Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howson, E.C.; Kinney, M.; Lawn, J. Born Too Soon, The Global Action Report on Preterm Birth; Howson, C.P., Kinney, M.V., Lawn, J.E., Eds.; World Health Organization: Geneva, Switzerland, 2012; Volume 13. [Google Scholar]
- Johnston, K.M.; Gooch, K.; Korol, E.; Vo, P.; Eyawo, O.; Bradt, P.; Levy, A. The economic burden of prematurity in Canada. BMC Pediatr. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Zysman-Colman, Z.; Tremblay, G.M.; Bandeali, S.; Landry, J.S. Bronchopulmonary dysplasia—Trends over three decades. Paediatr. Child Health 2013, 18, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Ancel, P.-Y.; Goffinet, F.; Kuhn, P.; Langer, B.; Matis, J.; Hernandorena, X.; Chabanier, P.; Joly-Pedespan, L.; Lecomte, B.; Vendittelli, F.; et al. Survival and Morbidity of Preterm Children Born at 22 Through 34 Weeks’ Gestation in France in 2011. JAMA Pediatr. 2015, 169, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal Outcomes of Extremely Preterm Infants from the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Northway, W.H.; Rosan, R.C.; Porter, D.Y. Pulmonary Disease Following Respirator Therapy of Hyaline-Membrane Disease—Bronchopulmonary Dysplasia. N. Engl. J. Med. 1967, 276, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H. The new bronchopulmonary dysplasia. Curr. Opin. Pediatr. 2011, 23, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Ehilgendorff, A.; O’Reilly, M.A. Bronchopulmonary Dysplasia Early Changes Leading to Long-Term Consequences. Front. Med. 2015, 2, 2. [Google Scholar] [CrossRef]
- Schmalisch, G.; Wilitzki, S.; Roehr, C.C.; Proquitté, H.; Bührer, C. Development of lung function in very low birth weight infants with or without bronchopulmonary dysplasia: Longitudinal assessment during the first 15 months of corrected age. BMC Pediatr. 2012, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson-Smart, D.J.; Hutchinson, J.L.; Donoghue, D.A.; Evans, N.J.; Simpson, J.M.; Wright, I. Prenatal predictors of chronic lung disease in very preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2006, 91, F40–F45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardon-Fernandez, M.; Uberos, J.; Molina-Oya, M.; Narbona-Lopez, E. Epidemiological factors involved in the development of bronchopulmonary dysplasia in very low birth-weight preterm infants. Minerva Pediatr. 2017, 69, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Botet, F.; Figueras-Aloy, J.; Miracle-Echegoyen, X.; Rodríguez-Miguélez, J.M.; Salvia-Roiges, M.; Carbonell-Estrany, X. Trends in survival among extremely-low-birth-weight infants (less than 1000 g) without significant bronchopulmonary dysplasia. BMC Pediatr. 2012, 12, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.K.; Chang, Y.S.; Sung, S.; Ahn, S.Y.; Yoo, H.S.; Park, W.S. Trends in Survival and Incidence of Bronchopulmonary Dysplasia in Extremely Preterm Infants at 23-26 Weeks Gestation. J. Korean Med Sci. 2016, 31, 423–429. [Google Scholar] [CrossRef]
- Onland, W.; Debray, T.P.; Laughon, M.M.; Miedema, M.; Cools, F.; Askie, L.M.; Asselin, J.M.; A Calvert, S.; E Courtney, S.; Dani, C.; et al. Clinical prediction models for bronchopulmonary dysplasia: A systematic review and external validation study. BMC Pediatr. 2013, 13, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kathleen, A.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network; Stoll, B.J.; Buchter, S.; Laptook, A.R.; et al. Prediction of Bronchopulmonary Dysplasia by Postnatal Age in Extremely Premature Infants. Am. J. Respir. Crit. Care Med. 2011, 183, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Hayran, M.; Derin, H.; Ovali, F.; Gursoy, T. A Clinical Scoring System to Predict the Development of Bronchopulmonary Dysplasia. Am. J. Perinatol. 2014, 32, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, J.P.; Soar, J.; Zideman, D.A.; Biarent, D.; Bossaert, L.L.; Deakin, C.; Koster, R.W.; Wyllie, J.; Böttiger, B.; ERC Guidelines Writing Group. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation 2010, 81, 1219–1276. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Plavka, R.; Saugstad, O.D.; Simeoni, U.; Speer, C.P.; Vento, M.; et al. European Consensus Guidelines on the Management of Neonatal Respiratory Distress Syndrome in Preterm Infants—2013 Update. Neonatology 2013, 103, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://emedicine.medscape.com/article/978865-overview (accessed on 20 June 2021).
