Neuroimaging at Term Equivalent Age: Is There Value for the Preterm Infant? A Narrative Summary
Abstract
:1. Introduction
2. History of Neuroimaging and Patterns of Brain Injury in the Preterm Population
3. Correlation of Neuroimaging Findings with Neurodevelopmental Outcomes
3.1. Cranial US
Study/Year | Year of Recruitment | Population Characteristics GA in Weeks (toTal Number of Infants) | Ages of Assessment | Lesions with the Highest Correlation | Outcome Measure | Age of Outcome Measure (Corrected Age when Age in Months) | Predictive Result | |||
---|---|---|---|---|---|---|---|---|---|---|
Sens (%) | Spec (%) | PPV (%) | NPV (%) | |||||||
O’Shea et al., 2008 (ELGAN) [69] | 2002–2004 | <28 (1506) | Variable—day 1 and 4 or day 5 and 14 or day 15 to 40th postconceptional weeks or a combination of all above | V.E./Echolucent lesion | MDI +/−VABS ABC < 70 | 24 months | 12–17 | 93–95 | 45 | 75–76 |
PDI of <70 +/−VABS ABC < 70 | 14–17 | 94–96 | 55–61 | 71–72 | ||||||
Kuban et al., 2009 (ELGAN) [74] | 2002–2004 | (1105) | Variable—day 1 and 4 or day 5 and 14 or day 15 to 40th postconceptional weeks or a combination of all above | V.E./Echolucent lesion | CP | 24 months | 32–38 | 94–96 | 44–52 | >92 |
Leijser et al., 2008 [87] | May 2001–Apr 2004 | <32 (40) | Average of 7 US between day of birth until discharge or transfer, and TEA | Major Lesions a | BSID II, MDI, PDI) of <70 | 24 months | 75 | 86 | 43 | 96 |
Woodward et al., 2006 [68] | November 1998–May 2002 | ≤30 (1962) | Minimal by 48 h of life, at 5 to 7 days of age, and again at 4 to 6 weeks of age | Major Lesions a | CP | 24 months | 18 | 85 | - | - |
De Vries et al., 2004 [88] | January 1990–January 1999 | <32 (1460) | Weekly until discharge and 40 weeks PMA | Major Lesions a | CP | 24 months | 76 | 95 | 48 | 99 |
33–36 (469) | Weekly until discharge and 40 weeks PMA | Major Lesions a | CP | 24 months | 86 | 99 | 83 | 99 | ||
Valkama et al., 2000 [89] | November 1993–October 1995 | <34 (51) | Term | Major Lesions a | CP | 18 months | 67 | 85 | - | - |
Pinto-Martin et al. 1995 [90] | September 1984–June 1987 | (1105) | 4 and 24 h and 7 days of life; with 47% also scanned in week 5 and/or Predischarge | PEL/VE | Disabling CP | 24 moths | 54 | 96 | - | - |
Nwaesei et al.1988 [91] | July 1984–June 1985 | ≤32 (110) | US at 1 week | Major Lesions a | CP or BSID III < 85 | 12 months | 16 | 99 | 75 | 85 |
US at 2 weeks | 16 | 99 | 75 | 85 | ||||||
US at 3 weeks | 37 | 99 | 87 | 87 | ||||||
US at 6 weeks | 53 | 99 | 91 | 91 | ||||||
US at 40 weeks PMA | 58 | 100 | 100 | 92 | ||||||
Graham et al. 1987 [92] | January 1984–April 1985 | Selected on weight ≤ 1500 g, not GA (200) | At least twice weekly for the first month and then every week until discharge. | PVH | CP | 18 months | 67 | 53 | 11 | 95 |
Cystic PVL | 67 | 96 | 62 | 97 | ||||||
Prolonged Flare | 17 | 85 | 9 | 92 |
3.2. Magnetic Resonance Imaging
Study/Year | Year of Recruitment | Population Characteristics GA in Weeks (Total Number of Infants) | Lesion with Highest Correlation | Outcome Measure | Age of Outcomes Measures (Corrected Age when Age in Months) | Predictive Result | |||
---|---|---|---|---|---|---|---|---|---|
Sens (%) | Spec (%) | PPV (%) | NPV (%) | ||||||
Parikh et al., 2020 [102] | November 2014 and march 2016 | ≤31 (98) | Moderate-to-severe DWMA | BSID III Cognitive < 70 | 24 months | 100 | 95.7 | - | - |
BSID III language < 70 | 37.5 | 93.9 | |||||||
Slaughter et al., 2016 [103] | August 2005 and November 2007 | Based on the weight of ELBW, not GA (122) | Diffuse cystic changes | Death or CP | 18–24 months | 33 | 94 | - | - |
Gyral maturational delay | Death, CP, BSID III < 80, or sensory challenges (vision or hearing loss) | 33 | 97 | ||||||
Spittle et al., 2011 [104] | 2001 and 2003 | <30 weeks or birthweight < 1250 g (227) | Moderate-to-severe WMA (30) | CP or MABC < 5th percentile | 5 years | - | - | 34 | 91.4 |
Any Severity WMA | 92.5 | 40.7 | |||||||
Woodward et al., 2006 [68] | November 1998–May 2002 | ≤30 (1962) | Moderate-to-severe WMA in (35) 21% | CP or severe cognitive or motor delay | 24 months | 41–65 | 84–85 | - | - |
Any Severity WMA | 88–94 | 30–31 | |||||||
Valkama et al., 2000 [89] | November 1993–October 1995 | <4 (51) | Parenchymal lesions: PVH, PVL, or infarct WMA | CP | 18 month | 100 | 79 | - | - |
3.3. Clinical Implications of Imaging at TEA
Cranial US. | |||||||||||
Study/Year | Year of Recruitment | Population with no US Abnormalities | Ages of Assessment | Corrected Age of Outcomes Measures | Outcome | ||||||
Cognition | CP (%) | HI. (%) | VI (%) | NDI (%) | Other (%) | ||||||
BSID MDI < 70 (%) | BSID PDI < 70 (%) | ||||||||||
Hou et al., 2020 [119] | 2005 to 2010 | BW < 1250 g (n) 192 | Serially from birth until Term | 2 years | 22.4 BSID III < 80 | - | 2.1 | - | - | - | - |
Munck et al., 2010 [120] | 2001 to 2006 | VLBW infants BW < 1500 g (n) 91 | Serially at 3–5 days, 7–10 days, at 1 month and then monthly discharge and then at term | 2 years | 2 BSID II | - | 0 | 0 | - | 2 | ID 2 |
Kuban et al., 2009 (ELGAN) [74] | 2002 to 2004 | <28 weeks infants (n) 739 | Variable—day 1 and 4 or day 5 and 14 or day 15 to 40th postconceptional weeks or a combination of all above | 2 years | - | - | 6 | - | - | - | - |
Laptook et al., 2005 [121] | 1995 to 1999 | GA 26 +/− 2 weeks BW < 1000 g infants (n) 1473 | mean age of 6 and 47 days | 18 to 22 months | 25 BSIDII | - | 9 | - | - | 29 | ID 25 |
Adams-Chapman et al., 2008 [122] | 1993 to 2002 | BW 401–1000 g infants (n) 5163 | n.s. | 18 to 22 months | 27 BSID IIR | 17 BSID IIR | 10 | 1 | 9 | 35 | ID 27 |
Ancel et al., 2006 (EPIPAGE) [73] | 1997 | GA 22 and 32 weeks infants (n) 1238 | 1 to 3 times in the first 2 weeks of life and then every 2 weeks | 2 years | - | - | 4.4 | - | - | - | - |
Patra et al., 2006 [123] | 1992 to 2000 | GA 26.5 weeks ± 1.9 infants (n) 258 | at least 2 in the first 10 days of life, then 30 days and at least 1 before discharge | 20 months | 25 BSIDII | 28 BSID-II | 3 | 2 | - | 28 | ID 25 |
