Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.1.1. Environmental Measurements
2.1.2. Behavioural Data Collection
2.1.3. Data Analysis
2.1.4. Acoustic Environment
2.1.5. Light Environment
2.1.6. Behavioural Data Analysis
2.2. Statistical Analysis
3. Results
3.1. Study Population
3.2. Changes in the Acoustic Environment
3.3. Changes in Environmental Light Levels
3.4. Pain Behaviour and Environmental Changes
3.4.1. Acoustic Changes and Pain Behaviour
3.4.2. Determinants of Behavioural Change
3.4.3. Variation in Light Levels and Pain Behaviour
3.4.4. Determinants of Behavioural Changes
3.4.5. Comparison of Pain Behaviours Triggered by Sound and Light Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, N.S.; Marlow, N.; Costeloe, K.; Gibson, A.T.; Wilkinson, A.R. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N. Engl. J. Med. 2000, 343, 378–384. [Google Scholar] [CrossRef]
- Larroque, B.; Ancel, P.Y.; Marret, S.; Marchand, L.; Andre, M.; Arnaud, C.; Pierrat, V.; Roze, J.C.; Messer, J.; Thiriez, G.; et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): A longitudinal cohort study. Lancet 2008, 371, 813–820. [Google Scholar] [CrossRef]
- Serenius, F.; Kallen, K.; Blennow, M.; Ewald, U.; Fellman, V.; Holmstrom, G.; Lindberg, E.; Lundqvist, P.; Marsal, K.; Norman, M.; et al. Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 2013, 309, 1810–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maitre, N.L. Neurorehabilitation after neonatal intensive care: Evidence and challenges. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F534–F540. [Google Scholar] [CrossRef]
- Kuhn, P.; Zores, C.; Astruc, D.; Dufour, A.; Casper, C. Sensory system development and the physical environment of infants born very preterm. Arch. Pediatr. 2011, 18 (Suppl. 2), S92–S102. [Google Scholar] [CrossRef]
- Carbajal, R.; Rousset, A.; Danan, C.; Coquery, S.; Nolent, P.; Ducrocq, S.; Saizou, C.; Lapillonne, A.; Granier, M.; Durand, P.; et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA 2008, 300, 60–70. [Google Scholar] [CrossRef]
- Anand, K.J.S.; Eriksson, M.; Boyle, E.M.; Avila-Alvarez, A.; Andersen, R.D.; Sarafidis, K.; Polkki, T.; Matos, C.; Lago, P.; Papadouri, T.; et al. Assessment of continuous pain in newborns admitted to NICUs in 18 European countries. Acta Paediatr. 2017, 106, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.J.; Scalzo, F.M. Can adverse neonatal experiences alter brain development and subsequent behavior? Biol. Neonate 2000, 77, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.; Gutovich, J.; Smyser, C.; Pineda, R.; Newnham, C.; Tjoeng, T.H.; Vavasseur, C.; Wallendorf, M.; Neil, J.; Inder, T. Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann. Neurol. 2011, 70, 541–549. [Google Scholar] [CrossRef]
- Brummelte, S.; Grunau, R.E.; Chau, V.; Poskitt, K.J.; Brant, R.; Vinall, J.; Gover, A.; Synnes, A.R.; Miller, S.P. Procedural pain and brain development in premature newborns. Ann. Neurol. 2012, 71, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Vinall, J.; Miller, S.P.; Chau, V.; Brummelte, S.; Synnes, A.R.; Grunau, R.E. Neonatal pain in relation to postnatal growth in infants born very preterm. Pain 2012, 153, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Vinall, J.; Miller, S.P.; Bjornson, B.H.; Fitzpatrick, K.P.; Poskitt, K.J.; Brant, R.; Synnes, A.R.; Cepeda, I.L.; Grunau, R.E. Invasive procedures in preterm children: Brain and cognitive development at school age. Pediatrics 2014, 133, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.T.; Bearer, C.F. Iatrogenic environmental hazards in the neonatal intensive care unit. Clin. Perinatol. 2008, 35, 163–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasky, R.E.; Williams, A.L. Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics 2009, 123, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.H.; Bachman, J.; Jenkins, R.; Chen, C.H.; Chang, Y.C.; Chang, Y.S.; Wang, T.M. Relationships between environmental stressors and stress biobehavioral responses of preterm infants in NICU. J. Perinat. Neonatal Nurs. 2009, 23, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, P.; Byers, J.F.; Kiehl, E. Noise and the premature infant: Physiological effects and practice implications. J. Obstet. Gynecol. Neonatal Nurs. 2003, 32, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, P.; Zores, C.; Pebayle, T.; Hoeft, A.; Langlet, C.; Escande, B.; Astruc, D.; Dufour, A. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr. Res. 2012, 71, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zores, C.; Dufour, A.; Pebayle, T.; Langlet, C.; Astruc, D.; Kuhn, P. Very preterm infants can detect small variations in light levels in incubators. Acta Paediatr. 2015, 104, 1005–1011. [Google Scholar] [CrossRef]
- Zores, C.; Dufour, A.; Pebayle, T.; Dahan, I.; Astruc, D.; Kuhn, P. Observational study found that even small variations in light can wake up very preterm infants in a neonatal intensive care unit. Acta Paediatr. 2018, 107, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Mann, N.P.; Haddow, R.; Stokes, L.; Goodley, S.; Rutter, N. Effect of night and day on preterm infants in a newborn nursery: Randomised trial. Br. Med. J. (Clin. Res. Ed.) 1986, 293, 1265–1267. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Pearce, S.E.; Stroustrup, A. Impact of hospital-based environmental exposures on neurodevelopmental outcomes of preterm infants. Curr. Opin. Pediatr. 2015, 27, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Prechtl, H.F. The behavioural states of the newborn infant (a review). Brain Res. 1974, 76, 185–212. [Google Scholar] [CrossRef]
- Kuhn, P.; Zores, C.; Langlet, C.; Escande, B.; Astruc, D.; Dufour, A. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators. Acta Paediatr. 2013, 102, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Carbajal, R.; Paupe, A.; Hoenn, E.; Lenclen, R.; Olivier-Martin, M. APN: Evaluation behavioral scale of acute pain in newborn infants. Arch. Pediatr. 1997, 4, 623–628. [Google Scholar] [CrossRef]
- Carbajal, R.; Veerapen, S.; Couderc, S.; Jugie, M.; Ville, Y. Analgesic effect of breast feeding in term neonates: Randomised controlled trial. BMJ 2003, 326, 13. [Google Scholar] [CrossRef] [Green Version]
- Carbajal, R.; Lenclen, R.; Jugie, M.; Paupe, A.; Barton, B.A.; Anand, K.J. Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates. Pediatrics 2005, 115, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Ingersoll, E.W.; Thoman, E.B. Sleep/wake states of preterm infants: Stability, developmental change, diurnal variation, and relation with caregiving activity. Child Dev. 1999, 70, 1–10. [Google Scholar] [CrossRef]
- Ludington-Hoe, S.M.; Johnson, M.W.; Morgan, K.; Lewis, T.; Gutman, J.; Wilson, P.D.; Scher, M.S. Neurophysiologic assessment of neonatal sleep organization: Preliminary results of a randomized, controlled trial of skin contact with preterm infants. Pediatrics 2006, 117, e909–e923. [Google Scholar] [CrossRef] [Green Version]
- Bertelle, V.; Mabin, D.; Adrien, J.; Sizun, J. Sleep of preterm neonates under developmental care or regular environmental conditions. Early Hum. Dev. 2005, 81, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Slater, R.; Worley, A.; Fabrizi, L.; Roberts, S.; Meek, J.; Boyd, S.; Fitzgerald, M. Evoked potentials generated by noxious stimulation in the human infant brain. Eur. J. Pain 2010, 14, 321–326. [Google Scholar] [CrossRef]
- Fabrizi, L.; Slater, R.; Worley, A.; Meek, J.; Boyd, S.; Olhede, S.; Fitzgerald, M. A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol. 2011, 21, 1552–1558. [Google Scholar] [CrossRef] [Green Version]
