Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Link between Chorioamnionitis and Brainstem Function
4.2. Proinflammatory Cytokines and the Brainstem
4.3. Prostaglandin Effects on the Brainstem
4.4. Effects of Chorioamnionitis on Peripheral Airways and Lungs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef]
- World Health Organization. Born Too Soon: The Global Action Report on Preterm Birth; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Haas, D.M. Preterm birth. BMJ Clin. Evid. 2011, 2011, 1404. [Google Scholar] [PubMed]
- Lahra, M.M.; Gordon, A.; Jeffery, H.E. Chorioamnionitis and fetal response in stillbirth. Am. J. Obstet. Gynecol. 2007, 196, 229.e1–229.e4. [Google Scholar] [CrossRef] [PubMed]
- Stojanovska, V.; Miller, S.L.; Hooper, S.B.; Polglase, G.R. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front. Cell. Neurosci. 2018, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsaperla, R.; Vitaliti, G.; Mailo, J.; Corsello, G.; Ruggieri, M. Is autonomic nervous system involved in the epileptogenesis in preterm neonates? Matern. Fetal Med. 2021, 11. in press. [Google Scholar]
- Hooper, S.B.; Polglase, G.; Roehr, C.C. Cardiopulmonary changes with aeration of the newborn lung. Paediatr. Respir. Rev. 2015, 16, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Hillman, N.; Kallapur, S.G.; Jobe, A. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.C.; Abdala, A.P.; Borgmann, A.; Rybak, I.A.; Paton, J.F. Brainstem respiratory networks: Building blocks and microcircuits. Trends Neurosci. 2013, 36, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Gallacher, D.J.; Hart, K.; Kotecha, S. Common respiratory conditions of the newborn. Breathe 2016, 12, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Polglase, G.R.; Miller, S.L.; Barton, S.K.; Kluckow, M.; Gill, A.W.; Hooper, S.B.; Tolcos, M. Respiratory support for premature neonates in the delivery room: Effects on cardiovascular function and the development of brain injury. Pediatr. Res. 2014, 75, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Vitaliti, G.; Vitaliti, M.C.; Finocchiaro, M.C.; Di Stefano, V.A.; Pavone, P.; Matin, N.; Motamed-Gorji, N.; Lubrano, R.; Falsaperla, R. Randomized Comparison of Helmet CPAP Versus High-Flow Nasal Cannula Oxygen in Pediatric Respiratory Distress. Respir. Care 2017, 62, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Nitsos, I.; Rees, S.M.; Duncan, J.; Kramer, B.W.; Harding, R.; Newnham, J.P.; Moss, T.J. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J. Soc. Gynecol. Investig. 2006, 13, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Speer, C.P. Inflammation and bronchopulmonary dysplasia: A continuing story. Semin. Fetal Neonatal Med. 2006, 11, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Shatrov, J.G.; Birch, S.C.; Lam, L.T.; Quinlivan, J.A.; McIntyre, S.; Mendz, G.L. Chorioamnionitis and cerebral palsy: A meta-analysis. Obstet. Gynecol. 2010, 116, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Ericson, J.E.; Laughon, M.M. Chorioamnionitis: Implication for the neonate. Clin. Perinatol. 2015, 42, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.J.; Romero, R.; Chaemsaithong, P. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Exp. Rev. Obstetr. 2015, 213, S29–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, E.L.; Kallapur, S.G.; Gisslen, T.; Lambers, D.S.; Chougnet, C.A.; Stephenson, S.A.; Jobe, A.H.; Knox, C.L. Placental infection with ureaplasma species is associated with histologic chorioamnionitis and adverse outcomes in moderately preterm and late-preterm infants. J. Infect. Dis. 2016, 213, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Kallapur, S.G.; Presicce, P.; Rueda, C.M.; Jobe, A.H.; Chougnet, C.A. Fetal immune response to chorioamnionitis. Semin. Reprod. Med. 2014, 32, 56–67. [Google Scholar]
