Impact of Equine-Assisted Interventions on Heart Rate Variability in Two Participants with 22q11.2 Deletion Syndrome: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Variables
- Amo: width of the most frequent NN interval in percentage terms.
- Mo: most frequent NN interval.
- MxDMn: difference between the values of the longest and the shortest NN interval.
2.3. Participants
2.4. Instruments
2.5. Procedure
2.6. Data Analysis
3. Results
3.1. Participant 1
3.2. Participant 2
4. Discussion
5. Conclusions
- Participant 1, who performed the EAIs without riding, showed a great magnitude of effect, with an increase in HRV before the session and lower stress levels after the EAI intervention.
- Participant 2, who rode horses, showed a moderate size of effect after the EAI on HRV and, therefore, on the level of stress, with a higher level of activation evidenced by a decrease in HRV.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enders-Slegers, M.-J.; Hediger, K.; Beetz, A.; Jegatheesan, B.; Turner, D. Animal-Assisted Interventions within an International Perspective: Trends, Research, and Practices. In Handbook on Animal-Assisted Therapy: Foundations and Guidelines for Animal-Assisted Interventions; Elsevier: Amsterdam, The Netherlands, 2019; pp. 465–477. [Google Scholar] [CrossRef]
- Fine, A.H.; Beck, A.M.; Ng, Z. The State of Animal-Assisted Interventions: Addressing the Contemporary Issues That Will Shape the Future. Int. J. Environ. Res. Public Health 2019, 16, 3997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, W.; Alm, K.; Benjamin, J.; Thomas, L.; Anderson, D.; Pohl, L.; Kane, M. Optimal Terminology for Services in the United States That Incorporate Horses to Benefit People: A Consensus Document. J. Altern. Complement. Med. 2020, 27, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Stern, C.; Chur-Hansen, A. An Umbrella Review of the Evidence for Equine-Assisted Interventions. Aust. J. Psychol. 2019, 71, 361–374. [Google Scholar] [CrossRef]
- Lentini, J.A.; Knox, M.S. Equine-Facilitated Psychotherapy with Children and Adolescents: An Update and Literature Review. J. Creat. Ment. Health 2015, 10, 278–305. [Google Scholar] [CrossRef]
- Bert, F.; Gualano, M.R.; Camussi, E.; Pieve, G.; Voglino, G.; Siliquini, R. Animal Assisted Intervention: A Systematic Review of Benefits and Risks. Eur. J. Integr. Med. 2016, 8, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miguel, A.; De Miguel, M.D.; Lucena-Anton, D.; Rubio, M.D. Effects of hypotherapy on the motor function of persons with Down’s syndrome: A systematic review. Rev. Neurol. 2018, 67, 233–241. [Google Scholar]
- Trzmiel, T.; Purandare, B.; Michalak, M.; Zasadzka, E.; Pawlaczyk, M. Equine Assisted Activities and Therapies in Children with Autism Spectrum Disorder: A Systematic Review and a Meta-Analysis. Complement. Ther. Med. 2019, 42, 104–113. [Google Scholar] [CrossRef]
- Cahill, S.M.; Egan, B.E.; Seber, J. Activity- and Occupation-Based Interventions to Support Mental Health, Positive Behavior, and Social Participation for Children and Youth: A Systematic Review. Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 2020, 74, 7402180020p1–7402180020p28. [Google Scholar] [CrossRef]