- Goksan, S.; Hartley, C.; Emery, F.; Cockrill, N.; Poorun, R.; Moultrie, F.; Rogers, R.; Campbell, J.; Sanders, M.; Adams, E.; et al. fMRI reveals neural activity overlap between adult and infant pain. eLife 2015, 4, e06356. [Google Scholar] [CrossRef]
- Williams, G.; Fabrizi, L.; Meek, J.; Jackson, D.; Tracey, I.; Robertson, N.; Slater, R.; Fitzgerald, M. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain. Acta Paediatr. 2015, 104, 158–166. [Google Scholar] [CrossRef]
- Bartocci, M.; Bergqvist, L.L.; Lagercrantz, H.; Anand, K.J. Pain activates cortical areas in the preterm newborn brain. Pain 2006, 122, 109–117. [Google Scholar] [CrossRef]
- Slater, R.; Cantarella, A.; Gallella, S.; Worley, A.; Boyd, S.; Meek, J.; Fitzgerald, M. Cortical pain responses in human infants. J. Neurosci. 2006, 26, 3662–3666. [Google Scholar] [CrossRef] [Green Version]
- Verriotis, M.; Chang, P.; Fitzgerald, M.; Fabrizi, L. The development of the nociceptive brain. Neuroscience 2016, 338, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Green, G.; Hartley, C.; Hoskin, A.; Duff, E.; Shriver, A.; Wilkinson, D.; Adams, E.; Rogers, R.; Moultrie, F.; Slater, R. Behavioural discrimination of noxious stimuli in infants is dependent on brain maturation. Pain 2019, 160, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M. What do we really know about newborn infant pain? Exp. Physiol. 2015, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.C.; Fitzgerald, M. Activity-dependent development of tactile and nociceptive spinal cord circuits. Ann. N. Y. Acad. Sci. 2013, 1279, 97–102. [Google Scholar] [CrossRef]
- Storm, H. Skin conductance and the stress response from heel stick in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 83, F143–F147. [Google Scholar] [CrossRef] [Green Version]
- Faye, P.M.; De Jonckheere, J.; Logier, R.; Kuissi, E.; Jeanne, M.; Rakza, T.; Storme, L. Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain 2010, 26, 777–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salavitabar, A.; Haidet, K.K.; Adkins, C.S.; Susman, E.J.; Palmer, C.; Storm, H. Preterm infants’ sympathetic arousal and associated behavioral responses to sound stimuli in the neonatal intensive care unit. Adv. Neonatal Care 2010, 10, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Frie, J.; Bartocci, M.; Lagercrantz, H.; Kuhn, P. Cortical Responses to Alien Odors in Newborns: An fNIRS Study. Cereb. Cortex 2018, 28, 3229–3240. [Google Scholar] [CrossRef] [PubMed]
- Valeri, B.O.; Holsti, L.; Linhares, M.B. Neonatal pain and developmental outcomes in children born preterm: A systematic review. Clin. J. Pain 2015, 31, 355–362. [Google Scholar] [CrossRef]
- Duerden, E.G.; Grunau, R.E.; Guo, T.; Foong, J.; Pearson, A.; Au-Young, S.; Lavoie, R.; Chakravarty, M.M.; Chau, V.; Synnes, A.; et al. Early Procedural Pain Is Associated with Regionally-Specific Alterations in Thalamic Development in Preterm Neonates. J. Neurosci. 2018, 38, 878–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montirosso, R.; Casini, E.; Del Prete, A.; Zanini, R.; Bellu, R.; Borgatti, R.; Group, N.-A.S. Neonatal developmental care in infant pain management and internalizing behaviours at 18 months in prematurely born children. Eur. J. Pain 2016, 20, 1010–1021. [Google Scholar] [CrossRef]
- Walker, S.M.; Franck, L.S.; Fitzgerald, M.; Myles, J.; Stocks, J.; Marlow, N. Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain 2009, 141, 79–87. [Google Scholar] [CrossRef]
- Juif, P.E.; Salio, C.; Zell, V.; Melchior, M.; Lacaud, A.; Petit-Demouliere, N.; Ferrini, F.; Darbon, P.; Hanesch, U.; Anton, F.; et al. Peripheral and central alterations affecting spinal nociceptive processing and pain at adulthood in rats exposed to neonatal maternal deprivation. Eur. J. Neurosci. 2016, 44, 1952–1962. [Google Scholar] [CrossRef]
