, M.D.; Negus, S.S. Pharmacological modulation of neuropathic pain-related depression of behavior: Effects of morphine, ketoprofen, bupropion and [INCREMENT]9-tetrahydrocannabinol on formalin-induced depression of intracranial self-stimulation in rats. Behav. Pharmacol. 2016, 27, 364–376. [Google Scholar] [CrossRef]
- Bendtsen, L.; Jensen, R. Mirtazapine is effective in the prophylactic treatment of chronic tension-type headache. Neurology 2004, 62, 1706–1711. [Google Scholar] [CrossRef]
- Tack, J.; Ly, H.G.; Carbone, F.; Vanheel, H.; Vanuytsel, T.; Holvoet, L.; Boeckxstaens, G.; Caenepeel, P.; Arts, J.; Van Oudenhove, L. Efficacy of Mirtazapine in Patients With Functional Dyspepsia and Weight Loss. Clin. Gastroenterol. Hepatol. 2016, 14, 385–392.e384. [Google Scholar] [CrossRef]
- Malemud, C.J. Focus on pain mechanisms and pharmacotherapy in the treatment of fibromyalgia syndrome. Clin. Exp. Rheumatol. 2009, 27, S86–S91. [Google Scholar]
- Miki, K.; Murakami, M.; Oka, H.; Onozawa, K.; Yoshida, S.; Osada, K. Efficacy of mirtazapine for the treatment of fibromyalgia without concomitant depression: A randomized, double-blind, placebo-controlled phase IIa study in Japan. Pain 2016, 157, 2089–2096. [Google Scholar] [CrossRef]
- Ottman, A.A.; Warner, C.B.; Brown, J.N. The role of mirtazapine in patients with fibromyalgia: A systematic review. Rheumatol. Int. 2018, 38, 2217–2224. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Z.; Zhang, X.; Li, L. Comparative efficacy, acceptability, and safety of medicinal, cognitive-behavioral therapy, and placebo treatments for acute major depressive disorder in children and adolescents: A multiple-treatments meta-analysis. Curr. Med. Res. Opin. 2014, 30, 971–995. [Google Scholar] [CrossRef]
- Coskun, M.; Alyanak, B. Psychiatric Co-morbidity and Efficacy of Mirtazapine Treatment in Young Subjects With Chronic or Cyclic Vomiting Syndromes: A Case Series. J. Neurogastroenterol. Motil. 2011, 17, 305–311. [Google Scholar] [CrossRef]
- Gray, E.; Chen, T.; Menzel, J.; Schwartz, T.; Kaye, W.H. Mirtazapine and Weight Gain in Avoidant and Restrictive Food Intake Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 288–289. [Google Scholar] [CrossRef]
- Calandre, E.P.; Rico-Villademoros, F.; Slim, M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: A review of their clinical pharmacology and therapeutic use. Expert Rev. Neurother. 2016, 16, 1263–1277. [Google Scholar] [CrossRef]
- Eroglu, C.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Ozkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139, 380–392. [Google Scholar] [CrossRef]
- Chincholkar, M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: A narrative review. Br. J. Anaesth. 2018, 120, 1315–1334. [Google Scholar] [CrossRef]
- Yang, J.Y.; Lee, W.I.; Shin, W.K.; Kim, C.H.; Baik, S.W.; Kim, K.H. Administration of four different doses of gabapentin reduces awakening from breakthrough pain and adverse effects in outpatients with neuropathic pain during the initial titration. Korean J. Anesth. 2013, 65, 48–54. [Google Scholar] [CrossRef]
- Bockbrader, H.N.; Radulovic, L.L.; Posvar, E.L.; Strand, J.C.; Alvey, C.W.; Busch, J.A.; Randinitis, E.J.; Corrigan, B.W.; Haig, G.M.; Boyd, R.A.; et al. Clinical pharmacokinetics of pregabalin in healthy volunteers. J. Clin. Pharmacol. 2010, 50, 941–950. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tolle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef]