- Guindos-Sanchez, L.D.; Lucena-Anton, D.; Moral-Munoz, J.A.; Salazar, A.; Carmona-Barrientos, I. The Effectiveness of Hippotherapy to Recover Gross Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Child. Basel Switz. 2020, 7, 106. [Google Scholar] [CrossRef]
- Marchand, W.R.; Andersen, S.J.; Smith, J.E.; Hoopes, K.H.; Carlson, J.K. Equine-Assisted Activities and Therapies for Veterans with Posttraumatic Stress Disorder: Current State, Challenges and Future Directions. Chronic Stress Thousand Oaks Calif. 2021, 5, 2470547021991556. [Google Scholar] [CrossRef]
- Granados, A.C. Hippotherapy as Early Intervention for Children with Special Needs: A Study Based on Case Studies of Spanish Children with Rare Congenital Disorders. Master’s Thesis, University of Oslo, Oslo, Norway, 2007. [Google Scholar]
- Smola, A.; Hurley, L. The Effect of Therapeutic Horseback Riding on Balance and Self-Efficacy in Children with Developmental Disabilities. Bachelor’s Thesis, The University of Akron, Akron, OH, USA, 2016. [Google Scholar]
- Tucker, R. The Effect of a Five-Week Hippotherapy Programme on Gait in a Child with Angelman’s Syndrome. A Case Study Using the Wee Glasgow Gait Index (Weeggi). Int. J. Ther. Rehabil. 2019, 26, 4. [Google Scholar] [CrossRef]
- García-Gómez, A.; Guerrero-Barona, E.; García-Peña, I.; Rodríguez-Jiménez, M.; Moreno-Manso, J.M. Equine-Assisted Therapeutic Activities and Their Influence on the Heart Rate Variability: A Systematic Review. Complement. Ther. Clin. Pract. 2020, 39, 101167. [Google Scholar] [CrossRef]
- Schneider, M.; Armando, M.; Schultze-Lutter, F.; Pontillo, M.; Vicari, S.; Debbané, M.; Eliez, S. Prevalence, Course and Psychosis-Predictive Value of Negative Symptoms in 22q11.2 Deletion Syndrome. Schizophr. Res. 2019, 206, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Morrow, B.E.; McDonald-McGinn, D.M.; Emanuel, B.S.; Vermeesch, J.R.; Scambler, P.J. Molecular Genetics of 22q11.2 Deletion Syndrome. Am. J. Med. Genet. A 2018, 176, 2070–2081. [Google Scholar] [CrossRef]
- Eaton, C.B.; Thomas, R.H.; Hamandi, K.; Payne, G.C.; Kerr, M.P.; Linden, D.E.J.; Owen, M.J.; Cunningham, A.C.; Bartsch, U.; Struik, S.S.; et al. Epilepsy and Seizures in Young People with 22q11.2 Deletion Syndrome: Prevalence and Links with Other Neurodevelopmental Disorders. Epilepsia 2019, 60, 818–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylis, A.L.; Shriberg, L.D. Estimates of the Prevalence of Speech and Motor Speech Disorders in Youth with 22q11.2 Deletion Syndrome. Am. J. Speech Lang. Pathol. 2019, 28, 53–82. [Google Scholar] [CrossRef] [PubMed]
- Dufournet, B.; Nguyen, K.; Charles, P.; Grabli, D.; Jacquette, A.; Borg, M.; Danaila, T.; Mutez, E.; Drapier, S.; Colin, O.; et al. Parkinson’s Disease Associated with 22q11.2 Deletion: Clinical Characteristics and Response to Treatment. Rev. Neurol. 2017, 173, 406–410. [Google Scholar] [CrossRef]
- Fung, W.L.A.; McEvilly, R.; Fong, J.; Silversides, C.; Chow, E.; Bassett, A. Elevated Prevalence of Generalized Anxiety Disorder in Adults with 22q11.2 Deletion Syndrome. Am. J. Psychiatry 2010, 167, 998. [Google Scholar] [CrossRef] [PubMed]
- Mayo, D.; Bolden, K.A.; Simon, T.J.; Niendam, T.A. Bullying and Psychosis: The Impact of Chronic Traumatic Stress on Psychosis Risk in 22q11.2 Deletion Syndrome—A Uniquely Vulnerable Population. J. Psychiatr. Res. 2019, 114, 99–104. [Google Scholar] [CrossRef]
