Relationship between Muscle Tone of the Erector Spinae and the Concave and Convex Sides of Spinal Curvature in Low-Grade Scoliosis among Children
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmid, S.; Burkhart, K.A.; Allaire, B.T.; Grindle, D.; Bassani, T.; Galbusera, F.; Anderson, D. Spinal Compressive Forces in Adolescent Idiopathic Scoliosis With and Without Carrying Loads: A Musculoskeletal Modeling Study. Front. Bioeng. Biotechnol. 2020, 8, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, S.; Parent, E.C.; Hill, D.L.; Hedden, D.M.; Moreau, M.J.; Southon, S.C. Patients with adolescent idiopathic scoliosis perceive positive improvements regardless of change in the Cobb angle—Results from a randomized controlled trial comparing a 6-month Schroth intervention added to standard care and standard care alone. SOSORT 2018 Award winner. BMC Musculoskelet. Disord. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Alamrani, S.; Rushton, A.; Gardner, A.; Falla, D.; Heneghan, N.R. Outcome measures evaluating physical functioning and their measurement properties in adolescent idiopathic scoliosis: A protocol for a systematic review. BMJ Open 2020, 10, e034286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubousset, J.; Chopin, D.; Seringe, R. Have we made true progress in surgical indications and determining the limitations of spinal fusion in patients with idiopathic scoliosis? Orthop. Traumatol. Surg. Res. 2018, 104, 555–556. [Google Scholar] [CrossRef]
- Hirschfeld, H. On the Integration of Posture, Locomotion and Voluntary Movement in Humans: Normal and Impaired Development; Karolinska Institutet: Solna, Sweden, 1992. [Google Scholar]
- Winters, J.M.; Crago, P.E. Biomechanics and Neural Control of Posture and Movement; Springer: New York, NY, USA, 2000. [Google Scholar]
- Kobayashi, K.; Imagama, S.; Ito, Z.; Ando, K.; Hida, T.; Ito, K.; Tsushima, M.; Ishikawa, Y.; Matsumoto, A.; Nishida, Y.; et al. Transcranial motor evoked potential waveform changes in corrective fusion for adolescent idiopathic scoliosis. J. Neurosurg. Pediatr. 2017, 19, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Wang, S.-R.; Qiu, G.-X.; Zhang, J.-G.; Zhuang, Q.-Y. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chin. Med. J. 2020, 133, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.Y.; Suh, J.H.; Kim, H.; Ryu, J.S. Proposal of a new exercise protocol for idiopathic scoliosis: A preliminary study. Medicine 2018, 97, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Tylman, D. Pathomechanics of Lateral Spinal Curvatures; Severus: Warsaw, Poland, 1995. [Google Scholar]
- Guo, L.-Y.; Wang, Y.-L.; Huang, Y.-H.; Yang, C.-H.; Hou, Y.-Y.; Harn, H.I.-C.; You, Y.-L. Comparison of the electromyographic activation level and unilateral selectivity of erector spinae during different selected movements. Int. J. Rehabil. Res. 2012, 35, 345–351. [Google Scholar] [CrossRef]
- Perret, C.; Robert, J. Electromyographic Responses of Paraspinal Muscles to Postural Disturbance with Special Reference to Scoliotic Children. J. Manip. Physiol. Ther. 2004, 27, 375–380. [Google Scholar] [CrossRef]
- Weiss, H.R. Imbalance of electromyographic activity and physical rehabilitation of patients with idiopathic scoliosis. Eur. Spine J. 1993, 1, 240–243. [Google Scholar] [CrossRef]
- Reuber, M.; Schultz, A.; McNEILL, T.; Spencer, D. Trunk Muscle Myoelectric Activities in Idiopathic Scoliosis. Spine 1983, 8, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, P.E.; Sahgal, V.; Hughes, R.; Kane, W.; Flanagan, N. Neuropathy in Thoracic Scoliosis. Acta Orthop. Scand. 1980, 51, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, E.; Drerup, B. Influence of length discrepancy on ratserstereographic back shape parameters. Orthopade 2001, 30, 242–250. [Google Scholar]