Sherlook et al., 2005 [124] | 1991 to 1992 | GA < 28 weeks BW < 1000 g infants (n) 180 | At least 1 by 1st week of life, at 28 days, and prior to discharge | 8 years chronological age | - | - | 6.7 | - | - | - | Low reading 24.4% Low spelling 19.2% Low arithmetic 27.6% |
Whitaker et al. 1996 [125] | 1984 to 1987 | GA 32.1 ± 3.0 BW 501 to 2000 g infants (n) 468 | 4 and 24 h and 7 days of life; with 47% also scanned in week 5 and/or Predischarge | 6 years | - | - | - | - | - | - | ID1.3 |
TEA MRI | |||||||||||
Study/Year | Year of recruitment | Population with no US abnormalities | Age of outcomes measures | Outcome | |||||||
Cognition | CP (%) | HI. (%) | VI (%) | NDI (%) | Other (%) | ||||||
BSID MDI < 70 (%) | BSID PDI < 70 (%) | ||||||||||
Anderson et al., 2017 [97] | 2001 to 2003 | 60 infants GA < 30 weeks BW < 1250 g | 7 years corrected age | - | - | - | - | - | - | Intelligence quotient 100.2 (14.7) Mean (SD.) Motor 9.5 (3.7) Mean (SD.) | |
Munck et al., 2010 [120] | 2001 and 2006 | 182 infants BW < 1500 g | 2 years corrected age | - | - | 2 | - | - | 2 | ID 0 | |
Woodward et al., 2006 [68] | 1998 to 2002 | GA < 30 weeks | No WMA (n) 47 | 2 years corrected age | 4 | - | 2 | - | - | 15 | ID 7 |
No GrMA (n) 85 | - | - | 5 | - | - | 21 | 1D 10 |
4. Effect of Diagnostic MRI on Parents and Further Follow-Up
“We are not angry at the hospital, but knowing what we know now, we never would have consented to an MRI, because it served no purpose other than to traumatize a family that had already been through so much and affect our ability to enjoy bonding with our child.”
5. Moving from Research to Clinical Practice
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horbar, J.D.; Badger, G.J.; Carpenter, J.H.; Fanaroff, A.A.; Kilpatrick, S.; LaCorte, M.; Phibbs, R.; Soll, R.F. Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics 2002, 110, 143–151. [Google Scholar] [CrossRef]
- Wilson-Costello, D.; Friedman, H.; Minich, N.; Siner, B.; Taylor, G.; Schluchter, M.; Hack, M. Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 2007, 119, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Costello, D.; Friedman, H.; Minich, N.; Fanaroff, A.A.; Hack, M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 2005, 115, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Woodward, L.J.; Clark, C.A.; Bora, S.; Inder, T.E. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS ONE 2012, 7, e51879. [Google Scholar] [CrossRef]
- Guillot, M.; Chau, V.; Lemyre, B. Routine imaging of the preterm neonatal brain. Paediatr. Child Health 2020, 25, 249–262. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.; Weisglas-Kuperus, N.; van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728. [Google Scholar] [CrossRef]
- Stahlmann, N.; Rapp, M.; Herting, E.; Thyen, U. Outcome of extremely premature infants at early school age: Health-related quality of life and neurosensory, cognitive, and behavioral outcomes in a population-based sample in northern Germany. Neuropediatrics 2009, 40, 112–119. [Google Scholar] [CrossRef]
- Litt, J.; Taylor, H.G.; Klein, N.; Hack, M. Learning disabilities in children with very low birthweight: Prevalence, neuropsychological correlates, and educational interventions. J. Learn Disabil. 2005, 38, 130–141. [Google Scholar] [CrossRef]
- Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment--United States, 2003. MMWR Morb. Mortal. Wkly Rep. 2004, 53, 57–59.
- Hintz, S.R.; Kendrick, D.E.; Vohr, B.R.; Poole, W.K.; Higgins, R.D. Community supports after surviving extremely low-birth-weight, extremely preterm birth: Special outpatient services in early childhood. Arch. Pediatr. Adolesc Med. 2008, 162, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litt, J.S.; Glymour, M.M.; Hauser-Cram, P.; Hehir, T.; McCormick, M.C. Early Intervention Services Improve School-age Functional Outcome Among Neonatal Intensive Care Unit Graduates. Acad. Pediatr. 2018, 18, 468–474. [Google Scholar] [CrossRef]
- Mills, I.S.; Doyle, L.W.; Cheong, J.L.; Roberts, G. Rates of early intervention services in children born extremely preterm/extremely low birthweight. J. Paediatr. Child Health 2018, 54, 74–79. [Google Scholar] [CrossRef]
- Spittle, A.; Orton, J.; Anderson, P.J.; Boyd, R.; Doyle, L.W. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 2015, Cd005495. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Hintz, S.R.; Vohr, B.R.; Bann, C.M.; Taylor, H.G.; Das, A.; Gustafson, K.E.; Yolton, K.; Watson, V.E.; Lowe, J.; DeAnda, M.E.; et al. Preterm Neuroimaging and School-Age Cognitive Outcomes. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.P.; Wachs, T.D.; Meeks Gardner, J.; Lozoff, B.; Wasserman, G.A.; Pollitt, E.; Carter, J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef]
- Ment, L.R.; Bada, H.S.; Barnes, P.; Grant, P.E.; Hirtz, D.; Papile, L.A.; Pinto-Martin, J.; Rivkin, M.; Slovis, T.L. Practice parameter: Neuroimaging of the neonate: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002, 58, 1726–1738. [Google Scholar] [CrossRef] [Green Version]
- Hand, I.L.; Shellhaas, R.A.; Milla, S.S. Routine Neuroimaging of the Preterm Brain. Pediatrics 2020, 146. [Google Scholar] [CrossRef]
- Patrick, J.T.; Fry, F.J.; Gardner, G.; Franklin, T.D.; Muller, J.; Heimburger, R.F. Ultrasound Tomography of Excised Brains: Normal and Pathological Anatomy. In Ultrasound in Medicine: Volume 4; White, D., Lyons, E.A., Eds.; Springer US: Boston, MA, USA, 1978; pp. 269–276. [Google Scholar] [CrossRef]
- Volpe, J.J. Neonatal periventricular hemorrhage: Past, present, and future. J. Pediatr. 1978, 92, 693–696. [Google Scholar] [CrossRef]
- Yu, C.C. Radiation safety in the neonatal intensive care unit: Too little or too much concern? Pediatr. Neonatol. 2010, 51, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Volpe, J.J. Neurology of the Newborn; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Robinson, S. Neonatal posthemorrhagic hydrocephalus from prematurity: Pathophysiology and current treatment concepts. J. Neurosurg. Pediatr. 2012, 9, 242–258. [Google Scholar] [CrossRef]