- Lau, B.Y.; Leong, R.; Uljarevic, M.; Lerh, J.W.; Rodgers, J.; Hollocks, M.J.; South, M.; McConachie, H.; Ozsivadjian, A.; Van Hecke, A.; et al. Anxiety in Young People with Autism Spectrum Disorder: Common and Autism-Related Anxiety Experiences and Their Associations with Individual Characteristics. Autism Int. J. Res. Pract. 2020, 24, 1111–1126. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Emerson, L.-M. The Impact of Anxiety in Children on the Autism Spectrum. J. Autism Dev. Disord. 2021, 51, 1909–1920. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.; Jahoda, A.; Dagnan, D. An Anxious Time? Exploring the Nature of Worries Experienced by Young People with a Mild to Moderate Intellectual Disability as They Make the Transition to Adulthood. Br. J. Clin. Psychol. 2011, 50, 398–411. [Google Scholar] [CrossRef]
- Durán-Carabali, L.E.; Henao-Pacheco, M.L.; González-Clavijo, A.M.; Dueñas, Z. Salivary Alpha Amylase and Cortisol Levels as Stress Biomarkers in Children with Cerebral Palsy and Their Association with a Physical Therapy Program. Res. Dev. Disabil. 2021, 108, 103807. [Google Scholar] [CrossRef] [PubMed]
- Sandini, C.; Schneider, M.; Eliez, S.; Armando, M. Association Between Parental Anxiety and Depression Level and Psychopathological Symptoms in Offspring With 22q11.2 Deletion Syndrome. Front. Psychiatry 2020, 11, 646. [Google Scholar] [CrossRef] [PubMed]
- Briegel, W.; Schneider, M.; Schwab, K.O. 22q11.2 Deletion Syndrome: Behaviour Problems of Children and Adolescents and Parental Stress. Child Care Health Dev. 2008, 34, 795–800. [Google Scholar] [CrossRef]
- Briegel, W.; Andritschky, C. Psychological Adjustment of Children and Adolescents with 22q11.2 Deletion Syndrome and Their Mothers’ Stress and Coping—A Longitudinal Study. Int. J. Environ. Res. Public Health 2021, 18, 2707. [Google Scholar] [CrossRef] [PubMed]
- Vo, O.K.; McNeill, A.; Vogt, K. The Psychosocial Impact of 22q11 Deletion Syndrome on Patients and Families: A Systematic Review. Am. J. Med. Genet. A 2018, 176, 2215–2225. [Google Scholar] [CrossRef]
- Angkustsiri, K.; Leckliter, I.; Tartaglia, N.; Beaton, E.A.; Enriquez, J.; Simon, T.J. An Examination of the Relationship of Anxiety and Intelligence to Adaptive Functioning in Children with Chromosome 22q11.2 Deletion Syndrome. J. Dev. Behav. Pediatr. 2012, 33, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.F.P.; Hobbs, D.A.; Stephenson, D.D.; Laird, R.D.; Beaton, E.A. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology. J. Autism Dev. Disord. 2017, 47, 992–1005. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, D.; Bursch, M.; Lajiness-O’Neill, R. Potential Role of Cortisol in Social and Memory Impairments in Individuals with 22q11.2 Deletion Syndrome. J. Pediatr. Genet. 2016, 5, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, A.; Spedding, M.; Schenker, E.; Didriksen, M.; Cressant, A.; Jay, T.M. Cognition- and Circuit-Based Dysfunction in a Mouse Model of 22q11.2 Microdeletion Syndrome: Effects of Stress. Transl. Psychiatry 2020, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.; Chawner, S.J.R.A.; van Amelsvoort, T.A.M.J.; Swillen, A.; Vingerhoets, C.; Vergaelen, E.; Linden, D.E.J.; Linden, S.; Owen, M.J.; van den Bree, M.B.M. Cognitive Deficits in Childhood, Adolescence and Adulthood in 22q11.2 Deletion Syndrome and Association with Psychopathology. Transl. Psychiatry 2020, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Beaton, E.A.; Simon, T.J. How Might Stress Contribute to Increased Risk for Schizophrenia in Children with Chromosome 22q11.2 Deletion Syndrome? J. Neurodev. Disord. 