- A Gole, G.; Ells, A.L.; Katz, X.; Holmstrom, G.; Fielder, A.R.; Capone, A.; Flynn, J.T.; Good, W.G.; Holmes, J.M.; A McNamara, J.; et al. The International Classification of Retinopathy of Prematurity Revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal Necrotizing Enterocolitis:Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- Papile, L.-A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Fenton, T.R. A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr. 2003, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costeloe, K.L.; Hennessy, E.M.; Haider, S.; Stacey, F.; Marlow, N.; Draper, E. Short term outcomes after extreme preterm birth in England: Comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 2012, 345, e7976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egreteau, L.; Pauchard, J.-Y.; Semama, D.S.; Matis, J.; Liska, A.; Romeo, B.; Cneude, F.; Hamon, I.; Truffert, P. Chronic oxygen dependency in infants born at less than 32 weeks’ gestation: Incidence and risk factors. Pediatrics 2001, 108, e26. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.M.; Park, E.A.; Cho, S.J.; Kim, Y.-J.; Park, H.-S. The Association of Histological Chorioamnionitis and Antenatal Steroids on Neonatal Outcome in Preterm Infants Born at Less than Thirty-Four Weeks’ Gestation. Neonatology 2012, 102, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.W. Chorioamnionitis: Is a major player in the development of bronchopulmonary dysplasia? Korean J. Pediatr. 2017, 60, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, E.-K.; Kim, H.-S.; Choi, C.W.; Kim, B.I.; Choi, J.-H. Chorioamnionitis, respiratory distress syndrome and bronchopulmonary dysplasia in extremely low birth weight infants. J. Perinatol. 2010, 31, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wemhöner, A.; Jennings, P.; Haller, T.; Rüdiger, M.; Simbruner, G. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells. BMC Pulm. Med. 2011, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, C.; Caskey, M.; Fonseca, R.; Malloy, M. Decreased Incidence of Bronchopulmonary Dysplasia After Early Management Changes, Including Surfactant and Nasal Continuous Positive Airway Pressure Treatment at Delivery, Lowered Oxygen Saturation Goals, and Early Amino Acid Administration: A Historical Cohort Study. Pediatrics 2008, 121, 89–96. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kim, J.Y.; La Yun, B.; Lee, B.; Choi, C.W.; Kim, B.I. Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants. BMC Pediatr. 2017, 17, 125. [Google Scholar] [CrossRef]
- Keszler, M.; Sant’Anna, G. Mechanical Ventilation and Bronchopulmonary Dysplasia. Clin. Perinatol. 2015, 42, 781–796. [Google Scholar] [CrossRef]
- Askie, L.M.; Darlow, B.A.; Finer, N.; Schmidt, B.; Stenson, B.; Tarnow-Mordi, W.; Davis, P.G.; Carlo, W.A.; Brocklehurst, P.; Davies, L.C.; et al. Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 2018, 319, 2190–2201. [Google Scholar] [CrossRef] [PubMed]
- Ambalavanan, N.; Carlo, W.A. Ventilatory strategies in the prevention and management of bronchopulmonary dyspla-sia. Semin. Perinatol. 2006, 30, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Demirel, N.; Bas, A.Y.; Zenciroglu, A. Bronchopulmonary dysplasia in very low birth weight infants. Indian J. Pediatr. 2009, 76, 695–698. [Google Scholar] [CrossRef]