- Volpe, J.J. Neurologic outcome of prematurity. Arch. Neurol. 1998, 55, 297–300. [Google Scholar] [CrossRef]
- Bassan, H. Intracranial hemorrhage in the preterm infant: Understanding it, preventing it. Clin. Perinatol. 2009, 36, 737–762. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.S.; Eken, P.; Dubowitz, L.M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res. 1992, 49, 1–6. [Google Scholar] [CrossRef]
- Jung, H.N.; Suh, S.I.; Park, A.; Kim, G.H.; Ryoo, I. Early Prediction of Periventricular Leukomalacia Using Quantitative Texture Analysis of Serial Cranial Ultrasound Scans in Very Preterm Infants. Ultrasound Med. Biol. 2019, 45, 2658–2665. [Google Scholar] [CrossRef] [PubMed]
- Steggerda, S.J.; Leijser, L.M.; Wiggers-de Bruïne, F.T.; van der Grond, J.; Walther, F.J.; van Wezel-Meijler, G. Cerebellar injury in preterm infants: Incidence and findings on US and MR images. Radiology 2009, 252, 190–199. [Google Scholar] [CrossRef]
- Kwon, S.H.; Vasung, L.; Ment, L.R.; Huppi, P.S. The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin. Perinatol. 2014, 41, 257–283. [Google Scholar] [CrossRef]
- Papile, L.-A.; Munsick-Bruno, G.; Schaefer, A. Relationship of cerebral intraventricular hemorrhage and early childhood neurologic handicaps. J. Pediatrics 1983, 103, 273–277. [Google Scholar] [CrossRef]
- Barnette, A.R.; Horbar, J.D.; Soll, R.F.; Pfister, R.H.; Nelson, K.B.; Kenny, M.J.; Raju, T.N.K.; Bingham, P.M.; Inder, T.E. Neuroimaging in the Evaluation of Neonatal Encephalopathy. Pediatrics 2014, 133, e1508. [Google Scholar] [CrossRef] [Green Version]
- Roland, E.H.; Poskitt, K.; Rodriguez, E.; Lupton, B.A.; Hill, A. Perinatal hypoxic-ischemic thalamic injury: Clinical features and neuroimaging. Ann. Neurol. 1998, 44, 161–166. [Google Scholar] [CrossRef]
- Chau, V.; Poskitt, K.J.; Sargent, M.A.; Lupton, B.A.; Hill, A.; Roland, E.; Miller, S.P. Comparison of computer tomography and magnetic resonance imaging scans on the third day of life in term newborns with neonatal encephalopathy. Pediatrics 2009, 123, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Flodmark, O.; Becker, L.E.; Harwood-Nash, D.C.; Fitzhardinge, P.M.; Fitz, C.R.; Chuang, S.H. Correlation between computed tomography and autopsy in premature and full-term neonates that have suffered perinatal asphyxia. Radiology 1980, 137, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, L.M.; Bydder, G.M. Nuclear magnetic resonance imaging in the diagnosis and follow-up of neonatal cerebral injury. Clin. Perinatol. 1985, 12, 243–260. [Google Scholar] [CrossRef]
- McArdle, C.B.; Richardson, C.J.; Hayden, C.K.; Nicholas, D.A.; Amparo, E.G. Abnormalities of the neonatal brain: MR imaging. Part II. Hypoxic-ischemic brain injury. Radiology 1987, 163, 395–403. [Google Scholar] [CrossRef]
- Abdelhalim, A.N.; Alberico, R.A. Pediatric neuroimaging. Neurol. Clin. 2009, 27, 285–301. [Google Scholar] [CrossRef]
- Ketonen, L.M.; Valanne, L. Neuroimaging of pediatric diseases. Semin Neurol. 2008, 28, 558–569. [Google Scholar] [CrossRef]
- Counsell, S.J.; Edwards, A.D.; Chew, A.T.; Anjari, M.; Dyet, L.E.; Srinivasan, L.; Boardman, J.P.; Allsop, J.M.; Hajnal, J.V.; Rutherford, M.A.; et al. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 2008, 131, 3201–3208. [Google Scholar] [CrossRef] [Green Version]
- Benavente-Fernández, I.; Lubián-López, P.S.; Zuazo-Ojeda, M.A.; Jiménez-Gómez, G.; Lechuga-Sancho, A.M. Safety of magnetic resonance imaging in preterm infants. Acta Paediatr. 2010, 99, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, M.A.; Pennock, J.M.; Dubowitz, L.M. Cranial ultrasound and magnetic resonance imaging in hypoxic-ischaemic encephalopathy: A comparison with outcome. Dev. Med. Child Neurol. 1994, 36, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Hintz, S.R.; O’Shea, M. Neuroimaging and neurodevelopmental outcomes in preterm infants. Semin Perinatol. 2008, 32, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hintz, S.R.; Barnes, P.D.; Bulas, D.; Slovis, T.L.; Finer, N.N.; Wrage, L.A.; Das, A.; Tyson, J.E.; Stevenson, D.K.; Carlo, W.A.; et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015, 135, e32–e42. [Google Scholar] [CrossRef] [Green Version]
- Burkitt, K.; Kang, O.; Jyoti, R.; Mohamed, A.L.; Chaudhari, T. Comparison of cranial ultrasound and MRI for detecting BRAIN injury in extremely preterm infants and correlation with neurological outcomes at 1 and 3 years. Eur. J. Pediatr. 2019, 178, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.C.; Inder, T.E.; Bear, M.J.; Hunt, R.W.; Anderson, P.J.; Doyle, L.W. Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J. Pediatr. 2009, 155, 32–38.e3. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.; Djurdjevic, T.; Griesmaier, E.; Biermayr, M.; Gizewski, E.R.; Kiechl-Kohlendorfer, U. Routine Magnetic Resonance Imaging at Term-Equivalent Age Detects Brain Injury in 25% of a Contemporary Cohort of Very Preterm Infants. PLoS ONE 2017, 12, e0169442. [Google Scholar] [CrossRef]
- Inder, T.E.; Warfield, S.K.; Wang, H.; Hüppi, P.S.; Volpe, J.J. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005, 115, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Inder, T.E.; Wells, S.J.; Mogridge, N.B.; Spencer, C.; Volpe, J.J. Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. J. Pediatr. 2003, 143, 171–179. [Google Scholar] [CrossRef]
- Parodi, A.; Malova, M.; Cardiello, V.; Raffa, S.; Re, M.; Calevo, M.G.; Severino, M.; Tortora, D.; Morana, G.; Rossi, A.; et al. Punctate white matter lesions of preterm infants: Risk factor analysis. Eur. J. Paediatr. Neurol. 2019, 23, 733–739. [Google Scholar] [CrossRef]
- Pierson, C.R.; Al Sufiani, F. Preterm birth and cerebellar neuropathology. Semin Fetal. Neonatal. Med. 2016, 21, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, H.; Neil, J.J.; Inder, T.E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am. J. Neuroradiol. 2013, 34, 2208–2214. [Google Scholar] [CrossRef]