- Galinsky, R.; Polglase, G.R.; Hooper, S.B.; Black, M.J.; Moss, T.J. The consequences of chorioamnionitis: Preterm birth and effects on development. J. Pregnancy 2013, 2013, 412831. [Google Scholar] [CrossRef] [Green Version]
- Shalak, L.F.; Laptook, A.R.; Jafri, H.S.; Ramilo, O.; Perlman, J.M. Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics 2002, 110, 673–680. [Google Scholar] [CrossRef]
- Grether, J.K.; Nelson, K.B.; Walsh, E.; Willoughby, R.E.; Redline, R.W. Intrauterine exposure to infection and risk of cerebral palsy in very preterm infants. Arch. Pediatr. Adolesc. Med. 2003, 157, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Sameshima, H.; Yamaguchi, M.; Ikenoue, T. Expression of inducible nitric oxide synthase and cyclooxygenase-2 mRNA in brain damage induced by lipopolysaccharide and intermittent hypoxia-ischemia in neonatal rats. J. Obstet. Gynaecol. Res. 2005, 31, 185–191. [Google Scholar] [CrossRef]
- Dessardo, N.S.; Mustać, E.; Dessardo, S.; Banac, S.; Peter, B.; Finderle, A.; Marić, M.; Haller, H. Chorioamnionitis and chronic lung disease of prematurity: A path analysis of causality. Am. J. Perinatol. 2012, 29, 133–140. [Google Scholar] [CrossRef]
- Ecevit, A.; Anuk-İnce, D.; Yapakçı, E.; Kupana-Ayva, Ş.; Kurt, A.; Yanık, F.F.; Tarcan, A. Association of respiratory distress syndrome and perinatal hypoxia with histologic chorioamnionitis in preterm infants. Turk. J. Pediatr. 2014, 56, 56–61. [Google Scholar]
- Murphy, D.J.; Johnson, A.M.; Sellers, S.; MacKenzie, I.Z. Case-control study of antenatal and intrapartum risk factors for cerebral palsy in very preterm singleton babies. Lancet 1995, 346, 1449–1454. [Google Scholar] [CrossRef]
- Wu, Y.W.; Escobar, G.J.; Grether, J.K.; Croen, L.A.; Greene, J.D.; Newman, T.B. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 2003, 290, 2677–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbagallo, M.; Vitaliti, G.; Pavone, P.; Romano, C.; Lubrano, R.; Falsaperla, R. Pediatric Autoimmune Encephalitis. J. Pediatr. Neurosci. 2017, 12, 130–134. [Google Scholar] [CrossRef]
- Frøen, J.F.; Akre, H.; Stray-Pedersen, B.; Saugstad, O.D. Adverse effects of nicotine and interleukin-1β on autoresuscitation after apnea in piglets: Implications for sudden infant death syndrome. Pediatrics 2000, 105, E52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaluddeen, M.; Lodha, A.; Akierman, A. Non-rotavirus infection causing apnea in a neonate. Indian J. Pediatr. 2009, 76, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Stock, C.; Teyssier, G.; Pichot, V.; Goffaux, P.; Barthélémy, J.-C.; Patural, H. Autonomic dysfunction with early respiratory syncytial virus-related infection. Auton. Neurosci. 2010, 156, 90–95. [Google Scholar] [CrossRef]
- Herlenius, E. An inflammatory pathway to apnea and autonomic dysregulation. Respir. Physiol. Neurobiol. 2011, 178, 449–457. [Google Scholar] [CrossRef]
- Lorea-Hernández, J.J.; Morales, T.; Rivera-Angulo, A.J.; Alcantara-Gonzalez, D.; Peña-Ortega, F. Microglia modulate respiratory rhythm generation and autoresuscitation. Glia 2016, 64, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.; Fairchild, K.D. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 2004, 17, 638–680. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Klein, N.; Hartley, J.; Lock, P.; Malone, M.; Sebire, N. Infection and sudden unexpected death in infancy: A systematic retrospective case review. Lancet 2008, 371, 1848–1853. [Google Scholar] [CrossRef]