- Potsiurko, S.; Dobryanskyy, D.; Sekretar, L. Patent ductus arteriosus, systemic NT-proBNP concentrations and development of bronchopulmonary dysplasia in very preterm infants: Retrospective data analysis from a randomized controlled trial. BMC Pediatr. 2021, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, T.G.; Bateman, D.A.; Bowker, R.M.; Hod, E.A.; Kashyap, S. Effect of red blood cell storage time on markers of hemolysis and inflammation in transfused very low birth weight infants. Pediatr. Res. 2017, 82, 964–969. [Google Scholar] [CrossRef]
- Cunningham, K.E.; Okolo, F.C.; Baker, R.; Mollen, K.P.; Good, M. Red blood cell transfusion in premature infants leads to worse necrotizing enterocolitis outcomes. J. Surg. Res. 2017, 213, 158–165. [Google Scholar] [CrossRef]
- Patel, R.M.; Knezevic, A.; Shenvi, N.; Hinkes, M.; Keene, S.; Roback, J.D.; Easley, K.; Josephson, C.D. Association of Red Blood Cell Transfusion, Anemia, and Necrotizing Enterocolitis in Very Low-Birth-Weight Infants. JAMA 2016, 315, 889–897. [Google Scholar] [CrossRef]
- Rayjada, N.; Barton, L.; Chan, L.S.; Plasencia, S.; Biniwale, M.; Bui, K.C. Decrease in Incidence of Bronchopulmonary Dysplasia with Erythropoietin Administration in Preterm Infants: A Retrospective Study. Neonatology 2012, 102, 287–292. [Google Scholar] [CrossRef]
- Ohls, R.K.; Ehrenkranz, R.A.; Wright, L.L.; Lemons, J.A.; Korones, S.B.; Stoll, B.J.; Stark, A.R.; Shankaran, S.; Donovan, E.F.; Close, N.C.; et al. Effects of Early Erythropoietin Therapy on the Transfusion Requirements of Preterm Infants Below 1250 Grams Birth Weight: A Multicenter, Randomized, Controlled Trial. Pediatrics 2001, 108, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, C.; Zecca, E.; Gallini, F.; Girlando, P.; Zuppa, A.A. Do recombinant human erythropoietin and iron supplementation increase the risk of retinopathy of prematurity? Eur. J. Nucl. Med. Mol. Imaging 2000, 159, 627–628. [Google Scholar] [CrossRef]
- Soll, R.F. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Neonatology 2012, 102, 127–129. [Google Scholar] [CrossRef]
- Haiden, N.; Schwindt, J.; Cardona, F.; Berger, A.; Klebermass-Schrehof, K.; Wald, M.; Kohlhauser-Vollmuth, C.; Jilma, B.; Pollak, A. Effects of a Combined Therapy of Erythropoietin, Iron, Folate, and Vitamin B12 on the Transfusion Requirements of Extremely Low Birth Weight Infants. Pediatrics 2006, 118, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Aher, S.M. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst. Rev. 2017, 11, CD004863. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D. Golden hour of neonatal life: Need of the hour. Matern. Health Neonatol. Perinatol. 2017, 3, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | BPD Group | No-BPD Group | p | OR | 95% CI | |
---|---|---|---|---|---|---|
n = 127 | n = 151 | |||||
Sex | F/M | 64/63 (50%/50%) | 86/65 (57%/43%) | 0.331 | ||
BPD severity | Mild | 79 (25%) | N/A | |||
Moderate | 34 (12%) | |||||
Severe | 13 (5%) | |||||
data not available | 3 (1%) | |||||
Gestational age (weeks) | Mean | 27.5 | 30.3 | <0.001 | 1.2 | 1.1–1.2 |
Median | 27.9 | 30.4 | ||||
Range | <23.4; 31.6> | <27; 32> | ||||
Birth weight (grams) | Mean | 1002 | 1394 | <0.001 | 1.01 | 1.0–1.01 |
Median | 970 | 1385 | ||||
Range | <510; 1990> | <640; 2200> | ||||
SGA | 10 (7.8%) | 9 (6%) | 0.726 | |||
First pregnancy | 77 (61%) | 80 (53%) | 0.246 | |||
Mean mother’s age (years) | 29.8 (SD 6.3) | 30.7 (SD 5.9) | ||||
Mother’s arterial hypertension | PIH | 22 (17%) | 23 (15%) | 0.799 | ||
Hypertension before pregnancy | 8 (26%) | 12 (7.8%) | ||||
Diabetes mellitus | GDMG1 | 8 (6.3%) | 14 (9.3%) | 0.731 | ||
GDMG2 | 2 (1.6%) | 3 (2%) | ||||
DM1 | 3 (2.4%) | 2 (1.3%) | ||||
Mother’s cervical smear | Physiologic/GBS negative | 38 (31%) | 57 (38%) | 0.772 | ||