- Kidokoro, H.; Anderson, P.J.; Doyle, L.W.; Woodward, L.J.; Neil, J.J.; Inder, T.E. Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics 2014, 134, e444–e453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, E.W.Y.; Chau, V.; Lavoie, R.; Chakravarty, M.M.; Guo, T.; Synnes, A.; Zwicker, J.; Grunau, R.; Miller, S.P. Neurologic Examination Findings Associated With Small Cerebellar Volumes After Prematurity. J. Child. Neurol. 2019, 34, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Tam, E.W.; Rosenbluth, G.; Rogers, E.E.; Ferriero, D.M.; Glidden, D.; Goldstein, R.B.; Glass, H.C.; Piecuch, R.E.; Barkovich, A.J. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J. Pediatr. 2011, 158, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijler, G.; Steggerda, S.J.; Gautier, A. Neonatal Cranial Ultrasonography; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Parodi, A.; Rossi, A.; Severino, M.; Morana, G.; Sannia, A.; Calevo, M.G.; Malova, M.; Ramenghi, L.A. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch. Dis. Child. Fetal Neonatal. Ed. 2015, 100, F289–F292. [Google Scholar] [CrossRef]
- Edwards, A.D.; Redshaw, M.E.; Kennea, N.; Rivero-Arias, O.; Gonzales-Cinca, N.; Nongena, P.; Ederies, M.; Falconer, S.; Chew, A.; Omar, O.; et al. Effect of MRI on preterm infants and their families: A randomised trial with nested diagnostic and economic evaluation. Arch. Dis. Child. Fetal Neonatal. Ed. 2018, 103, F15–F21. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.M.; Neil, J.J.; McKinstry, R.C.; Inder, T.E. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr. Radiol. 2008, 38, 260–264. [Google Scholar] [CrossRef]
- O’Regan, K.; Filan, P.; Pandit, N.; Maher, M.; Fanning, N. Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging. Br. J. Radiol. 2012, 85, 363–367. [Google Scholar] [CrossRef]
- Arthurs, O.J.; Edwards, A.; Austin, T.; Graves, M.J.; Lomas, D.J. The challenges of neonatal magnetic resonance imaging. Pediatr. Radiol. 2012, 42, 1183–1194. [Google Scholar] [CrossRef]
- Hillenbrand, C.M.; Reykowski, A. MR Imaging of the Newborn: A technical perspective. Magn. Reson. Imaging Clin. N. Am. 2012, 20, 63–79. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Davis, P.C.; Sanders, C.L.; Churchill, L.H. Sedation for pediatric imaging studies. Neuroimaging Clin. N. Am. 1999, 9, 1–10. [Google Scholar]
- Stokowski, L.A. Ensuring safety for infants undergoing magnetic resonance imaging. Adv. Neonatal. Care 2005, 5, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Morel, B.; Antoni, G.; Teglas, J.P.; Bloch, I.; Adamsbaum, C. Neonatal brain MRI: How reliable is the radiologist’s eye? Neuroradiology 2016, 58, 189–193. [Google Scholar] [CrossRef]
- Morel, B.; Antoni, G.; Teglas, J.P.; Bloch, I.; Adamsbaum, C. Erratum to: Neonatal brain MRI: How reliable is the radiologist’s eye? Neuroradiology 2016, 58, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arulkumaran, S.; Arichi, T. Is there predictive value in early magnetic resonance imaging of the brain in infants born preterm? Dev. Med. Child. Neurol. 2018, 60, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, L.J.; Anderson, P.J.; Austin, N.C.; Howard, K.; Inder, T.E. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 2006, 355, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shea, T.M.; Kuban, K.C.; Allred, E.N.; Paneth, N.; Pagano, M.; Dammann, O.; Bostic, L.; Brooklier, K.; Butler, S.; Goldstein, D.J.; et al. Neonatal cranial ultrasound lesions and developmental delays at 2 years of age among extremely low gestational age children. Pediatrics 2008, 122, e662–e669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudehope, D.I.; Masel, J.; Mohay, H.; O’Callaghan, M.; Burns, Y.; Rogers, Y.; Williams, G. Neonatal cranial ultrasonography as predictor of 2 year outcome of very low birthweight infants. Aust. Paediatr. J. 1989, 25, 66–71. [Google Scholar] [CrossRef]
- Topp, M.; Uldall, P.; Greisen, G. Cerebral palsy births in eastern Denmark, 1987--90: Implications for neonatal care. Paediatr. Perinat Epidemiol. 2001, 15, 271–277. [Google Scholar] [CrossRef]
- Hoei-Hansen, C.E.; Laursen, B.; Langhoff-Roos, J.; Rackauskaite, G.; Uldall, P. Decline in severe spastic cerebral palsy at term in Denmark 1999–2007. Eur. J. Paediatr. Neurol. 2019, 23, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Ancel, P.Y.; Livinec, F.; Larroque, B.; Marret, S.; Arnaud, C.; Pierrat, V.; Dehan, M.; N’Guyen, S.; Escande, B.; Burguet, A.; et al. Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: The EPIPAGE cohort study. Pediatrics 2006, 117, 828–835. [Google Scholar] [CrossRef]
- Kuban, K.C.; Allred, E.N.; O’Shea, T.M.; Paneth, N.; Pagano, M.; Dammann, O.; Leviton, A.; Du Plessis, A.; Westra, S.J.; Miller, C.R.; et al. Cranial ultrasound lesions in the NICU predict cerebral palsy at age 2 years in children born at extremely low gestational age. J. Child. Neurol. 2009, 24, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Cizmeci, M.N.; de Vries, L.S.; Ly, L.G.; van Haastert, I.C.; Groenendaal, F.; Kelly, E.N.; Traubici, J.; Whyte, H.E.; Leijser, L.M. Periventricular Hemorrhagic Infarction in Very Preterm Infants: Characteristic Sonographic Findings and Association with Neurodevelopmental Outcome at Age 2 Years. J. Pediatr. 2020, 217, 79–85.e71. [Google Scholar] [CrossRef] [PubMed]
- Pierrat, V.; Marchand-Martin, L.; Arnaud, C.; Kaminski, M.; Resche-Rigon, M.; Lebeaux, C.; Bodeau-Livinec, F.; Morgan, A.S.; Goffinet, F.; Marret, S.; et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. Bmj 2017, 358, j3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, A.S.; Hintz, S.R.; Goldstein, R.F.; Ambalavanan, N.; Bann, C.M.; Stoll, B.J.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; et al. Outcomes of extremely preterm infants following severe intracranial hemorrhage. J. Perinatol. 2014, 34, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Maitre, N.L.; Marshall, D.D.; Price, W.A.; Slaughter, J.C.; O’Shea, T.M.; Maxfield, C.; Goldstein, R.F. Neurodevelopmental outcome of infants with unilateral or bilateral periventricular hemorrhagic infarction. Pediatrics 2009, 124, e1153–e1160. [Google Scholar] [CrossRef] [Green Version]