- Cooper, T.E.; Derry, S.; Wiffen, P.J.; Moore, R.A. Gabapentin for fibromyalgia pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD012188. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, J.H.; Cho, S.W. Gabapentin reduces rectal mechanosensitivity and increases rectal compliance in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol. 2005, 22, 981–988. [Google Scholar] [CrossRef]
- Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Database Syst. Rev. 2019, 1, CD007076. [Google Scholar] [CrossRef]
- Derry, S.; Cording, M.; Wiffen, P.J.; Law, S.; Phillips, T.; Moore, R.A. Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, 9, CD011790. [Google Scholar] [CrossRef]
- Gilron, I.; Chaparro, L.E.; Tu, D.; Holden, R.R.; Milev, R.; Towheed, T.; DuMerton-Shore, D.; Walker, S. Combination of pregabalin with duloxetine for fibromyalgia: A randomized controlled trial. Pain 2016, 157, 1532–1540. [Google Scholar] [CrossRef]
- Saito, Y.A.; Almazar, A.E.; Tilkes, K.E.; Choung, R.S.; Van Norstrand, M.D.; Schleck, C.D.; Zinsmeister, A.R.; Talley, N.J. Randomised clinical trial: Pregabalin vs placebo for irritable bowel syndrome. Aliment Pharmacol. 2019, 49, 389–397. [Google Scholar] [CrossRef]
- Houghton, L.A.; Fell, C.; Whorwell, P.J.; Jones, I.; Sudworth, D.P.; Gale, J.D. Effect of a second-generation alpha2delta ligand (pregabalin) on visceral sensation in hypersensitive patients with irritable bowel syndrome. Gut 2007, 56, 1218–1225. [Google Scholar] [CrossRef]
- Verret, M.; Lauzier, F.; Zarychanski, R.; Perron, C.; Savard, X.; Pinard, A.M.; Leblanc, G.; Cossi, M.J.; Neveu, X.; Turgeon, A.F.; et al. Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain: A Systematic Review and Meta-analysis. Anesthesiology 2020, 133, 265–279. [Google Scholar] [CrossRef]
- Shanthanna, H.; Gilron, I.; Rajarathinam, M.; AlAmri, R.; Kamath, S.; Thabane, L.; Devereaux, P.J.; Bhandari, M. Benefits and safety of gabapentinoids in chronic low back pain: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2017, 14, e1002369. [Google Scholar] [CrossRef]
- Gurusamy, K.S.; Lusuku, C.; Davidson, B.R. Pregabalin for decreasing pancreatic pain in chronic pancreatitis. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Linde, M.; Mulleners, W.M.; Chronicle, E.P.; McCrory, D.C. Gabapentin or pregabalin for the prophylaxis of episodic migraine in adults. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Baldwin, D.S.; Ajel, K.; Masdrakis, V.G.; Nowak, M.; Rafiq, R. Pregabalin for the treatment of generalized anxiety disorder: An update. Neuropsychiatr. Dis. Treat. 2013, 9, 883–892. [Google Scholar] [CrossRef]
- Berlin, R.K.; Butler, P.M.; Perloff, M.D. Gabapentin Therapy in Psychiatric Disorders: A Systematic Review. Prim. Care Companion CNS Disord. 2015, 17. [Google Scholar] [CrossRef]
- Arnold, L.M.; Schikler, K.N.; Bateman, L.; Khan, T.; Pauer, L.; Bhadra-Brown, P.; Clair, A.; Chew, M.L.; Scavone, J. Safety and efficacy of pregabalin in adolescents with fibromyalgia: A randomized, double-blind, placebo-controlled trial and a 6-month open-label extension study. Pediatr. Rheumatol. Online J. 2016, 14, 46. [Google Scholar] [CrossRef]
- Vondracek, P.; Oslejskova, H.; Kepak, T.; Mazanek, P.; Sterba, J.; Rysava, M.; Gal, P. Efficacy of pregabalin in neuropathic pain in paediatric oncological patients. Eur. J. Paediatr. Neurol. 2009, 13, 332–336. [Google Scholar] [CrossRef]
- Grégoire, M.-C.; Finley, G.A. Drugs for chronic pain in children: A commentary on clinical practice and the absence of evidence. Pain Res. Manag. 2013, 18, 47–50. [Google Scholar] [CrossRef]