- Zhao, J.; Gonzalez, F.; Mu, D. Apnea of prematurity: From cause to treatment. Eur. J. Pediatr. 2011, 170, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia, I.E.; Shults, J.; Doyle, L.; Nixon, G.M.; Cielo, C.M.; Traylor, J.; Marcus, C.L.; Caffeine for Apnea of Prematurity–Sleep Study Group. Perinatal risk factors associated with the obstructive sleep apnea syndrome in school-aged children born preterm. Sleep 2016, 39, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Surbek, D.; Drack, G.; Irion, O.; Nelle, M.; Huang, D.; Hoesli, I. Antenatal corticosteroids for fetal lung maturation in threatened preterm delivery: Indications and administration. Arch. Gynecol. Obstet. 2012, 286, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Freeman, C.I.; Hezelgrave, N.L.; Shennan, A.H. Antenatal steroids for fetal lung maturity: Time to target more frequent doses to fewer women? Obstet. Med. 2015, 8, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.B.; Guillet, R. Auditory neural maturation after exposure to multiple courses of antenatal betamethasone in premature infants as evaluated by auditory brainstem response. Pediatrics 2007, 119, 502–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, S.B.; Orlando, M.S.; E Dalzell, L.; Merle, K.S.; Guillet, R. Brainstem maturation after antenatal steroids exposure in premature infants as evaluated by auditory brainstem-evoked response. J. Perinatol. 2003, 23, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Church, M.; Adams, B.; Anumba, J.; Jackson, D.; Kruger, M.; Jen, K.-L. Repeated antenatal corticosteroid treatments adversely affect neural transmission time and auditory thresholds in laboratory rats. Neurotoxicol. Teratol. 2012, 34, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.L.; Beazley, L.D.; Quinlivan, J.A.; Evans, S.F.; Newnham, J.P.; Dunlop, S.A. Effect of corticosteroids on brain growth in fetal sheep. Obstet. Gynecol. 1999, 94, 213–218. [Google Scholar] [PubMed]
- Barton, S.K.; Moss, T.J.; Hooper, S.B.; Crossley, K.J.; Gill, A.W.; Kluckow, M.; Zahra, V.; Wong, F.Y.; Pichler, G.; Galinsky, R.; et al. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury. PLoS ONE 2014, 9, e112402. [Google Scholar] [CrossRef] [PubMed]
- Ireland, D.J.; Kemp, M.W.; Miura, Y.; Saito, M.; Newnham, J.P.; Keelan, J.A. Intra-amniotic pharmacological blockade of inflammatory signalling pathways in an ovine chorioamnionitis model. Mol. Hum. Reprod. 2015, 21, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Beutler, B. Innate immune responses to microbial poisons: Discovery and function of the Toll-like receptors. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 609–628. [Google Scholar] [CrossRef]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 2004, 113, 153–162. [Google Scholar] [CrossRef]
- Blackwell, T.S.; Christman, J.W. The role of nuclear factor-κB in cytokine gene regulation. Am. J. Respir. Cell Mol. Biol. 1997, 17, 3–9. [Google Scholar] [CrossRef]
- Poligone, B.; Baldwin, A.S. Positive and negative regulation of NF-κB by COX-2: Roles of different prostaglandins. J. Biol. Chem. 2001, 276, 38658–38664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef]
- Kielian, T. Toll-like receptors in central nervous system glial inflammation and homeostasis. J. Neurosci. Res. 2006, 83, 711–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balan, K.V.; Kc, P.; A Mayer, C.; Wilson, C.G.; Belkadi, A.; Martin, R.J. Intrapulmonary lipopolysaccharide exposure upregulates cytokine expression in the neonatal brainstem. Acta Paediatr. 2012, 101, 466–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, S.C.; Koschnitzky, J.E.; Baertsch, N.A.; Anderson, T.M.; Smith, C.V.; Ramirez, J.M. Disturbances in central respiratory rhythm generation may contribute to breathing disturbances in prematurely born mice. FASEB J. 2016, 30, 987.4. [Google Scholar]
- Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015, 96, 70–82. [Google Scholar] [CrossRef]