- Bassan, H.; Limperopoulos, C.; Visconti, K.; Mayer, D.L.; Feldman, H.A.; Avery, L.; Benson, C.B.; Stewart, J.; Ringer, S.A.; Soul, J.S.; et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007, 120, 785–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltirovska Salamon, A.; Groenendaal, F.; van Haastert, I.C.; Rademaker, K.J.; Benders, M.J.; Koopman, C.; de Vries, L.S. Neuroimaging and neurodevelopmental outcome of preterm infants with a periventricular haemorrhagic infarction located in the temporal or frontal lobe. Dev. Med. Child. Neurol. 2014, 56, 547–555. [Google Scholar] [CrossRef]
- Fawer, C.L.; Diebold, P.; Calame, A. Periventricular leucomalacia and neurodevelopmental outcome in preterm infants. Arch. Dis. Child. 1987, 62, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Weiss, H.E.; Goldstein, R.B.; Piecuch, R.E. A critical review of cranial ultrasounds: Is there a closer association between intraventricular blood, white matter abnormalities or cysts, and cerebral palsy? Clin. Pediatr. (Phila) 1999, 38, 319–323. [Google Scholar] [CrossRef]
- Al Rifai, M.T.; Al Tawil, K.I. The Neurological Outcome of Isolated PVL and Severe IVH in Preterm Infants: Is It Fair to Compare? Pediatr. Neurol. 2015, 53, 427–433. [Google Scholar] [CrossRef]
- Resch, B.; Resch, E.; Maurer-Fellbaum, U.; Pichler-Stachl, E.; Riccabona, M.; Hofer, N.; Urlesberger, B. The whole spectrum of cystic periventricular leukomalacia of the preterm infant: Results from a large consecutive case series. Childs Nerv. Syst. 2015, 31, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Gotardo, J.W.; Volkmer, N.d.F.V.; Stangler, G.P.; Dornelles, A.D.; Bohrer, B.B.d.A.; Carvalho, C.G. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223427. [Google Scholar] [CrossRef]
- Banihani, R.; Church, P.T.; Luther, M.; Kiss, A.; Asztalos, E.V. Outcomes of Preterm Infants with a Periventricular Venous Infarction in the Neonatal Period. J. Pediatric Neurol. 2019, 17, 057–064. [Google Scholar] [CrossRef]
- Leijser, L.M.; Liauw, L.; Veen, S.; de Boer, I.P.; Walther, F.J.; van Wezel-Meijler, G. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants. Neuroradiology 2008, 50, 799–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, L.S.; Van Haastert, I.L.; Rademaker, K.J.; Koopman, C.; Groenendaal, F. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J. Pediatr. 2004, 144, 815–820. [Google Scholar] [CrossRef]
- Valkama, A.M.; Pääkkö, E.L.; Vainionpää, L.K.; Lanning, F.P.; Ilkko, E.A.; Koivisto, M.E. Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr. 2000, 89, 348–355. [Google Scholar] [CrossRef]
- Pinto-Martin, J.A.; Riolo, S.; Cnaan, A.; Holzman, C.; Susser, M.W.; Paneth, N. Cranial ultrasound prediction of disabling and nondisabling cerebral palsy at age two in a low birth weight population. Pediatrics 1995, 95, 249–254. [Google Scholar] [PubMed]
- Nwaesei, C.G.; Allen, A.C.; Vincer, M.J.; Brown, S.J.; Stinson, D.A.; Evans, J.R.; Byrne, J.M. Effect of timing of cerebral ultrasonography on the prediction of later neurodevelopmental outcome in high-risk preterm infants. J. Pediatr. 1988, 112, 970–975. [Google Scholar] [CrossRef]
- Graham, M.; Levene, M.I.; Trounce, J.Q.; Rutter, N. Prediction of cerebral palsy in very low birthweight infants: Prospective ultrasound study. Lancet 1987, 2, 593–596. [Google Scholar] [CrossRef]
- Maalouf, E.F.; Duggan, P.J.; Counsell, S.J.; Rutherford, M.A.; Cowan, F.; Azzopardi, D.; Edwards, A.D. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001, 107, 719–727. [Google Scholar] [CrossRef]
- Maalouf, E.F.; Duggan, P.J.; Rutherford, M.A.; Counsell, S.J.; Fletcher, A.M.; Battin, M.; Cowan, F.; Edwards, A.D. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J. Pediatr. 1999, 135, 351–357. [Google Scholar] [CrossRef]
- Roelants-van Rijn, A.M.; Groenendaal, F.; Beek, F.J.; Eken, P.; van Haastert, I.C.; de Vries, L.S. Parenchymal brain injury in the preterm infant: Comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics 2001, 32, 80–89. [Google Scholar] [CrossRef]
- Iwata, S.; Nakamura, T.; Hizume, E.; Kihara, H.; Takashima, S.; Matsuishi, T.; Iwata, O. Qualitative brain MRI at term and cognitive outcomes at 9 years after very preterm birth. Pediatrics 2012, 129, e1138–e1147. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.J.; Treyvaud, K.; Neil, J.J.; Cheong, J.L.Y.; Hunt, R.W.; Thompson, D.K.; Lee, K.J.; Doyle, L.W.; Inder, T.E. Associations of Newborn Brain Magnetic Resonance Imaging with Long-Term Neurodevelopmental Impairments in Very Preterm Children. J. Pediatr. 2017, 187, 58–65.e51. [Google Scholar] [CrossRef]
- Jobe, A.H. MRI for preterm infants. J. Pediatr. 2009, 155, A1–A2. [Google Scholar] [CrossRef] [PubMed]
- Eichenwald, E.C. Neuroimaging of extremely preterm infants: Perils of prediction. Pediatrics 2015, 135, e176–e177. [Google Scholar] [CrossRef]
- Horsch, S.; Skiöld, B.; Hallberg, B.; Nordell, B.; Nordell, A.; Mosskin, M.; Lagercrantz, H.; Adén, U.; Blennow, M. Cranial ultrasound and MRI at term age in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal. Ed. 2010, 95, F310–F314. [Google Scholar] [CrossRef] [Green Version]
- Arulkumaran, S.; Tusor, N.; Chew, A.; Falconer, S.; Kennea, N.; Nongena, P.; Hajnal, J.V.; Counsell, S.J.; Rutherford, M.A.; Edwards, A.D. MRI Findings at Term-Corrected Age and Neurodevelopmental Outcomes in a Large Cohort of Very Preterm Infants. AJNR Am. J. Neuroradiol. 2020, 41, 1509–1516. [Google Scholar] [CrossRef]
- Parikh, N.A.; He, L.; Priyanka Illapani, V.S.; Altaye, M.; Folger, A.T.; Yeates, K.O. Objectively Diagnosed Diffuse White Matter Abnormality at Term Is an Independent Predictor of Cognitive and Language Outcomes in Infants Born Very Preterm. J. Pediatr. 2020, 220, 56–63. [Google Scholar] [CrossRef]