2011, 3, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Buijs, P.C.; Bassett, A.S.; Gold, D.A.; Boot, E. Cognitive Behavioral Therapy in 22q11.2 Deletion Syndrome: A Case Study of Two Young Adults with an Anxiety Disorder. J. Intellect. Disabil. JOID 2020, 1744629520942374. [Google Scholar] [CrossRef] [PubMed]
- Fung, W.L.A.; Butcher, N.J.; Costain, G.; Andrade, D.M.; Boot, E.; Chow, E.W.C.; Chung, B.; Cytrynbaum, C.; Faghfoury, H.; Fishman, L.; et al. Practical Guidelines for Managing Adults with 22q11.2 Deletion Syndrome. Genet. Med. 2015, 17, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjermestad, K.W.; Vatne, T.M.; Gjone, H. Cognitive Behavioral Therapy for Adolescents with 22q11.2 Deletion Syndrome. Adv. Ment. Health Intellect. Disabil. 2015, 9, 30–39. [Google Scholar] [CrossRef]
- Crerand, C.E.; Rabkin, A.N. Psychosocial Risks and Management for Children and Adolescents with 22q11.2 Deletion Syndrome. Perspect. ASHA Spec. Interest Groups 2019, 4, 633–640. [Google Scholar] [CrossRef]
- Buijs, P.C.M.; Bassett, A.S.; Boot, E. Non-Pharmacological Treatment of Psychiatric Disorders in Individuals with 22q11.2 Deletion Syndrome; a Systematic Review. Am. J. Med. Genet. A 2018, 176, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Mosheva, M.; Korotkin, L.; Gur, R.E.; Weizman, A.; Gothelf, D. Effectiveness and Side Effects of Psychopharmacotherapy in Individuals with 22q11.2 Deletion Syndrome with Comorbid Psychiatric Disorders: A Systematic Review. Eur. Child Adolesc. Psychiatry 2020, 29, 1035–1048. [Google Scholar] [CrossRef]
- Yorke, J.; Nugent, W.; Strand, E.; Bolen, R.; New, J.; Davis, C. Equine-Assisted Therapy and Its Impact on Cortisol Levels of Children and Horses: A Pilot Study and Meta-Analysis. Early Child Dev. Care 2013, 183, 874–894. [Google Scholar] [CrossRef]
- Pan, Z.; Granger, D.A.; Guérin, N.A.; Shoffner, A.; Gabriels, R.L. Replication Pilot Trial of Therapeutic Horseback Riding and Cortisol Collection with Children on the Autism Spectrum. Front. Vet. Sci. 2019, 5, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maresca, G.; Portaro, S.; Naro, A.; Crisafulli, R.; Raffa, A.; Scarcella, I.; Aliberti, B.; Gemelli, G.; Calabrò, R.S. Hippotherapy in Neurodevelopmental Disorders: A Narrative Review Focusing on Cognitive and Behavioral Outcomes. Appl. Neuropsychol. Child 2020, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Rodas, G.; Pedret Carballido, C.; Ramos, J.; Capdevila, L. Heart rate variability: Definition measurement and clinical relation aspects (II). Arch. Med. Deporte 2008, 25, 119–127. [Google Scholar]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Baevsky, R.M.; Berseneva, A.P. Methodical Recommendations—Use Kardivar System for Determination of the Stress Level and Estimation of the Body Adaptability—Standards of Measurements and Physiological Interpretation; Moscow, 2008. Available online: http://www.kardivar.eu/en/index.php?controller=attachment&id_attachment=53 (accessed on 11 March 2021).
- Kubios HRV Analysis Methods. Kubios. Available online: https://www.kubios.com/hrv-analysis-methods/ (accessed on 10 March 2021).