- Smith, R.V.; Havens, J.R.; Walsh, S.L. Gabapentin misuse, abuse and diversion: A systematic review. Addiction 2016, 111, 1160–1174. [Google Scholar] [CrossRef]
- Knezevic, N.N.; Tverdohleb, T.; Knezevic, I.; Candido, K.D. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef]
- Meents, J.E.; Bressan, E.; Sontag, S.; Foerster, A.; Hautvast, P.; Rösseler, C.; Hampl, M.; Schüler, H.; Goetzke, R.; Le, T.K.C.; et al. The role of Nav1.7 in human nociceptors: Insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain 2019, 160, 1327–1341. [Google Scholar] [CrossRef]
- Dib-Hajj, S.D.; Waxman, S.G. Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics. Annu. Rev. Neurosci. 2019, 42, 87–106. [Google Scholar] [CrossRef]
- Thomas, A.M.; Atkinson, T.J. Old Friends With New Faces: Are Sodium Channel Blockers the Future of Adjunct Pain Medication Management? J. Pain. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Demant, D.T.; Lund, K.; Vollert, J.; Maier, C.; Segerdahl, M.; Finnerup, N.B.; Jensen, T.S.; Sindrup, S.H. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: A randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 2014, 155, 2263–2273. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, N.; He, L.; Yang, M.; Zhu, C.; Wu, F. Oxcarbazepine for neuropathic pain. Cochrane Database Syst. Rev. 2017, 12, Cd007963. [Google Scholar] [CrossRef]
- Woolston, J.L. Case study: Carbamazepine treatment of juvenile-onset bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 335–338. [Google Scholar] [CrossRef]
- Silva, R.R.; Munoz, D.M.; Alpert, M. Carbamazepine use in children and adolescents with features of attention-deficit hyperactivity disorder: A meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 1996, 35, 352–358. [Google Scholar] [CrossRef]
- Hirschfeld, R.M.; Kasper, S. A review of the evidence for carbamazepine and oxcarbazepine in the treatment of bipolar disorder. Int. J. Neuropsychopharmacol. 2004, 7, 507–522. [Google Scholar] [CrossRef]
- Lin, C.M.; Fan, H.C.; Chao, T.Y.; Chu, D.M.; Lai, C.C.; Wang, C.C.; Chen, S.J. Potential effects of valproate and oxcarbazepine on growth velocity and bone metabolism in epileptic children- a medical center experience. BMC Pediatr. 2016, 16, 61. [Google Scholar] [CrossRef]
- Veroniki, A.A.; Rios, P.; Cogo, E.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open 2017, 7, e017248. [Google Scholar] [CrossRef]
- Findling, R.L.; Chang, K.; Robb, A.; Foster, V.J.; Horrigan, J.; Krishen, A.; Wamil, A.; Kraus, J.E.; DelBello, M. Adjunctive Maintenance Lamotrigine for Pediatric Bipolar I Disorder: A Placebo-Controlled, Randomized Withdrawal Study. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 1020–1031.e1023. [Google Scholar] [CrossRef]
- Nakamura-Craig, M.; Follenfant, R.L. Effect of lamotrigine in the acute and chronic hyperalgesia induced by PGE2 and in the chronic hyperalgesia in rats with streptozotocin-induced diabetes. Pain 1995, 63, 33–37. [Google Scholar] [CrossRef]
- Klamt, J.G. Effects of intrathecally administered lamotrigine, a glutamate release inhibitor, on short- and long-term models of hyperalgesia in rats. Anesthesiology 1998, 88, 487–494. [Google Scholar] [CrossRef]
- Bhosale, U.A.; Yegnanarayan, R.; Gupta, A.; Shah, P.; Sardesai, S. Comparative pre-emptive analgesic efficacy study of novel antiepileptic agents gabapentin, lamotrigine and topiramate in patients undergoing major surgeries at a tertiary care hospital: A randomized double blind clinical trial. J. Basic Clin. Physiol. Pharmcol. 2017, 28, 59–66. [Google Scholar] [CrossRef]