- Galic, M.A.; Riazi, K.; Pittman, Q.J. Cytokines and brain excitability. Front. Neuroendocrinol. 2012, 33, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cheng, Q.; Malik, S.; Yang, J. Interleukin-1β inhibits γ-aminobutyric acid type A (GABAA) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 2000, 292, 497–504. [Google Scholar]
- Wang, X.C.; Qiu, Y.H.; Peng, Y.P. Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity. Sheng Li Xue Bao 2007, 59, 150–156. [Google Scholar] [PubMed]
- Beattie, E.C.; Stellwagen, D.; Morishita, W.; Bresnahan, J.C.; Ha, B.K.; Von Zastrow, M.; Beattie, M.S.; Malenka, R.C. Control of synaptic strength by glial TNFα. Science 2002, 295, 2282–2285. [Google Scholar] [CrossRef]
- Fourgeaud, L.; Boulanger, L.M. Role of immune molecules in the establishment and plasticity of glutamatergic synapses. Eur. J. Neurosci. 2010, 32, 207–217. [Google Scholar] [CrossRef]
- Conroy, S.; Nguyen, V.; Quina, L.; Blakely-Gonzales, P.; Ur, C.; Netzeband, J.G.; Prieto, A.L.; Gruol, D.L. Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J. Neuroimmunol. 2004, 155, 43–54. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Tancredi, V.; Onofri, F.; D’Antuono, M.; Giovedì, S.; Benfenati, F. Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. Eur. J. Neurosci. 2000, 12, 1241–1252. [Google Scholar] [CrossRef]
- Vereyken, E.J.F.; Bajova, H.; Chow, S.; de Graan, P.N.E.; Gruol, D.L. Chronic interleukin-6 alters the level of synaptic proteins in hippocampus in culture and In Vivo. Eur. J. Neurosci. 2007, 25, 3605–3616. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Zhang, L.; Cheng, J.K.; Ji, R.R. Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 2008, 28, 5189–5194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxtable, A.; Vinit, S.; Windelborn, J.; Crader, S.; Guenther, C.; Watters, J.; Mitchell, G. Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respir. Physiol. Neurobiol. 2011, 178, 482–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, H.; Hoop, B. Glutamic acid and γ-aminobutyric acid neurotransmitters in central control of breathing. J. Appl. Physiol. 2011, 70, 1–7. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Suguihara, C.; Huang, J.; Devia, C.; Hehre, D.; Bruce, J.H.; Bancalari, E. Depressed ventilatory response to hypoxia in hypothermic newborn piglets: Role of glutamate. J. Appl. Physiol. 1998, 84, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Hoop, B.; Beagle, J.L.; Maher, T.J.; Kazemi, H. Brainstem amino acid neurotransmitters and hypoxic ventilatory response. Respir. Physiol. 1999, 118, 117–129. [Google Scholar] [CrossRef]
- Churchill, L.; Taishi, P.; Wang, M.; Brandt, J.; Cearley, C.; Rehman, A.; Krueger, J.M. Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1β or tumor necrosis factor α. Brain Res. 2006, 1120, 64–73. [Google Scholar] [CrossRef]
- Gresham, K.; Boyer, B.; Mayer, C.; Foglyano, R.; Martin, R.; Wilson, C.G. Airway inflammation and central respiratory control: Results from In Vivo and In Vitro neonatal rat. Respir. Physiol. Neurobiol. 2011, 178, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Siljehav, V.; Shvarev, Y.; Herlenius, E. Il-1β and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice. J. Appl. Physiol. 2014, 117, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Di Mauro, P.; Cocuzza, S.; et al. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum. Vaccin Immunother. 2015, 11, 2021–2029. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Lu, J.; Elmquist, J.K.; Saper, C.B. Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord. J. Neurosci. 2000, 20, 6578–6586. [Google Scholar] [CrossRef] [Green Version]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Singh Bahia, M.; Kumar Katare, Y.; Silakari, O.; Vyas, B.; Silakari, P. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates. Med. Res. Rev. 2014, 34, 825–855. [Google Scholar] [CrossRef]