- Melchior, M.; Juif, P.E.; Gazzo, G.; Petit-Demouliere, N.; Chavant, V.; Lacaud, A.; Goumon, Y.; Charlet, A.; Lelievre, V.; Poisbeau, P. Pharmacological rescue of nociceptive hypersensitivity and oxytocin analgesia impairment in a rat model of neonatal maternal separation. Pain 2018, 159, 2630–2640. [Google Scholar] [CrossRef]
- Balanay, J.A.; Kearney, G.D. Attitudes toward noise, perceived hearing symptoms, and reported use of hearing protection among college students: Influence of youth culture. Noise Health 2015, 17, 394–405. [Google Scholar] [CrossRef]
- Tyler, R.S.; Pienkowski, M.; Roncancio, E.R.; Jun, H.J.; Brozoski, T.; Dauman, N.; Dauman, N.; Andersson, G.; Keiner, A.J.; Cacace, A.T.; et al. A review of hyperacusis and future directions: Part I. Definitions and manifestations. Am. J. Audiol. 2014, 23, 402–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, C.B.; Sanchez, T.G.; Tyler, R.S. Hyperacusis, sound annoyance, and loudness hypersensitivity in children. Prog. Brain Res. 2007, 166, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.J.; Armstrong, B.L.; Greer, M.K.; Brown, F.R., 3rd. Hyperacusis and otitis media in individuals with Williams syndrome. J. Speech Hear. Disord. 1990, 55, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Khalfa, S.; Bruneau, N.; Roge, B.; Georgieff, N.; Veuillet, E.; Adrien, J.L.; Barthelemy, C.; Collet, L. Increased perception of loudness in autism. Hear. Res. 2004, 198, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Nemholt, S.; Schmidt, J.H.; Wedderkopp, N.; Baguley, D.M. A Cross-Sectional Study of the Prevalence and Factors Associated With Tinnitus and/or Hyperacusis in Children. Ear Hear. 2020, 41, 344–355. [Google Scholar] [CrossRef]
- American Academy of Pediatrics; Committee on Fetus and Newborn and Section on Surgery; Section on Anesthesiology and Pain Medicine; Canadian Paediatric Society; Fetus and Newborn Committee; Batton, D.G.; Barrington, K.J.; Wallman, C. Prevention and management of pain in the neonate: An update. Pediatrics 2006, 118, 2231–2241. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.A.; Ward, W.L.; Paule, M.G.; Hall, R.W.; Anand, K.J. A pilot study of preemptive morphine analgesia in preterm neonates: Effects on head circumference, social behavior, and response latencies in early childhood. Neurotoxicol. Teratol. 2012, 34, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Brummelte, S.; Chau, C.M.; Cepeda, I.L.; Degenhardt, A.; Weinberg, J.; Synnes, A.R.; Grunau, R.E. Cortisol levels in former preterm children at school age are predicted by neonatal procedural pain-related stress. Psychoneuroendocrinology 2015, 51, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Valeri, B.O.; Ranger, M.; Chau, C.M.; Cepeda, I.L.; Synnes, A.; Linhares, M.B.; Grunau, R.E. Neonatal Invasive Procedures Predict Pain Intensity at School Age in Children Born Very Preterm. Clin. J. Pain 2016, 32, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, P.; Sizun, J.; Casper, C.; GREEN Study Group from the French Neonatal Society; Allen, A.; Audeoud, F.; Bouvard, C.; Brandicourt, A.; Cayemaex, L.; Denoual, H.; et al. Recommendations on the environment for hospitalised newborn infants from the French neonatal society: Rationale, methods and first recommendation on neonatal intensive care unit design. Acta Paediatr. 2018, 107, 1860–1866. [Google Scholar] [CrossRef]
- Zores-Koenig, C.; Kuhn, P.; Caeymaex, L.; Group of Reflection; Evaluation of the Environment of Newborns Study Group of the French Neonatology Society. Recommendations on neonatal light environment from the French Neonatal Society. Acta Paediatr. 2020, 109, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, P.; Westrup, B.; Bertoncelli, N.; Filippa, M.; Hüppi, P.; Warren, I. European Standards of Care for Newborn Health: Supportive Sensory Environment. Available online: https://newborn-health-standards.org/supportive-sensory-environment/ (accessed on 31 October 2021).