- Silver, M.; Blum, D.; Grainger, J.; Hammer, A.E.; Quessy, S. Double-blind, placebo-controlled trial of lamotrigine in combination with other medications for neuropathic pain. J. Pain Symptom Manag. 2007, 34, 446–454. [Google Scholar] [CrossRef]
- Al-Quliti, K.W. Update on neuropathic pain treatment for trigeminal neuralgia. The pharmacological and surgical options. Neurosciences 2015, 20, 107–114. [Google Scholar] [CrossRef]
- Buch, D.; Chabriat, H. Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review. Headache 2019, 59, 1187–1197. [Google Scholar] [CrossRef]
- Rustagi, A.; Roychoudhury, A.; Bhutia, O.; Trikha, A.; Srivastava, M.V. Lamotrigine Versus Pregabalin in the Management of Refractory Trigeminal Neuralgia: A Randomized Open Label Crossover Trial. J. Maxillofac. Oral Surg. 2014, 13, 409–418. [Google Scholar] [CrossRef]
- Egunsola, O.; Choonara, I.; Sammons, H.M. Safety of lamotrigine in paediatrics: A systematic review. BMJ Open 2015, 5, e007711. [Google Scholar] [CrossRef]
- Pigott, K.; Galizia, I.; Vasudev, K.; Watson, S.; Geddes, J.; Young, A.H. Topiramate for acute affective episodes in bipolar disorder in adults. Cochrane Database Syst. Rev. 2016, 9, Cd003384. [Google Scholar] [CrossRef]
- Lee, D.J.; Schnitzlein, C.W.; Wolf, J.P.; Vythilingam, M.; Rasmusson, A.M.; Hoge, C.W. Psychotherapy versus pharmacotherapy for posttraumatic stress disorder: Systemic review and meta-analyses to determine first-line treatments. Depress. Anxiety 2016, 33, 792–806. [Google Scholar] [CrossRef]
- Topamax (Topiramate) [Package Insert] U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf (accessed on 14 September 2020).
- Angehagen, M.; Ben-Menachem, E.; Rönnbäck, L.; Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res. 2003, 28, 333–340. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Derry, S.; Lunn, M.P.T.; Moore, R.A.; Derry, S. Topiramate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- McCormick, Z.; Chang-Chien, G.; Marshall, B.; Huang, M.; Harden, R.N. Phantom limb pain: A systematic neuroanatomical-based review of pharmacologic treatment. Pain Med. 2014, 15, 292–305. [Google Scholar] [CrossRef]
- Aurora, S.K.; Brin, M.F. Chronic Migraine: An Update on Physiology, Imaging, and the Mechanism of Action of Two Available Pharmacologic Therapies. Headache 2017, 57, 109–125. [Google Scholar] [CrossRef]
- Silberstein, S.D. Topiramate in Migraine Prevention: A 2016 Perspective. Headache 2017, 57, 165–178. [Google Scholar] [CrossRef]
- Celebisoy, N.; Gökçay, F.; Sirin, H.; Akyürekli, O. Treatment of idiopathic intracranial hypertension: Topiramate vs acetazolamide, an open-label study. Acta Neurol. Scand. 2007, 116, 322–327. [Google Scholar] [CrossRef]
- Scotton, W.J.; Botfield, H.F.; Westgate, C.S.; Mitchell, J.L.; Yiangou, A.; Uldall, M.S.; Jensen, R.H.; Sinclair, A.J. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia Int. J. Headache 2019, 39, 209–218. [Google Scholar] [CrossRef]
- Pareja, J.A.; Álvarez, M. The usual treatment of trigeminal autonomic cephalalgias. Headache 2013, 53, 1401–1414. [Google Scholar] [CrossRef]
- Hunt, S.; Russell, A.; Smithson, W.H.; Parsons, L.; Robertson, I.; Waddell, R.; Irwin, B.; Morrison, P.J.; Morrow, J.; Craig, J. Topiramate in pregnancy: Preliminary experience from the UK Epilepsy and Pregnancy Register. Neurology 2008, 71, 272–276. [Google Scholar] [CrossRef]
- Lithum Carbonate [Package Insert] U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/017812s033,018421s032,018558s027lbl.pdf (accessed on 14 September 2020).