- Slaughter, L.A.; Bonfante-Mejia, E.; Hintz, S.R.; Dvorchik, I.; Parikh, N.A. Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants. Neonatology 2016, 110, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Spittle, A.J.; Cheong, J.; Doyle, L.W.; Roberts, G.; Lee, K.J.; Lim, J.; Hunt, R.W.; Inder, T.E.; Anderson, P.J. Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Dev. Med. Child. Neurol. 2011, 53, 1000–1006. [Google Scholar] [CrossRef]
- George, J.M.; Pannek, K.; Rose, S.E.; Ware, R.S.; Colditz, P.B.; Boyd, R.N. Diagnostic accuracy of early magnetic resonance imaging to determine motor outcomes in infants born preterm: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2018, 60, 134–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van’t Hooft, J.; van der Lee, J.H.; Opmeer, B.C.; Aarnoudse-Moens, C.S.; Leenders, A.G.; Mol, B.W.; de Haan, T.R. Predicting developmental outcomes in premature infants by term equivalent MRI: Systematic review and meta-analysis. Syst. Rev. 2015, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Limperopoulos, C.; Bassan, H.; Gauvreau, K.; Robertson, R.L., Jr.; Sullivan, N.R.; Benson, C.B.; Avery, L.; Stewart, J.; Soul, J.S.; Ringer, S.A.; et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 2007, 120, 584–593. [Google Scholar] [CrossRef]
- Dyet, L.E.; Kennea, N.; Counsell, S.J.; Maalouf, E.F.; Ajayi-Obe, M.; Duggan, P.J.; Harrison, M.; Allsop, J.M.; Hajnal, J.; Herlihy, A.H.; et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006, 118, 536–548. [Google Scholar] [CrossRef]
- Hortensius, L.M.; Dijkshoorn, A.B.C.; Ecury-Goossen, G.M.; Steggerda, S.J.; Hoebeek, F.E.; Benders, M.; Dudink, J. Neurodevelopmental Consequences of Preterm Isolated Cerebellar Hemorrhage: A Systematic Review. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [Green Version]
- Zayek, M.M.; Benjamin, J.T.; Maertens, P.; Trimm, R.F.; Lal, C.V.; Eyal, F.G. Cerebellar hemorrhage: A major morbidity in extremely preterm infants. J. Perinatol. 2012, 32, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omizzolo, C.; Scratch, S.E.; Stargatt, R.; Kidokoro, H.; Thompson, D.K.; Lee, K.J.; Cheong, J.; Neil, J.; Inder, T.E.; Doyle, L.W.; et al. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm. Memory 2014, 22, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Omizzolo, C.; Thompson, D.K.; Scratch, S.E.; Stargatt, R.; Lee, K.J.; Cheong, J.; Roberts, G.; Doyle, L.W.; Anderson, P.J. Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm. J. Int. Neuropsychol. Soc. 2013, 19, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.L.; Scratch, S.E.; Thompson, D.K.; Inder, T.E.; Doyle, L.W.; Anderson, J.F.; Anderson, P.J. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology 2014, 28, 552–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.S.; Kloth, A.D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83, 518–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Mir, I.; Chalak, L. Brain imaging in preterm infants <32 weeks gestation: A clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr. Res. 2018, 84, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Qiu, S.J.; Chen, W.J.; Gao, X.R.; Li, Y.; Cao, J.; Zhang, J.J. Predictive Value of Cranial Ultrasound for Neurodevelopmental Outcomes of Very Preterm Infants with Brain Injury. Chin. Med. J. (Engl.) 2018, 131, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Tang, P.H.; Agarwal, P. The most useful cranial ultrasound predictor of neurodevelopmental outcome at 2 years for preterm infants. Clin. Radiol. 2020, 75, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Munck, P.; Haataja, L.; Maunu, J.; Parkkola, R.; Rikalainen, H.; Lapinleimu, H.; Lehtonen, L. Cognitive outcome at 2 years of age in Finnish infants with very low birth weight born between 2001 and 2006. Acta Paediatr. 2010, 99, 359–366. [Google Scholar] [CrossRef]
- Laptook, A.R.; O’Shea, T.M.; Shankaran, S.; Bhaskar, B. Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: Prevalence and antecedents. Pediatrics 2005, 115, 673–680. [Google Scholar] [CrossRef]
- Adams-Chapman, I.; Hansen, N.I.; Stoll, B.J.; Higgins, R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 2008, 121, e1167–e1177. [Google Scholar] [CrossRef] [Green Version]
- Patra, K.; Wilson-Costello, D.; Taylor, H.G.; Mercuri-Minich, N.; Hack, M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: Effects on neurodevelopment. J. Pediatr. 2006, 149, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, R.L.; Anderson, P.J.; Doyle, L.W. Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Hum. Dev. 2005, 81, 909–916. [Google Scholar] [CrossRef]
- Whitaker, A.H.; Feldman, J.F.; Van Rossem, R.; Schonfeld, I.S.; Pinto-Martin, J.A.; Torre, C.; Blumenthal, S.R.; Paneth, N.S. Neonatal cranial ultrasound abnormalities in low birth weight infants: Relation to cognitive outcomes at six years of age. Pediatrics 1996, 98, 719–729. [Google Scholar] [CrossRef]
- Anderson, P.J.; Cheong, J.L.; Thompson, D.K. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol. 2015, 39, 147–158. [Google Scholar] [CrossRef]
- Roze, E.; Van Braeckel, K.N.; van der Veere, C.N.; Maathuis, C.G.; Martijn, A.; Bos, A.F. Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics 2009, 123, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Levene, M.I. Is neonatal cerebral ultrasound just for the voyeur? Arch. Dis. Child. 1988, 63, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A.; Knapp, M.; Parsonage, M. Lifetime costs of perinatal anxiety and depression. J. Affect Disord. 2016, 192, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelkowitz, P.; Na, S.; Wang, T.; Bardin, C.; Papageorgiou, A. Early maternal anxiety predicts cognitive and behavioural outcomes of VLBW children at 24 months corrected age. Acta Paediatr. 2011, 100, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Peeples, E.S. Utilizing Neonatal Brain Imaging to Predict Neurodevelopmental Outcomes. In Follow-Up for NICU Graduates: Promoting Positive Developmental and Behavioral Outcomes for At-Risk Infants; Needelman, H., Jackson, B.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 59–88. [Google Scholar] [CrossRef]