- Craig, K.D.; Whitfield, M.F.; Grunau, R.V.E.; Linton, J.; Hadjistavropoulos, H.D. Pain in the preterm neonate: Behavioural and physiological indices. Pain 1993, 52, 287–299. [Google Scholar] [CrossRef]
- Maxwell, L.G.; Fraga, M.V.; Malavolta, C.P. Assessment of Pain in the Newborn: An Update. Clin. Perinatol. 2019, 46, 693–707. [Google Scholar] [CrossRef] [PubMed]
GA, median weeks [range] | 28 [26–31] |
Birthweight, mean gram (SD) | 1109 (±250) |
Post-natal median age in days [range] | 17 [4–50] |
Postmenstrual age, median days [range] | 31 [28–34] |
Gender (girls-boys; n) | 10–16 |
Small for GA/Adequate for GA (n) | 8–18 |
Respiratory support at time of study (n) | |
Room air | 9 |
nCPAP a | 9 |
Mechanical ventilation b | 8 |
Duration of respiratory support, median days [range] | |
Oxygen supplementation | 16 [0–36] |
nCPAP a | 6 [0–30] |
Mechanical ventilation b | 3 [0–29] |
QS Median [Range] | AS Median [Range] | |
---|---|---|
SPs 5–10 dBA | 4 [0–42] | 12 [0–48] |
SPs 10–15 dBA | 0.5 [0–3] | 1 [0–19] |
LLVs 10–50 lux | 7 [0–32] | 0 [0–5] |
LLVs > 50 lux | 1 [0–9] | 0 [0–1] |
DAN Score Baseline (Mean ± SD) | Maximum DAN Score Post Stimulation (Mean ± SD) | N; p Value | ||
---|---|---|---|---|
QS | 5–10 dBA | 0.26 ± 0.69 | 1.32 ± 1.73 | 19; <0.001 |
10–15 dBA | 0 ± 0 | 0.57 ± 1.18 | 12; 0.125 | |
AS | 5–10 dBA | 0.44 ± 0.46 | 1.19 ± 0.76 | 23; <0.001 |
10–15 dBA | 0.55 ± 0.61 | 1.77 ± 1.82 | 17; 0.001 |
DAN Score Baseline (Mean ± SD) | Maximum DAN Score Post Stimulation (Mean ± SD) | N; p Value | ||
---|---|---|---|---|
QS | 10–50 lux | 0.43 (±0.38) | 0.89 (±0.44) | 21; <0.001 |
>50 lux | 0.43 (±0.35) | 0.89 (±0.69) | 17; <0.01 | |
AS | 10–50 lux | 0.80 (±0.82) | 1.38 (±0.87) | 10; <0.1 |
>50 lux | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchal, A.; Melchior, M.; Dufour, A.; Poisbeau, P.; Zores, C.; Kuhn, P. Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants. Children 2021, 8, 1081. https://doi.org/10.3390/children8121081
Marchal A, Melchior M, Dufour A, Poisbeau P, Zores C, Kuhn P. Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants. Children. 2021; 8(12):1081. https://doi.org/10.3390/children8121081
Chicago/Turabian StyleMarchal, Audrey, Meggane Melchior, André Dufour, Pierrick Poisbeau, Claire Zores, and Pierre Kuhn. 2021. "Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants" Children 8, no. 12: 1081. https://doi.org/10.3390/children8121081
APA StyleMarchal, A., Melchior, M., Dufour, A., Poisbeau, P., Zores, C., & Kuhn, P. (2021). Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants. Children, 8(12), 1081. https://doi.org/10.3390/children8121081