- Sani, G.; Perugi, G.; Tondo, L. Treatment of Bipolar Disorder in a Lifetime Perspective: Is Lithium Still the Best Choice? Clin. Drug Investig. 2017, 37, 713–727. [Google Scholar] [CrossRef]
- Robbins, M.S.; Starling, A.J.; Pringsheim, T.M.; Becker, W.J.; Schwedt, T.J. Treatment of Cluster Headache: The American Headache Society Evidence-Based Guidelines. Headache 2016, 56, 1093–1106. [Google Scholar] [CrossRef]
- Yang, M.L.; Li, J.J.; So, K.F.; Chen, J.Y.; Cheng, W.S.; Wu, J.; Wang, Z.M.; Gao, F.; Young, W. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: A double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 2012, 50, 141–146. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, F.; Zhai, X.; Li, X.H.; He, X.J. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen. Res. 2018, 13, 2191–2199. [Google Scholar] [CrossRef]
- Pourmohammadi, N.; Alimoradi, H.; Mehr, S.E.; Hassanzadeh, G.; Hadian, M.R.; Sharifzadeh, M.; Bakhtiarian, A.; Dehpour, A.R. Lithium attenuates peripheral neuropathy induced by paclitaxel in rats. Basic Clin. Pharmacol. Toxicol. 2012, 110, 231–237. [Google Scholar] [CrossRef]
- Dosenovic, S.; Jelicic Kadic, A.; Miljanovic, M.; Biocic, M.; Boric, K.; Cavar, M.; Markovina, N.; Vucic, K.; Puljak, L. Interventions for Neuropathic Pain. Anesth. Analg. 2017, 125, 643–652. [Google Scholar] [CrossRef]
- Sheridan, D.; Sun, B.; O’Brien, P.; Hansen, M. Intravenous Sodium Valproate for Acute Pediatric Headache. J. Emerg. Med. 2015, 49, 541–545. [Google Scholar] [CrossRef]
- Zafar, M.S.; Stewart, A.M.; Toupin, D.N.; Cook, A.M.; Baumann, R.J. Continuous Intravenous Valproate as Abortive Therapy for Pediatric Status Migrainosus. Neurologist 2018, 23, 43–46. [Google Scholar] [CrossRef]
- Wagner, K.D.; Redden, L.; Kowatch, R.A.; Wilens, T.E.; Segal, S.; Chang, K.; Wozniak, P.; Vigna, N.V.; Abi-Saab, W.; Saltarelli, M. A double-blind, randomized, placebo-controlled trial of divalproex extended-release in the treatment of bipolar disorder in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 519–532. [Google Scholar] [CrossRef]
- Geller, B.; Luby, J.L.; Joshi, P.; Wagner, K.D.; Emslie, G.; Walkup, J.T.; Axelson, D.A.; Bolhofner, K.; Robb, A.; Wolf, D.V.; et al. A randomized controlled trial of risperidone, lithium, or divalproex sodium for initial treatment of bipolar I disorder, manic or mixed phase, in children and adolescents. Arch. Gen. Psychiatry 2012, 69, 515–528. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, J.S.; Abdi, S.; Lee, S.J.; Kim, K.H. Antipsychotics for patients with pain. Korean J. Pain 2019, 32, 3–11. [Google Scholar] [CrossRef]
- Jimenez, X.F.; Sundararajan, T.; Covington, E.C. A Systematic Review of Atypical Antipsychotics in Chronic Pain Management: Olanzapine Demonstrates Potential in Central Sensitization, Fibromyalgia, and Headache/Migraine. Clin. J. Pain. 2018, 34, 585–591. [Google Scholar] [CrossRef]
- Kim, Y.H. The role and position of antipsychotics in managing chronic pain. Korean J. Pain 2019, 32, 1–2. [Google Scholar] [CrossRef]
- Walitt, B.; Klose, P.; Uceyler, N.; Phillips, T.; Hauser, W. Antipsychotics for fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, CD011804. [Google Scholar] [CrossRef]