- Malaeb, S.; Dammann, O. Fetal inflammatory response and brain injury in the preterm newborn. J. Child Neurol. 2009, 24, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Fathali, N.; Ostrowski, R.P.; Lekic, T.; Jadhav, V.; Tong, W.; Tang, J.; Zhang, J.H. Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury. Crit. Care Med. 2010, 38, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Strunk, T.; Inder, T.; Wang, X.; Burgner, D.; Mallard, C.; Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect. Dis. 2014, 14, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Londono, I.; Mallard, C.; Lodygensky, G.A. New means to assess neonatal inflammatory brain injury. J. Neuroinflamm. 2015, 12, 180. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.; Lippross, S.; Neuhuber, W.L.; Zeilhofer, H.U. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat. Neurosci. 2002, 5, 34–40. [Google Scholar] [CrossRef]
- Chen, C.; Bazan, N.G. Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2005, 93, 929–941. [Google Scholar] [CrossRef]
- Laaris, N.; Weinreich, D. Prostaglandin E2 depresses solitary tract- mediated synaptic transmission in the nucleus tractus solitarius. Neuroscience 2007, 146, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Marty, V.; El Hachmane, M.; Amédée, T. Dual modulation of synaptic transmission in the nucleus tractus solitarius by prostaglandin E2 synthesized downstream of IL-1β. Eur. J. Neurosci. 2008, 27, 3132–3150. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Lu, C.-W.; Wang, C.-C.; Huang, S.K.; Wang, S.-J. Cyclooxygenase 2 inhibitor celecoxib inhibits glutamate release by attenuating the PGE2/EP2 pathway in rat cerebral cortex endings. J. Pharmacol. Exp. Ther. 2014, 351, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, A.O.; Saha, S.; Siljehav, V.; Jakobsson, P.J.; Herlenius, E. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. Proc. Natl. Acad. Sci. USA 2007, 104, 9894–9899. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, D.; Horn, Z.; Tserga, E.; Smedler, E.; Silberberg, G.; Shvarev, Y.; Kaila, K.; Uhlén, P.; Herlenius, E. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. eLife 2016, 5, e14170. [Google Scholar] [CrossRef]
- Kitterman, J.A.; Liggins, G.C.; Fewell, J.E.; Tooley, W.H. Inhibition of breathing movements in fetal sheep by prostaglandins. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 54, 687–692. [Google Scholar] [CrossRef]
- Guerra, F.A.; Savich, R.D.; Wallen, L.D.; Lee, C.H.; Clyman, R.I.; Mauray, F.E.; Kitterman, J.A. Prostaglandin E2 causes hypoventilation and apnea in newborn lambs. J. Appl. Physiol. 1988, 64, 2160–2166. [Google Scholar] [CrossRef]
- Koch, H.; Caughie, C.; Elsen, F.P.; Doi, A.; Garcia, A.J.; Zanella, S.; Ramirez, J.-M. Prostaglandin E2 differentially modulates the central control of eupnoea, sighs and gasping in mice. J. Physiol. 2015, 593, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.H.; De Boeck, C.; Ioffe, S.; Chernick, V. Indomethacin-induced fetal breathing: Mechanism and site of action. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 57, 360–365. [Google Scholar] [CrossRef]
- Kawano, T.; Anrather, J.; Zhou, P.; Park, L.; Wang, G.; A Frys, K.; Kunz, A.; Cho, S.; Orio, M.; Iadecola, C. Prostaglandin E2 EP1 receptors: Downstream effectors of COX-2 neurotoxicity. Nat. Med. 2006, 12, 225–229. [Google Scholar] [CrossRef]
- Shimamura, M.; Zhou, P.; Casolla, B.; Qian, L.; Capone, C.; Kurinami, H.; Iadecola, C.; Anrather, J. Prostaglandin E2 type 1 receptors contribute to neuronal apoptosis after transient forebrain ischemia. J. Cereb. Blood Flow Metab. 2013, 33, 1207–1214. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Anacker, C.; Suarez-Mier, G.B.; Wang, Q.; Andreasson, K. Function of prostaglandin E2EP receptors in the acute outcome of rodent hypoxic ischemic encephalopathy. Neurosci. Lett. 2011, 504, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Carlezon, W.A., Jr.; Duman, R.S.; Nestler, E.J. The many faces of CREB. Trends Neurosci. 2005, 28, 436–445. [Google Scholar] [CrossRef]
- Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 2011, 188, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lin, L.; Woodling, N.; Wang, Q.; Anacker, C.; Pan, T.; Merchant, M.; Andreasson, K. Signaling via the prostaglandin E2 receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J. Clin. Investig. 2011, 121, 4362–4371. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Karelina, K.; Obrietan, K. Creb: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 2011, 116, 1–9. [Google Scholar] [CrossRef] [Green Version]
- McCullough, L.; Wu, L.; Haughey, N.; Liang, X.; Hand, T.; Wang, Q.; Breyer, R.M.; Andreasson, K. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 2004, 24, 257–268. [Google Scholar] [CrossRef]
- Li, J.; Liang, X.; Wang, Q.; Breyer, R.M.; McCullough, L.; Andreasson, K. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neurosci. Lett. 2008, 438, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Shie, F.-S.; Montine, K.S.; Breyer, R.M.; Montine, T.J. Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia 2005, 52, 70–77. [Google Scholar] [CrossRef]
- Nakamura, K.; Kaneko, T.; Yamashita, Y.; Hasegawa, H.; Katoh, H.; Negishi, M. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol. 2000, 421, 543–569. [Google Scholar] [CrossRef]
- Hein, A.M.; O’Banion, M.K. Neuroinflammation and memory: The role of prostaglandins. Mol. Neurobiol. 2009, 40, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, J.L.; Lampert, A.S.; Diller, M.A.; Doré, S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J. Neurosci. 2015, 41, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, J.L.; Lampert, A.S.; Diller, M.A.; Doré, S. Prostanoids and prostanoid receptors in signal transduction. Int. J. Biochem. Cell Biol. 2004, 36, 1187–1205. [Google Scholar]
- Mohan, S.; Ahmad, A.S.; Glushakov, A.V.; Chambers, C.; Doré, S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front. Neurol. 2012, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Anacker, C.; Wang, Q.; Andreasson, K. Protection by vascular prostaglandin E2 signaling in hypoxic ischemic encephalopathy. Exp. Neurol. 2014, 255, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Andreasson, K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat. 2010, 91, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Johansson, J.; Woodling, N.S.; Wang, Q.; Montine, T.J.; Andreasson, K. The prostaglandin E2 EP4 receptor exerts anti-inflammatory effects in brain innate immunity. J. Immunol. 2010, 184, 7207–7218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rivest, S. Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur. J. Neurosci. 1999, 11, 2651–2668. [Google Scholar] [CrossRef]
- Ikegami, T.; Tsuda, A.; Karube, A.; Kodama, H.; Hirano, H.; Tanaka, T. Effects of intrauterine IL-6 and IL-8 on the expression of surfactant apoprotein mRNAs in the fetal rat lung. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 93, 97–103. [Google Scholar] [CrossRef]
- Prince, L.S.; Okoh, V.O.; Moninger, T.O.; Matalon, S. Lipopolysaccharide increases alveolar type II cell number in fetal mouse lungs through Toll-like receptor 4 and NF-κB. Am. J. Physiol. 2004, 287, L999–L1006. [Google Scholar]
- Bry, K.; Lappalainen, U.; Hallman, M. Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J. Clin. Investig. 1997, 99, 2992–2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willet, K.E.; Jobe, A.H.; Ikegami, M.; Newnham, J.; Brennan, A.S.; Sly, P.D. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr. Res. 2000, 48, 782–788. [Google Scholar] [CrossRef]