- Sahoo, T.K.; Mahapatra, A.; Ruban, N. Stress Index Calculation and Analysis Based on Heart Rate Variability of ECG Signal with Arrhythmia. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 22–23 March 2019; 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Schäfer, A.; Vagedes, J. How Accurate Is Pulse Rate Variability as an Estimate of Heart Rate Variability? A Review on Studies Comparing Photoplethysmographic Technology with an Electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, J.-P.; Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. Software for Advanced HRV Analysis. Comput. Methods Programs Biomed. 2004, 76, 73–81. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An Advanced Detrending Method with Application to HRV Analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV-Heart Rate Variability Analysis Software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Lipponen, J.A.; Tarvainen, M.P. A Robust Algorithm for Heart Rate Variability Time Series Artefact Correction Using Novel Beat Classification. J. Med. Eng. Technol. 2019, 43, 173–181. [Google Scholar] [CrossRef]
- World Medical Association. The World Medical Association WMA Declaration of Helsinki—Ethical principles for medical research involving human subjects 2013. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L. Statistical Power Analysis for the Behavioral Sciences; Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Harrington, M.; Velicer, W.F. Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies. Multivar. Behav. Res. 2015, 50, 162–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, M.; Kaname, T.; Tabata, M.; Hotta, K.; Shimizu, R.; Kamiya, K.; Kamekawa, D.; Kato, M.; Akiyama, A.; Ohta, M.; et al. Hippotherapy to Improve Hypertonia Caused by an Autonomic Imbalance in Children with Spastic Cerebral Palsy. Kitasato Med. J. 2013, 43, 67–73. [Google Scholar]
- Bevilacqua, D.E., Jr.; Lopes, L.L.D.M.; Accioly, M.F.; Ribeiro, M.F.; Ferreira, A.A.; Teixeira, V.D.P.A.; Espindula, A.P. Avaliação da modulação autonômica em indivíduos com síndrome de Down na equoterapia. Conscientiae Saúde Impr. 2016, 15, 433–439. [Google Scholar] [CrossRef]
- Cabiddu, R.; Borghi-Silva, A.; Trimer, R.; Trimer, V.; Ricci, P.A.; Italiano Monteiro, C.; Camargo Magalhães Maniglia, M.; Silva Pereira, A.M.; Rodrigues das Chagas, G.; Carvalho, E.M. Hippotherapy Acute Impact on Heart Rate Variability Non-Linear Dynamics in Neurological Disorders. Physiol. Behav. 2016, 159, 88–94. [Google Scholar] [CrossRef]
- Baldwin, A.; Rector, B.K.; Alden, A.C. Effects of a Form of Equine-Facilitated Learning on Heart Rate Variability, Immune Function, and Self-Esteem in Older Adults. People Anim. Int. J. Res. Pract. 2018, 1, 5. [Google Scholar]
- Gehrke, E.K.; Noquez, A.E.; Ranke, P.L.; Myers, M.P. Measuring the Psychophysiological Changes in Combat Veterans Participating in an Equine Therapy Program. J. Mil. Veteran Fam. Health 2018, 4, 60–69. [Google Scholar] [CrossRef]
- Ecker, S.; Lykins, A. Effects of Short-Term Human-Horse Interactions on Human Heart Rate Variability: A Multiple Single Case Study. People Anim. Int. J. Res. Pract. 2019, 2, 2. [Google Scholar]
- Park, I.-K.; Lee, J.Y.; Suk, M.-H.; Yoo, S.; Seo, Y.-G.; Oh, J.-K.; Kwon, J.-Y. Effect of Equine-Assisted Activities on Cardiac Autonomic Function in Children with Cerebral Palsy: A Pilot Randomized-Controlled Trial. J. Altern. Complement. Med. 2021, 27, 96–102. [Google Scholar] [CrossRef]