- Seidel, S.; Aigner, M.; Ossege, M.; Pernicka, E.; Wildner, B.; Sycha, T. Antipsychotics for acute and chronic pain in adults. Cochrane Database Syst. Rev. 2013, CD004844. [Google Scholar] [CrossRef]
- Calandre, E.P.; Rico-Villademoros, F.; Galán, J.; Molina-Barea, R.; Vilchez, J.S.; Rodriguez-Lopez, C.M.; Hidalgo-Tallon, J.; Morillas-Arques, P. Quetiapine extended-release (Seroquel-XR) versus amitriptyline monotherapy for treating patients with fibromyalgia: A 16-week, randomized, flexible-dose, open-label trial. Psychopharmacology 2014, 231, 2525–2531. [Google Scholar] [CrossRef]
- Cole, J.B.; Klein, L.R.; Strobel, A.M.; Blanchard, S.R.; Nahum, R.; Martel, M.L. The Use, Safety, and Efficacy of Olanzapine in a Level I Pediatric Trauma Center Emergency Department Over a 10-Year Period. Pediatric Emerg. Care 2020, 36, 70–76. [Google Scholar] [CrossRef]
- Naguy, A. Clonidine Use in Psychiatry: Panacea or Panache. Pharmacology 2016, 98, 87–92. [Google Scholar] [CrossRef]
- Steenen, S.A.; van Wijk, A.J.; van der Heijden, G.J.M.G.; van Westrhenen, R.; de Lange, J.; de Jongh, A. Propranolol for the treatment of anxiety disorders: Systematic review and meta-analysis. J. Psychopharmacol. 2016, 30, 128–139. [Google Scholar] [CrossRef]
- Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; Megat, S.; Ceredig, R.A.; Ernst, C.; Turecki, G.; et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J. Neurosci. 2018, 38, 9934–9954. [Google Scholar] [CrossRef]
- Choucair-Jaafar, N.; Yalcin, I.; Rodeau, J.L.; Waltisperger, E.; Freund-Mercier, M.J.; Barrot, M. Beta2-adrenoceptor agonists alleviate neuropathic allodynia in mice after chronic treatment. Br. J. Pharmacol. 2009, 158, 1683–1694. [Google Scholar] [CrossRef]
- Ciszek, B.P.; O’Buckley, S.C.; Nackley, A.G. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral beta-Adrenergic Receptors. Anesthesiology 2016, 124, 1122–1135. [Google Scholar] [CrossRef]
- Zhang, X.; Hartung, J.E.; Bortsov, A.V.; Kim, S.; O’Buckley, S.C.; Kozlowski, J.; Nackley, A.G. Sustained stimulation of beta2- and beta3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav. Immun. 2018, 73, 520–532. [Google Scholar] [CrossRef]
- Kline, R.H.; Exposto, F.G.; O’Buckley, S.C.; Westlund, K.N.; Nackley, A.G. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat. Neuroscience 2015, 290, 561–569. [Google Scholar] [CrossRef]
- Friedrichsdorf, S.J.; Nugent, A.P. Management of neuropathic pain in children with cancer. Curr. Opin. Support. Palliat. Care 2013, 7, 131–138. [Google Scholar] [CrossRef]
- Giovannitti, J.A., Jr.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef]
- Windsor, R.B.; Tham, S.W.; Adams, T.L.; Anderson, A. The Use of Opioids for Treatment of Pediatric Neuropathic Pain: A Literature Review. Clin. J. Pain 2019, 35, 509–514. [Google Scholar] [CrossRef]
- Burns, J.; Jackson, K.; Sheehy, K.A.; Finkel, J.C.; Quezado, Z.M. The Use of Dexmedetomidine in Pediatric Palliative Care: A Preliminary Study. J. Palliat. Med. 2017, 20, 779–783. [Google Scholar] [CrossRef]
- Lipsker, C.W.; Bölte, S.; Hirvikoski, T.; Lekander, M.; Holmström, L.; Wicksell, R.K. Prevalence of autism traits and attention-deficit hyperactivity disorder symptoms in a clinical sample of children and adolescents with chronic pain. J. Pain Res. 2018, 11, 2827–2836. [Google Scholar] [CrossRef]