- Farahpour, N.; Ghasemi, S.; Allard, P.; Saba, M.S. Electromyographic responses of erector spinae and lower limb’s muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis. J. Electromyogr. Kinesiol. 2014, 24, 645–651. [Google Scholar] [CrossRef]
- Kapadji, I.A. Functional Anatomy of Joints; Elsvier Urban & Partner: Wrocław, Poland, 2014. [Google Scholar]
- Bergmark, A. Stability of the lubar spine. A study in mechanical engineering. Acta Orthop. Scand. 1989, 230, 1–54. [Google Scholar] [CrossRef]
- Cresswell, A.G.; Thorstensson, A. Changes in intra-abdominal pressure, trunk muscle activation and force during isokinetic lifting and lowering. Eur. J. Appl. Physiol. 1994, 68, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M. The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement. J. Spinal Disord. 1992, 5, 383–389. [Google Scholar] [CrossRef]
- Snijders, C.J.; Vleeming, A.; Stoeckart, R.; Mens, J.M.A.; Kleinrensink, G.J. Biomechanical modeling of sacroiliac joint stability in different postures. Spine 1995, 9, 419–432. [Google Scholar]
- Roaf, R. Rotation movements of the spine with special reference to scoliosis. J. Bone Jt. Surg. Br. Vol. 1958, 40, 312–332. [Google Scholar] [CrossRef]
- Roaf, R. The basic anatomy of scoliosis. J. Bone Jt. Surg. Br. Vol. 1966, 48, 488–786. [Google Scholar] [CrossRef]
- Bayer, H. Das Verhalten der Rückenstrecker bei einem Fall von konvexseitiger Denervierungsoperation bei Skoliose. Zeitschrift für Orthopädie und ihre Grenzgebiete 1980, 118, 274–278. [Google Scholar] [CrossRef]
- Riddle, H.F.V.; Roaf, R. Muscle imbalance in the causaltion of scoliosis. Lancet 1955, 265, 1245–1247. [Google Scholar] [CrossRef]
- Henssge, J. Electromyographic contribution to the problem of scoliosis. Zeitschrift für Orthopädie und ihre Grenzgebiete 1964, 99, 167–195. [Google Scholar]
- Butterworth, T.R.; James, C. Electromyographic Studies in Idiopathic Scoliosis. South. Med. J. 1969, 62, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Redford, J.B.; Butterworth, T.R.; Clements, E.L. Use of electromyography as a prognostic aid in the management of idiopathic scoliosis. Arch. Phys. Med. Rehabil. 1969, 50, 433–438. [Google Scholar] [PubMed]
- Alexander, M.A.; Seoson, E.H. Idiopathic scoliosis: An electromygraphic study. Arch. Phys. Med. Rehabil. 1978, 59, 314. [Google Scholar]
- Güth, V.; Abbink, F.; Gotze, H.E.; Heinrichs, W. Ganguntersuchung an Patienten mit idiopathischen Skoliosen und der Einfluss des Milwaukee-Korsetts auf das Gangbild. Orthop 1978, 116, 631–640. [Google Scholar]
- Güth, V.; Abbink, F. Electromyographical and kinesiological investigations: Comparison of congenital and idiopathic scoliosis. Zeitschrift für Orthopädie und ihre Grenzgebiete 1980, 118, 165–172. [Google Scholar] [CrossRef]
- Hertle, F.; Jentschura, G. Electromyographische Beobachtungen bei Saülingskoliosen. Arch Orthop Unfall Chir 1958, 49, 635–646. [Google Scholar] [CrossRef]
- Le Febvre, J.; Triboulet-Chassevant, A.; Missirliu, M.F. Electromyographic data in idiopathic scoliosis. Arch. Phys. Med. Rehabil. 1961, 42, 710–711. [Google Scholar] [PubMed]
- Brussatis, F. Electromyographische Untersuchungen der Rücken- und Bauchmuskulatur bei Idiopathischen Skoliosen; Wirbelsaule in Forschung und Praxis; Hippokrates Verlag: Stuttgart, Germany, 1962; Volume 24. [Google Scholar]
- Żuk, T. The role of spinal and abdominal muscles in the pathogenesis of scoliosis. J. Bone Jt. Surgery. Br. Vol. 1962, 44, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Lindström, L. Contributions to the Interpretations of Myoelectric Power Spectra. Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 1974. [Google Scholar]