- Mariotti, A. The Effects of Chronic Stress on Health: New Insights into the Molecular Mechanisms of Brain–Body Communication. Future Sci. OA 2015, 1, FSO23. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, L.; Valle, F.; Coco, M.; Calciati, A.; Sleight, P. Physical Activity Influences Heart Rate Variability and Very-Low-Frequency Components in Holter Electrocardiograms1. Cardiovasc. Res. 1996, 32, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M. Monitoring Training Status with HR Measures: Do All Roads Lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- De Meersman, R.E. Heart Rate Variability and Aerobic Fitness. Am. Heart J. 1993, 125, 726–731. [Google Scholar] [CrossRef]
- Melanson, E.L. Resting Heart Rate Variability in Men Varying in Habitual Physical Activity. Med. Sci. Sports Exerc. 2000, 32, 1894–1901. [Google Scholar] [CrossRef]
- Villafaina, S.; Cordón-González, C.; Collado-Mateo, D.; Fuentes-García, J.P.; Adsuar, J.C.; Merellano-Navarro, E.; Parraca, J.A. Influence of Horseback Riding and Horse Simulator Riding on Heart Rate Variability: Are There Differences? Appl. Sci. 2019, 9, 2194. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.; Nqwena, Z.; Reimers, L.; Peters, K.; Sookan, T.; McKune, A. Acute Heart Rate Variability Responses to a Therapeutic Horseback Riding Session in Children with Autism Spectrum Disorders: A Pilot Study. Sci. Educ. J. Ther. Rid. 2014, 19, 10–24. [Google Scholar]
- Wijker, C.; Kupper, N.; Leontjevas, R.; Spek, A.; Enders-Slegers, M.-J. The Effects of Animal Assisted Therapy on Autonomic and Endocrine Activity in Adults with Autism Spectrum Disorder: A Randomized Controlled Trial. Gen. Hosp. Psychiatry 2021, 72, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, B.; Burk, S.; Hutchins, D.; Gramlich, C. Therapeutic Riding or Mindfulness: Comparative Effectiveness of Two Recreational Therapy Interventions for Adolescents with Autism. J. Autism Dev. Disord. 2021, 15, 1–25. [Google Scholar] [CrossRef]
- Arnao, V.; Cinturino, A.; Mastrilli, S.; Buttà, C.; Maida, C.; Tuttolomondo, A.; Aridon, P.; D’Amelio, M. Impaired Circadian Heart Rate Variability in Parkinson’s Disease: A Time-Domain Analysis in Ambulatory Setting. BMC Neurol. 2020, 20, 152. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, V.A.; Verheyden, B.; Aubert, A.E.; Fagard, R.H. Effects of Aerobic Training Intensity on Resting, Exercise and Post-Exercise Blood Pressure, Heart Rate and Heart-Rate Variability. J. Hum. Hypertens. 2010, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Nqwena, Z.; Naidoo, R. The Effect of Therapeutic Horseback Riding on Heart Rate Variability of Children with Disabilities. Afr. J. Disabil. 2016, 5, 248. [Google Scholar] [CrossRef] [PubMed]
- Routledge, F.S.; Campbell, T.S.; McFetridge-Durdle, J.A.; Bacon, S.L. Improvements in Heart Rate Variability with Exercise Therapy. Can. J. Cardiol. 2010, 26, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Roncancio, M.R. Efecto del ejercicio en la variabilidad de la frecuencia cardíaca. Rev. Colomb. Med. Física Rehabil. 2010, 20, 24–32. [Google Scholar]
- Gilboa, Y.; Helmer, A. Self-Management Intervention for Attention and Executive Functions Using Equine-Assisted Occupational Therapy among Children Aged 6–14 Diagnosed with Attention Deficit/Hyperactivity Disorder. J. Altern. Complement. Med. 2020, 26, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Medina Gómez, B.; Gil Ibáñez, R. Stress and coping strategies in people with intellectual disabilities: A systematic review. Ansiedad Estrés 2017, 23, 38–44. [Google Scholar] [CrossRef]
Participant 1 | Participant 2 | |
---|---|---|
Age (years) | 9 | 20 |
Gender | Male | Male |
Diagnosis | 22q11.2 DS | 22q11.2 DS |
Comorbidities | Autism Spectrum Disorder, Grade 2 Moderate Intellectual Disability | Parkinsonism. Partial paralysis of a vocal cord and problems in glottic closure. Obsessive Compulsive Disorder. Depression with psychotic symptoms. Mild Intellectual Disability. |