- Genizi, J.; Gordon, S.; Kerem, N.C.; Srugo, I.; Shahar, E.; Ravid, S. Primary headaches, attention deficit disorder and learning disabilities in children and adolescents. J. Headache Pain 2013, 14, 54. [Google Scholar] [CrossRef]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Pud, D.; Broitman, E.; Hameed, O.; Suzan, E.; Aviram, J.; Haddad, M.; Hadad, S.; Shemesh, R.; Eisenberg, E. Methylphenidate attenuates the response to cold pain but not to aversive auditory stimuli in healthy human: A double-blind randomized controlled study. Pain Rep. 2017, 2, e593. [Google Scholar] [CrossRef]
- You, Z.; Ding, W.; Doheny, J.T.; Shen, S.; Yang, J.; Yang, L.; Chen, L.; Zhu, S.; Mao, J. Methylphenidate and Morphine Combination Therapy in a Rat Model of Chronic Pain. Anesth. Analg. 2020, 130, 518–524. [Google Scholar] [CrossRef]
Medication | Anxiety/Depression | ADHD | Bipolar Disorder | Insomnia | Anorexia | Schizophrenia | Migraine | Neuropathic Pain | Fibromyalgia | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Antidepressants | ||||||||||
SSRIs | ✓✓ | ✓✓ | 1st line medication for pediatric depression and anxiety | |||||||
TCAs | ✓✓ | ✓✓ | ✓✓ | ✓ | ✓ | ✓ | Low doses used for pain often insufficient to improve mood | |||
SNRIs | ✓✓ | ✓✓ (limited) | ✓ (venlafaxine) | ✓ | ✓ | Can be considered 1st line for depression and anxiety with comorbid pain syndrome | ||||
Bupropion | ✓✓ | ✓✓ | ✓ | Not associated with weight gain. Can assist in smoking cessation | ||||||
Mirtazapine | ✓✓ | ✓ | ✓✓ | ✓ | Associated with sedation and appetite increase. | |||||
Mood stabilizers | ||||||||||
Lamotrigine | ✓ | ✓ (complex aura) | ✓ (limited) | |||||||
Topiramate | ✓ | ✓✓ | ||||||||
Lithium | ✓✓ | Renally excreted | ||||||||
Oxcarbazepine | ✓✓ (limited) | |||||||||
Carbamazepine | ✓✓ (limited) | Many drug–drug interactions | ||||||||
Valproic Acid | ✓✓ | ✓ | ✓ | Teratogenic | ||||||
Antipsychotics | ||||||||||
Olanzapine | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | ✓ | Can be helpful for acute agitation | |||
Quetiapine | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | ✓ | ||||
Others | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | Risperidone or aripiprazole have evidence to support its use for irritability associated with autism | ||||
Anti-Sympathetics | ||||||||||
Alpha-2 agonists | ✓ | ✓✓ | ✓✓ | ✓✓ | ||||||
Beta-blockers | ✓ (somatic anxiety) | ✓✓ |
Medication | Restlessness/Activation | Insomnia | GI Distress | Headache | Weight Gain | Sedation | Hypotension | Suicidality | QTc Prolongation | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Antidepressants | ||||||||||
SSRIs | + | + | ++ | + | + | + | + | + (citalopram most clinically significant) | Generally safe. GI and headache side effects usually transient. | |
TCAs | ++ (constipation) | ++ | + | + | + | + | Significant cardiac risk if used in an overdose. | |||
SNRIs | + | + | ++ | + | + | + | + (venlafaxine) | May be more difficult to reduce or discontinue due to discontinuation effects. | ||
Bupropion | ++ | ++ | + | + | Contraindicated in eating disorder and epileptic patients. | |||||