- Hoogmartens, M.J.; Basmajian, J.V. Postural tone in the deep spinal muscles of idiopathic scoliosis patients and their siblings. An etiologic study based on vibration-induced electromyogram. Electromyogr. Clin. Neurophysiol. 1976, 16, 93–114. [Google Scholar] [PubMed]
- Trontelj, J.; Pecak, F. Dimitrijevic Segmental neurophysiological mechanisms in scoliosis. J. Bone Jt. Surgery. Br. Vol. 1979, 61, 310–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, D.B.; Bresler, B. Stability of the Ligamentous Spine; Techn Report; Biomechanics Laboratory, University of California: San Francisco, CA, USA, 1961; p. 40. [Google Scholar]
- Nachemson, A.L. Disc Pressure Measurements. Spine 1981, 6, 93–97. [Google Scholar] [CrossRef]
- Yettram, A.L.; Jackman, J. Equilibrium analysis for the forces in the human spinal column and its musculature. Spine 1980, 5, 411–502. [Google Scholar] [CrossRef] [PubMed]
- Lippold, O.C.J. The relation between integrated action potentials in a human muscle and its isometric tension. J. Physiol. 1952, 117, 492–499. [Google Scholar] [CrossRef]
- Zetterberg, C.; Björk, R.; Ortengren, R.; Andersson, G.B.J. Electromyography of the paravertebral muscles in idiopathic scoliosis: Measurements of amplitude and spectral changes under load. Acta Orthop. Scand. 1984, 55, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.E.; Troup, J.D.G. Prolonged activity of lumbar erectores spinae: An electromyographic and dynamometric study of the effect of training. Rheumatology 1970, 10, 262–269. [Google Scholar] [CrossRef]
- Bigland, B.; Lippold, O.C.J. Motor unit activity in the voluntary contraction of human muscle. J. Physiol. 1954, 125, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Cobb, S.; Forbes, A. Electromyographic studies of muscular fatigue in man. Am. J. Physiol. Content 1923, 65, 234–251. [Google Scholar] [CrossRef]
- Cobb, J.R. Outline for the study of scoliosis. Instr. Course Lect. AAOS 1948, 5, 261–275. [Google Scholar]
- Edwards, R.G.; Lippold, O.C.J. The relation between force and integrated electrical activity in fatigued muscle. J. Physiol. 1956, 132, 677–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, C.J. Physiology and Mathematics of Myoelectric Signals. IEEE Trans. Biomed. Eng. 1979, 26, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, C.; Aniansson, A.; Grimby, G. Morphology of the Paravertebral Muscles in Adolescent Idiopathic Scoliosis. Spine 1983, 8, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Doménech, J.; Tormos, J.M.; Barrios, C.; Pascual-Leone, A. Motor cortical hyperexcitability in idiopathic scoliosis: Could focal dystonia be a subclinical etiological factor? Eur. Spine J. 2009, 19, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Girls | Boys | ||||||
---|---|---|---|---|---|---|---|---|
Scoliosis (IS) | Scoliotic Posture (PS) | Scoliosis (IS) | Scoliotic Posture (PS) | |||||
Mean mV | SD | Mean mV | SD | Mean mV | SD | Mean mV | SD | |
Position: standing; segment: thoracic; side: left | 21.25 | 5.75 | 20.99 | 5.43 | 23.61 | 12.72 | 19.97 | 8.35 |
Position: standing; segment: thoracic; side: right | 32.05 | 24.39 | 33.62 | 24.31 | 32.35 | 24.42 | 30.48 | 25.81 |
Position: standing; segment: lumbar; side: left | 20.73 | 9.85 | 22.40 | 10.10 | 27.98 | 17.08 | 26.58 | 13.99 |
Position: standing; segment: lumbar; side: right | 50.47 | 42.97 | 50.95 | 45.04 | 53.63 | 48.23 | 49.98 | 44.03 |
Position: prone; segment: thoracic; side: left | 31.54 | 19.61 | 27.48 | 15.71 | 24.75 | 11.55 | 22.75 | 10.20 |
Position: prone; segment: thoracic; side: right | 38.46 | 24.82 | 37.37 | 24.97 | 37.71 | 26.31 | 31.58 | 23.85 |