- Nordhov, S.M.; Rønning, J.A.; Dahl, L.B.; Ulvund, S.E.; Tunby, J.; Kaaresen, P.I. Early intervention improves cognitive outcomes for preterm infants: Randomized controlled trial. Pediatrics 2010, 126, e1088–e1094. [Google Scholar] [CrossRef]
- Spittle, A.J.; Orton, J.; Doyle, L.W.; Boyd, R. Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst. Rev. 2007, Cd005495. [Google Scholar] [CrossRef] [Green Version]
- Janvier, A.; Barrington, K. Trying to predict the future of ex-preterm infants: Who benefits from a brain MRI at term? Acta Paediatr. 2012, 101, 1016–1017. [Google Scholar] [CrossRef]
- Nongena, P.; Ederies, A.; Azzopardi, D.V.; Edwards, A.D. Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Arch. Dis. Child. Fetal Neonatal. Ed. 2010, 95, F388–F390. [Google Scholar] [CrossRef] [Green Version]
- Pearce, R.; Baardsnes, J. Term MRI for small preterm babies: Do parents really want to know and why has nobody asked them? Acta Paediatr. 2012, 101, 1013–1015. [Google Scholar] [CrossRef]
- Harvey, M.E.; Nongena, P.; Gonzalez-Cinca, N.; Edwards, A.D.; Redshaw, M.E. Parents’ experiences of information and communication in the neonatal unit about brain imaging and neurological prognosis: A qualitative study. Acta Paediatr. 2013, 102, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Sudia-Robinson, T.M.; Freeman, S.B. Communication patterns and decision making among parents and health care providers in the neonatal intensive care unit: A case study. Heart Lung. 2000, 29, 143–148. [Google Scholar] [CrossRef]
- Fowlie, P.W.; Jackson, A. Communicating with parents on the neonatal unit. Bmj 2007, 334, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchiboyina, A.; Yip, C.S.A.; Madhala, S.; Patole, S. Incidental Findings on Brain Magnetic Resonance Imaging in Preterm Infants. Neonatology 2019, 115, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Malova, M.; Rossi, A.; Severino, M.; Parodi, A.; Morana, G.; Sannia, A.; Cama, A.; Ramenghi, L.A. Incidental findings on routine brain MRI scans in preterm infants. Arch. Dis. Child. Fetal Neonatal. Ed. 2017, 102, F73–F78. [Google Scholar] [CrossRef]
- Morris, Z.; Whiteley, W.N.; Longstreth, W.T., Jr.; Weber, F.; Lee, Y.C.; Tsushima, Y.; Alphs, H.; Ladd, S.C.; Warlow, C.; Wardlaw, J.M.; et al. Incidental findings on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2009, 339, b3016. [Google Scholar] [CrossRef] [Green Version]
- Kumra, S.; Ashtari, M.; Anderson, B.; Cervellione, K.L.; Kan, L.I. Ethical and practical considerations in the management of incidental findings in pediatric MRI studies. J. Am. Acad. Child. Adolesc Psychiatry 2006, 45, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Dangouloff-Ros, V.; Roux, C.J.; Boulouis, G.; Levy, R.; Nicolas, N.; Lozach, C.; Grevent, D.; Brunelle, F.; Boddaert, N.; Naggara, O. Incidental Brain MRI Findings in Children: A Systematic Review and Meta-Analysis. AJNR Am. J. Neuroradiol. 2019, 40, 1818–1823. [Google Scholar] [CrossRef]
- Miller, S.; Ferriero, D.; Barkovich, A.J.; Silverstein, F. Practice parameter: Neuroimaging of the neonate: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002, 59, 1663. [Google Scholar] [CrossRef]
- Mirmiran, M.; Barnes, P.D.; Keller, K.; Constantinou, J.C.; Fleisher, B.E.; Hintz, S.R.; Ariagno, R.L. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004, 114, 992–998. [Google Scholar] [CrossRef]
- Neubauer, V.; Griesmaier, E.; Baumgartner, K.; Mallouhi, A.; Keller, M.; Kiechl-Kohlendorfer, U. Feasibility of cerebral MRI in non-sedated preterm-born infants at term-equivalent age: Report of a single centre. Acta Paediatr. 2011, 100, 1544–1547. [Google Scholar] [CrossRef]
- Smyser, C.D.; Kidokoro, H.; Inder, T.E. Magnetic resonance imaging of the brain at term equivalent age in extremely premature neonates: To scan or not to scan? J. Paediatr. Child. Health 2012, 48, 794–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, T.; Dukhovny, D.; Zupancic, J.A.; Goldmann, D.A.; Horbar, J.D.; Pursley, D.M. Choosing Wisely in Newborn Medicine: Five Opportunities to Increase Value. Pediatrics 2015, 136, e482–e489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Amorim e Silva, C.J.; Mackenzie, A.; Hallowell, L.M.; Stewart, S.E.; Ditchfield, M.R. Practice MRI: Reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol. 2006, 50, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Linsell, L.; Malouf, R.; Morris, J.; Kurinczuk, J.J.; Marlow, N. Prognostic Factors for Poor Cognitive Development in Children Born Very Preterm or With Very Low Birth Weight: A Systematic Review. JAMA Pediatr. 2015, 169, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, V.; Junker, D.; Griesmaier, E.; Schocke, M.; Kiechl-Kohlendorfer, U. Bronchopulmonary dysplasia is associated with delayed structural brain maturation in preterm infants. Neonatology 2015, 107, 179–184. [Google Scholar] [CrossRef]
- Spittle, A.J.; Boyd, R.N.; Inder, T.E.; Doyle, L.W. Predicting motor development in very preterm infants at 12 months’ corrected age: The role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 2009, 123, 512–517. [Google Scholar] [CrossRef]
- Pires, C.D.S.; Marba, S.T.M.; Caldas, J.P.S.; Stopiglia, M.C.S. PREDICTIVE VALUE OF THE GENERAL MOVEMENTS ASSESSMENT IN PRETERM INFANTS: A META-ANALYSIS. Rev. Paul. Pediatr. 2020, 38, e2018286. [Google Scholar] [CrossRef]
- Spittle, A.J.; Brown, N.C.; Doyle, L.W.; Boyd, R.N.; Hunt, R.W.; Bear, M.; Inder, T.E. Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 2008, 121, e1184–e1189. [Google Scholar] [CrossRef]
- Herzmann, C.; Zubiaurre-Elorza, L.; Wild, C.J.; Linke, A.C.; Han, V.K.; Lee, D.S.C.; Cusack, R. Using Functional Magnetic Resonance Imaging to Detect Preserved Function in a Preterm Infant with Brain Injury. J. Pediatr. 2017, 189, 213–217.e211. [Google Scholar] [CrossRef]