Medication | Casenlax® 10 g (polyethylene glycol). | Sinemet® (carbidopa-levodopa), (break/)Nemea® (Clozapine), Fluoxetine. |
Gross motor development | Generalized hypotonia. Walking difficulties (uses Dynamic Ankle Foot Orthosis). Coordination issues. | Walks with flexed head and without an arm swing. High dorsal kyphosis and compensatory lumbar lordosis. Generalized bradykinesia. Coordination and clumsiness issues. |
Fine motor development | Poor dexterity and bimanual coordination | Poor dexterity and bimanual coordination |
Social and adaptive development | Relationships with adults, peer interactions should be encouraged and supported. Substantial support in daily life activities. | A narrow range of friendships. Poor social skills. Sometimes shares his interests. Lack of initiative and anticipation. Needs occasional support in daily life activities. |
Language and communication development | Uses oral language with holophrases, pictograms and signs support. | Low communicative intentionality. Problems in the breath/phonation coordination. Issues sharing emotions. |
Sensory integration | Searching behaviors. Hyperreactivity. | Hyperreactivity. |
Schooling modality | Regular school with therapeutic pedagogy and speech therapy teachers’ assistance. Individualized curricular adaptation | Training in administration and finance. |
Parameters | Descriptives | Wilcoxon’s Test | |||
---|---|---|---|---|---|
Before Intervention | After Intervention | Z | p | Cohen’s d | |
HR (bpm) | 89.16 ± 4.53 | 89.33 ± 7.11 | −0.21 | 0.833 | 0.172 |
SDNN (ms) | 133.83 ± 19.13 | 215.25 ± 71.90 | −1.992 | 0.046 | 2.795 |
RMSSD (ms) | 170.08 ± 16.52 | 248.81 ± 68.41 | −1.992 | 0.046 | 2.795 |
LF (ms2) | 6954.16 ± 5966.5 | 49,849.5 ± 52,631.53 | −1.572 | 0.116 | 1.674 |
HF (ms2) | 6482.83 ± 3676.8 | 121,090.33 ± 148,075.62 | −1.992 | 0.046 | 2.795 |
LF/HF (ms2) | 0.999 ± 0.57 | 1.17 ± 1.21 | −0.105 | 0.917 | 0.086 |
Stress | 5.2 ± 1.0 | 3.93 ± 1.71 | −1.992 | 0.046 | 2.795 |
Parameter | Descriptives | Wilcoxon’s Test | |||
---|---|---|---|---|---|
Before Intervention | After Intervention | Z | p | Cohen’s d | |
HR (bpm) | 107.60 ± 2.88 | 109.50 ± 7.01 | −0.405 | 0.686 | 0.368 |
SDNN (ms) | 62.10 ± 27.02 | 40.90 ± 18.42 | −1.214 | 0.225 | 1.293 |
RMSSD (ms) | 87.94 ± 35.88 | 50.87 ± 26.15 | −1.214 | 0.225 | 1.293 |
LF (ms2) | 689.6 ± 841.40 | 308.5 ± 116.47 | −0.944 | 0.345 | 0.931 |
HF (ms2) | 1486.80 ± 2199.47 | 413.25 ± 272.87 | −0.944 | 0.345 | 0.931 |
LF/HF (ms2) | 1.16 ± 1.53 | 0.95 ± 0.55 | −0.135 | 0.893 | 0.121 |
Stress | 9.92 ± 1.18 | 15.75 ± 7.44 | −1.483 | 0.138 | 1.772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amado-Fuentes, M.; Gozalo, M.; Garcia-Gomez, A.; Barrios-Fernandez, S. Impact of Equine-Assisted Interventions on Heart Rate Variability in Two Participants with 22q11.2 Deletion Syndrome: A Pilot Study. Children 2021, 8, 1073. https://doi.org/10.3390/children8111073
Amado-Fuentes M, Gozalo M, Garcia-Gomez A, Barrios-Fernandez S. Impact of Equine-Assisted Interventions on Heart Rate Variability in Two Participants with 22q11.2 Deletion Syndrome: A Pilot Study. Children. 2021; 8(11):1073. https://doi.org/10.3390/children8111073
Chicago/Turabian StyleAmado-Fuentes, Maria, Margarita Gozalo, Andres Garcia-Gomez, and Sabina Barrios-Fernandez. 2021. "Impact of Equine-Assisted Interventions on Heart Rate Variability in Two Participants with 22q11.2 Deletion Syndrome: A Pilot Study" Children 8, no. 11: 1073. https://doi.org/10.3390/children8111073
APA StyleAmado-Fuentes, M., Gozalo, M., Garcia-Gomez, A., & Barrios-Fernandez, S. (2021). Impact of Equine-Assisted Interventions on Heart Rate Variability in Two Participants with 22q11.2 Deletion Syndrome: A Pilot Study. Children, 8(11), 1073. https://doi.org/10.3390/children8111073