- Moss, T.J.; Newnham, J.P.; Willett, K.E.; Kramer, B.W.; Jobe, A.H.; Ikegami, M. Early gestational intra-amniotic endotoxin: Lung function, surfactant, and morphometry. Am. J. Respir. Crit. Care Med. 2002, 165, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Kallapur, S.G.; Jobe, A.H.; Ikegami, M.; Bachurski, C.J. Increased IP-10 and MIG expression after intramniotic endotoxin in preterm lamb lung. Am. J. Respir. Crit. Care Med. 2003, 167, 779–786. [Google Scholar] [CrossRef]
- Kallapur, S.G.; Bachurski, C.; Le Cras, T.D.; Joshi, S.N.; Ikegami, M.; Jobe, A.H. Vascular changes after intraamniotic endotoxin in preterm lamb lungs. Am. J. Physiol. 2004, 287, L1178–L1185. [Google Scholar]
- Galinsky, R.; Hooper, S.B.; Polglase, G.R.; Moss, T.J. Intrauterine inflammation alters fetal cardiopulmonary and cerebral hemodynamics in sheep. J. Physiol. 2013, 591, 5061–5070. [Google Scholar] [CrossRef] [PubMed]
- Woldesenbet, M.; Perlman, J.M. Histologic chorioamnionitis: An occult marker of severe pulmonary hypertension in the term newborn. J. Perinatol. 2005, 25, 189–192. [Google Scholar] [CrossRef]
- Abman, S.H. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology 2007, 91, 283–290. [Google Scholar] [CrossRef]
- Steinhorn, R.H. Neonatal pulmonary hypertension. Pediatr. Crit. Care Med. 2010, 11, S79–S84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polglase, G.R.; Hooper, S.B.; Gill, A.W.; Allison, B.J.; Crossley, K.J.; Moss, T.J.; Nitsos, I.; Pillow, J.J.; Kluckow, M. Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs. J. Appl. Physiol. 2010, 108, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Polglase, G.R.; Nitsos, I.; Baburamani, A.A.; Crossley, K.J.; Slater, M.K.; Gill, A.W.; Allison, B.J.; Moss, T.J.M.; Pillow, J.J.; Hooper, S.B.; et al. Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs. J. Appl. Physiol. 2012, 112, 481–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author (Reference No.) | Year of Publication | Population Studied | Cytokines Studied | Effect on the Brainstem |
---|---|---|---|---|
Balan et al. [54]; Ramirez et al. [55]; | 2012 2016 | Animal models | IL-1b IL-6 |
|
Galic et al. [57]; Vezzani et al. [56]; | 2012 2015 | Animal models | IL-1b IL-6 TNF-a |
|
Wang et al. [58]; Wang et al. [59]; Galic et al. [57]; Vezzani et al. [56]; | 2000 2007 2012 2015 | In vitro Animal models | IL-1b |
|
Beattie et al. [60]; Fourgeaud L et al. [61]; Galic et al. [57]; | 2002 2010 2012 | Animal models | TNF-a |
|
D’Arcangelo et al. [63]; Conroy et al. [62]; Wang et al. [58]; Vereyken et al. [64]; | 2000 2004 2007 2007 | Animal models | IL-6 |
|
Gresham et al. [71]; Siljehav et al. [72]. | 2011 2014 | Animal models | IL-1b |
|
Author (Reference No.) | Year of Publication | Population Studied | Cytokines Studied | Effect on Lungs and Airways |
---|---|---|---|---|
Ikegami et al. [112] | 2000 | Animal study | IL6 IL8 |
|
Bry et al. [114] Willet et al. [115] Moss et al. [116] Kallpur et al. [117] Prince et al. [113] | 1997 2000 2002 2003 2004 | Animal studies | IL-8 |
|
Kallpur et al. [118] Galinsky et al. [119] | 2004 2013 | Animal studies | IL-1 IL-6 IL-8 Chemokin IP-10MIG |
|
Bry et al. [114] Woldesenbet et al. [120] Polglase et al. [123] Polglase et al. [124] Galinsky et al. [119] | 1997 2005 2010 2012 2013 | Animal studies | LPS |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitaliti, G.; Falsaperla, R. Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions. Children 2021, 8, 917. https://doi.org/10.3390/children8100917
Vitaliti G, Falsaperla R. Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions. Children. 2021; 8(10):917. https://doi.org/10.3390/children8100917
Chicago/Turabian StyleVitaliti, Giovanna, and Raffaele Falsaperla. 2021. "Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions" Children 8, no. 10: 917. https://doi.org/10.3390/children8100917