Mirtazapine | ++ | ++ | + | + | + | Weight and sedation effects can be used to the prescriber’s advantage in patients with insomnia and/or poor PO intake. | ||||
Mood stabilizers | ||||||||||
Lamotrigine | + | + | + | + | + | Risk of rash or Stevens–Johnson Syndrome (SJS). Slow titration required to avoid SJS. | ||||
Topiramate | + | + | + | Brain fog, paresthesias, renal stones, teratogenicity. | ||||||
Lithium | + | ++ | ++ | Low therapeutic index. Fetal risk. | ||||||
Carbamazepine | + | + | Risk of SJS and agranulocytosis. | |||||||
Oxcarbazepine | + | + | Better side effect profile and less drug–drug interactions when compared to carbamazepine. Clinically significant hyponatremia. | |||||||
Valproic Acid | ++ | ++ | Fetal risk, pancreatitis, and hepatotoxicity | |||||||
Antipsychotics | ||||||||||
Olanzapine | + | + | +++ | ++ | + | |||||
Quetiapine | + | + | ++ | ++ | ++ | + to ++ | ||||
Others | + | + | ++ | ++ | + or ++ | + to +++ | ||||
Anti-Sympathetics | ||||||||||
Alpha-2 agonists | + | + | + | ++ | ++ | |||||
Beta-blockers | + | + | ++ | Dose dependent effects on orthostatic dizziness |
Case Description | Medications to Consider | Target Symptoms |
---|---|---|
Hermione is a 14-year-old girl with a history of chronic abdominal pain and nausea related to functional dyspepsia leading to weight loss, tension-type, and associated amotivation, anhedonia, and sleep disruption | SSRI | Chronic abdominal pain, low mood, anorexia |
Mirtazapine | Weight loss, tension headaches, abdominal pain, insomnia, low mood | |
Olanzapine | Weight loss, nausea, insomnia, refractory depression | |
Harry is a 16-year-old male with neuropathic pain from incomplete spinal cord injury resulting from suicide attempt, injury-associated PTSD, nightmares, insomnia, generalized anxiety, depression, and migraines | SNRI | Anxiety, PTSD, neuropathic pain, migraine |
Gabapentinoids | Neuropathic pain, insomnia, generalized anxiety | |
Alpha-2 agonist | Insomnia, neuropathic pain, anxiety/PTSD | |
Oxcarbazepine | Neuropathic pain, mood stabilization | |
Lamotrigine | ||
Luna is a 15-year-old female with chronic migraine, panic disorder, ADHD, Postural Orthostatic Tachycardia Syndrome (POTS), and insomnia | SNRI (venlafaxine) | Migraine, anxiety, ADHD |
Alpha-2 agonist | Insomnia, ADHD, anxiety, POTS | |
Low dose beta blocker | Migraine, anxiety, POTS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windsor, R.B.; Sierra, M.; Zappitelli, M.; McDaniel, M. Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. Children 2020, 7, 268. https://doi.org/10.3390/children7120268
Windsor RB, Sierra M, Zappitelli M, McDaniel M. Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. Children. 2020; 7(12):268. https://doi.org/10.3390/children7120268
Chicago/Turabian StyleWindsor, Robert Blake, Michael Sierra, Megan Zappitelli, and Maria McDaniel. 2020. "Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders" Children 7, no. 12: 268. https://doi.org/10.3390/children7120268
APA StyleWindsor, R. B., Sierra, M., Zappitelli, M., & McDaniel, M. (2020). Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. Children, 7(12), 268. https://doi.org/10.3390/children7120268