- Duncan, A.F.; Bann, C.M.; Dempsey, A.G.; Adams-Chapman, I.; Heyne, R.; Hintz, S.R. Neuroimaging and Bayley-III correlates of early hand function in extremely preterm children. J. Perinatol. 2019, 39, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.; Cowan, F.M.; Haataja, L.; Ricci, D.; Pede, E.; Gallini, F.; Cota, F.; Brogna, C.; Vento, G.; Romeo, M.G.; et al. Hammersmith Infant Neurological Examination for infants born preterm: Predicting outcomes other than cerebral palsy. Dev. Med. Child. Neurol. 2020. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C. Are Structural Magnetic Resonance Imaging and General Movements Assessment Sufficient for Early, Accurate Diagnosis of Cerebral Palsy?-Reply. JAMA Pediatr. 2018, 172, 199. [Google Scholar] [CrossRef]
- Parikh, N.A. Are Structural Magnetic Resonance Imaging and General Movements Assessment Sufficient for Early, Accurate Diagnosis of Cerebral Palsy? JAMA Pediatr. 2018, 172, 198–199. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, J.C.; Adamson-Macedo, E.N.; Mirmiran, M.; Fleisher, B.E. Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J. Perinatol. 2007, 27, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herskind, A.; Greisen, G.; Nielsen, J.B. Early identification and intervention in cerebral palsy. Dev. Med. Child. Neurol. 2015, 57, 29–36. [Google Scholar] [CrossRef]
- Spittle, A.J.; Morgan, C.; Olsen, J.E.; Novak, I.; Cheong, J.L.Y. Early Diagnosis and Treatment of Cerebral Palsy in Children with a History of Preterm Birth. Clin. Perinatol. 2018, 45, 409–420. [Google Scholar] [CrossRef]
- Morgan, C.; Romeo, D.M.; Chorna, O.; Novak, I.; Galea, C.; Del Secco, S.; Guzzetta, A. The Pooled Diagnostic Accuracy of Neuroimaging, General Movements, and Neurological Examination for Diagnosing Cerebral Palsy Early in High-Risk Infants: A Case Control Study. J. Clin. Med. 2019, 8, 1879. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Novak, I.; Dale, R.C.; Guzzetta, A.; Badawi, N. Single blind randomised controlled trial of GAME (Goals-Activity-Motor Enrichment) in infants at high risk of cerebral palsy. Res. Dev. Disabil. 2016, 55, 256–267. [Google Scholar] [CrossRef]
- Eliasson, A.C.; Nordstrand, L.; Ek, L.; Lennartsson, F.; Sjöstrand, L.; Tedroff, K.; Krumlinde-Sundholm, L. The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design. Res. Dev. Disabil. 2018, 72, 191–201. [Google Scholar] [CrossRef]
- Hägglund, G.; Alriksson-Schmidt, A.; Lauge-Pedersen, H.; Rodby-Bousquet, E.; Wagner, P.; Westbom, L. Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint J. 2014, 96-b, 1546–1552. [Google Scholar] [CrossRef] [Green Version]
- Spittle, A.J.; Barton, S.; Treyvaud, K.; Molloy, C.S.; Doyle, L.W.; Anderson, P.J. School-Age Outcomes of Early Intervention for Preterm Infants and Their Parents: A Randomized Trial. Pediatrics 2016, 138. [Google Scholar] [CrossRef] [Green Version]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child. Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Caesar, R.; Colditz, P.B.; Cioni, G.; Boyd, R.N. Clinical tools used in young infants born very preterm to predict motor and cognitive delay (not cerebral palsy): A systematic review. Dev. Med. Child. Neurol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Young, J.M.; Morgan, B.R.; Powell, T.L.; Moore, A.M.; Whyte, H.E.; Smith, M.L.; Taylor, M.J. Associations of Perinatal Clinical and Magnetic Resonance Imaging Measures with Developmental Outcomes in Children Born Very Preterm. J. Pediatr. 2016, 170, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kanel, D.; Counsell, S.J.; Nosarti, C. Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J. Perinatol. 2020. [Google Scholar] [CrossRef]
Grade | Description in the Parasagittal View |
---|---|
I | Germinal matrix hemorrhage (GMH) only or germinal matrix hemorrhage plus intraventricular hemorrhage less than 10% of the ventricular area |
II | GMH and intraventricular hemorrhage; 10 to 50% of the ventricular area |
III | GMH and intraventricular hemorrhage involving more than 50% of the ventricular area; lateral ventricles are usually distended |
IV | Hemorrhagic infarction in periventricular white matter ipsilateral to intraventricular hemorrhage (also called periventricular hemorrhagic infarction [PVHI]) |
Study/Year | Country | Population Characteristics | Outcomes | Age of Outcome | Diagnostic Tool | Predictive Value | |
---|---|---|---|---|---|---|---|
Sens % (95% CI) | Spec % (95% CI) | ||||||
Caesar et al., 2020 [171] | Australia | Ten studies ≤ 32 weeks GA ± ≤ 1500 g infants (n) 992 | Sever motor delay (not CP) | 2 years | GMA Fidgety stage (AF, F-) | 70 | 85 |
HINE at 3 and 6 months | 93 (68–100) | 100 (96–100) | |||||
Cognitive delay BSID III ≤ 2SD | GMA Fidgety stage (AF, F-) | 70 | 85 | ||||
HINE at 3 and 6 months | Not estimable | Not estimable | |||||
Novak et al., 2017 [170] | International | Eight studies All GA | CP | <2 years | TEA MRI (preterm infants) | 86–89 | - |
GMA (Prechtl) | 98 | - | |||||
HINE | 90 | - | |||||
Bosanquet et al., 2013 [169] | Australia | 19 studies 23–41 weeks | CP after 2 years of age | Preschool children (<5 year) | TEA MRI (preterm infants) | 86–100 | 89–97 |
Cranial US | 74 (63–83) | 92 (81–96) | |||||
GMA | 98 (74–100) | 91 (83–93) | |||||
Neurological examination | 88 (55–97) | 87 (57–97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banihani, R.; Seesahai, J.; Asztalos, E.; Terrien Church, P. Neuroimaging at Term Equivalent Age: Is There Value for the Preterm Infant? A Narrative Summary. Children 2021, 8, 227. https://doi.org/10.3390/children8030227
Banihani R, Seesahai J, Asztalos E, Terrien Church P. Neuroimaging at Term Equivalent Age: Is There Value for the Preterm Infant? A Narrative Summary. Children. 2021; 8(3):227. https://doi.org/10.3390/children8030227
Chicago/Turabian StyleBanihani, Rudaina, Judy Seesahai, Elizabeth Asztalos, and Paige Terrien Church. 2021. "Neuroimaging at Term Equivalent Age: Is There Value for the Preterm Infant? A Narrative Summary" Children 8, no. 3: 227. https://doi.org/10.3390/children8030227
APA StyleBanihani, R., Seesahai, J., Asztalos, E., & Terrien Church, P. (2021). Neuroimaging at Term Equivalent Age: Is There Value for the Preterm Infant? A Narrative Summary. Children, 8(3), 227. https://doi.org/10.3390/children8030227