Position: prone; segment: lumbar; side: left | 20.96 | 14.38 | 19.73 | 13.53 | 22.39 | 21.51 | 17.72 | 16.82 |
Position: prone; segment: lumbar; side: right | 46.83 | 47.58 | 46.67 | 47.22 | 47.84 | 51.33 | 41.92 | 47.00 |
Variables | Girls | Boys | ||||||
---|---|---|---|---|---|---|---|---|
Scoliosis | Scoliotic Posture | Scoliosis | Scoliotic Posture | |||||
Mean mV | SD | Mean mV | SD | Mean mV | SD | Mean mV | SD | |
Prone, position, trunk up, thoracic segment, left side | 53.11 | 27.59 | 51.24 | 26.34 | 56.01 | 31.07 | 53.73 | 25.91 |
Prone, position, trunk up, thoracic segment, right side | 68.83 | 22.61 | 65.70 | 21.12 | 67.76 | 29.11 | 69.65 | 23.73 |
Prone position, trunk up, lumbar segment, left side | 52.53 | 27.07 | 48.36 | 22.52 | 55.36 | 28.82 | 51.89 | 24.76 |
Prone position, trunk up, lumbar segment, right side | 76.65 | 41.29 | 73.24 | 34.78 | 78.55 | 39.26 | 74.08 | 33.65 |
Prone position, lower limbs up, thoracic segment, left side | 36.42 | 18.68 | 34.08 | 17.07 | 38.60 | 23.08 | 40.55 | 24.20 |
Prone position, lower limbs up, thoracic segment, right side | 47.05 | 18.45 | 49.07 | 25.24 | 53.61 | 34.41 | 56.05 | 33.04 |
Prone position, lower limbs up, lumbar segment, left side | 63.44 | 34.21 | 63.50 | 37.75 | 64.47 | 34.76 | 62.73 | 30.46 |
Prone position, lower limbs up, lumbar segment, right side | 94.48 | 47.20 | 85.32 | 36.30 | 95.00 | 42.18 | 91.86 | 32.39 |
Total | 47.17 | 26.65 | 45.60 | 25.46 | 48.72 | 29.74 | 46.34 | 26.13 |
Variables | Thoracic Segment | Lumbar Segment | ||
---|---|---|---|---|
Risk Factor β | Risk Factor β | |||
Standing position | Convex side of curvature | Side of spine: left | 0.5 | 0.18 * |
Side of spine: right | 0.10 * | 0.40 *** | ||
Concave side of curvature | Side of spine: left | 0.01 | 0.21 ** | |
Side of spine: right | 0.09 | 0.36 *** | ||
Prone position | Convex side of curvature | Side of spine: left | 0.61 *** | 0.45 *** |
Side of spine: right | 0.52 *** | 0.25 ** | ||
Concave side of curvature | Side of spine: left | 0.55 *** | 0.49 *** | |
Side of spine: right | 0.25 ** | 0.66 *** | ||
Prone position, trunk up | Convex side of curvature | Side of spine: left | 0.43 *** | 0.002 |
Side of spine: right | 0.51 *** | 0.01 | ||
Concave side of curvature | Side of spine: left | 0.22 ** | 0.12* | |
Side of spine: right | 0.38 *** | 0.25 ** | ||
Prone position, lower limbs up | Convex side of curvature | Side of spine: left | 0.21 ** | 0.19 * |
Side of spine: right | 0.11 * | 0.01 | ||
Concave side of curvature | Side of spine: left | 0.14 * | 0.33 ** | |
Side of spine: right | 0.02 | 0.05 | ||
Convex side of curvature | R2 = 0.80; p < 0.001 | R2 = 0.81; p < 0.001 | ||
Concave side of curvature | R2 = 0.89; p < 0.001 | R2 = 0.62; p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilczyński, J. Relationship between Muscle Tone of the Erector Spinae and the Concave and Convex Sides of Spinal Curvature in Low-Grade Scoliosis among Children. Children 2021, 8, 1168. https://doi.org/10.3390/children8121168
Wilczyński J. Relationship between Muscle Tone of the Erector Spinae and the Concave and Convex Sides of Spinal Curvature in Low-Grade Scoliosis among Children. Children. 2021; 8(12):1168. https://doi.org/10.3390/children8121168
Chicago/Turabian StyleWilczyński, Jacek. 2021. "Relationship between Muscle Tone of the Erector Spinae and the Concave and Convex Sides of Spinal Curvature in Low-Grade Scoliosis among Children" Children 8, no. 12: 1168. https://doi.org/10.3390/children8121168
APA StyleWilczyński, J. (2021). Relationship between Muscle Tone of the Erector Spinae and the Concave and Convex Sides of Spinal Curvature in Low-Grade Scoliosis among Children. Children, 8(12), 1168. https://doi.org/10.3390/children8121168