GBS positive | 16 (13%) | 19 (13%) | ||||
Escherichia coli | 26 (21%) | 28 (19%) | ||||
Ureaplasma urealitycum | 17 (14%) | 6 (11%) | ||||
Other, non-physiologic | 27 (22%) | 31 (21%) |
Factor | BPD/No-PBD Group | p | OR |
---|---|---|---|
Gestational age (mean number of weeks) | 27.5/30.3 | <0.001 | 0.9 |
Surfactant administration (number of children) | 69 (54%)/25 (16.6%) | <0.001 | 4.7 |
RBC transfusion (number of children) | 108 (85%)/56 (37%) | <0.001 | 3.6 |
Hemodynamically significant PDA | 33 (26%)/2 (1%) | 0.012 | 8.8 |
Birth weight (mean in grams) | 1002/1394 | <0.001 | 1.2 |
Resuscitation at birth | 63 (52%)/34 (23%) | <0.001 | 5.7 |
Use of T-piece device at birth | 62 (49%)/34 (23%) | <0.001 | 3.8 |
Premature rupture of membranes (mean in days) | 5.5/2.9 | 0.1 | 1.0 |
Apgar score ≤7 at the 5th minute | 102 (80%)/107 (71%) | <0.001 | 4.3 |
Intubation in the delivery room | 28 (22%)/7 (%) | <0.001 | 8.0 |
Presence of intraventricular hemorrhage | 24 (19%)/9 (6%) | 0.002 | 3.3 |
Chorionamnionitis | 35 (28%)/20 (13%) | 0.005 | 2.5 |
Multiple pregnancy | |||
Twin | 39 (31%)/54 (36%) | 0.193 | 0.7 |
Triplet | 1 (1%)/11 (7%) | 0.022 | 0.1 |
Breech presentation | 42 (33%)/33 (22%) | 0.049 | 1.8 |
Mode of delivery (cesarean section) | 66 (52%)/112 (74%) | <0.001 | 0.4 |
Late pneumonia | 39 (31%)/13 (9%) | <0.001 | 4.7 |
Length of stay (mean in days) | 66.1/43 | <0.001 | |
Late-onset sepsis | 63 (50%)/48 (32%) | 0.004 | 2.1 |
ROP | |||
Requiring lasertherapy | 31 (24%)/1 (1%) | <0.001 | 6.9 |
Not requiring treatment | 19 (15%)/15 (10%) | 0.033 | 2.8 |
NEC | 26 (20%)/13 (9%) | 0.008 | 2.7 |
RDS | |||
Grade 1 or 2 | 86 (68%)/96 (64%) | 0.003 | 2.8 |
Grade 3 or 4 | 27 (21%)/12 (8%) | <0.001 | 6.9 |
Parenteral nutrition (days) | 36.7/18.9 | <0.001 | 1.2 |
Oxygen therapy (days) | 51/20.5 | <0.001 |
Risk Factor | Number of Patients | p | OR (95% CI) | Score |
---|---|---|---|---|
Gestational age | ||||
>29 weeks + 5 days | 119 | 1 | 0 | |
27 weeks + 3 days—29 weeks + 5 days | 106 | <0.001 | 13.9 (4.9–39.8) | 4 |
≤27 weeks + 2 | 53 | <0.001 | 46.3 (15.6–137.4) | 8 |
Surfactant administration | ||||
No | 183 | 1 | 0 | |
Yes | 94 | <0.001 | 5.6 (2.2–14.4) | 2 |
Number of red blood cell transfusions | ||||
0 | 115 | 1 | 0 | |
1 | 83 | 0.019 | 2.9 (1.2–7) | 1 |
>1 | 80 | <0.001 | 8.7 (3.1–24.6) | 3 |
Hemodynamically significant patent ductus arteriosus | ||||
No | 243 | 1 | 4 | |
Yes | 35 | 0.007 | 12.0 (2–73.2) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jassem-Bobowicz, J.M.; Klasa-Mazurkiewicz, D.; Żawrocki, A.; Stefańska, K.; Domżalska-Popadiuk, I.; Kwiatkowski, S.; Preis, K. Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns. Children 2021, 8, 886. https://doi.org/10.3390/children8100886
Jassem-Bobowicz JM, Klasa-Mazurkiewicz D, Żawrocki A, Stefańska K, Domżalska-Popadiuk I, Kwiatkowski S, Preis K. Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns. Children. 2021; 8(10):886. https://doi.org/10.3390/children8100886
Chicago/Turabian StyleJassem-Bobowicz, Joanna Maria, Dagmara Klasa-Mazurkiewicz, Anton Żawrocki, Katarzyna Stefańska, Iwona Domżalska-Popadiuk, Sebastian Kwiatkowski, and Krzysztof Preis. 2021. "Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns" Children 8, no. 10: 886. https://doi.org/10.3390/children8100886
APA StyleJassem-Bobowicz, J. M., Klasa-Mazurkiewicz, D., Żawrocki, A., Stefańska, K., Domżalska-Popadiuk, I., Kwiatkowski, S., & Preis, K. (2021). Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns. Children, 8(10), 886. https://doi.org/10.3390/children8100886