Extubation Readiness in Preterm Infants: Evaluating the Role of Monitoring Intermittent Hypoxemia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S. Eunice kennedy shriver national institute of child health. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef]
- Walsh, M.C.; Morris, B.H.; Wrage, L.A.; Vohr, B.R.; Poole, W.K.; Tyson, J.E.; Wright, L.L.; Ehrenkranz, R.A.; Stoll, B.J.; Fanaroff, A.A. Extremely low birthweight neonates with protracted ventilation: Mortality and 18-month neurodevelopmental outcomes. J. Pediatr. 2005, 146, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Guardia, C.G.; Moya, F.R.; Sinha, S.; Gadzinowski, J.; Donn, S.M.; Simmons, P.; Segal, R. Reintubation and risk of morbidity and mortality in preterm infants after surfactant replacement therapy. J. Neonatal Perinat. Med. 2011, 4, 101–109. [Google Scholar] [CrossRef]
- Baisch, S.D.; Wheeler, W.B.; Kurachek, S.C.; Cornfield, D.N. Extubation failure in pediatric intensive care incidence and outcomes. Pediatr. Crit. Care Med. 2005, 6, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Pavlek, L.R.; Dillard, J.; Ryshen, G.; Hone, E.; Shepherd, E.G.; Moallem, M. Short-term complications and long-term morbidities associated with repeated unplanned extubations. J. Perinatol. 2021, 1–9. [Google Scholar] [CrossRef]
- Al-Mandari, H.; Shalish, W.; Dempsey, E.; Keszler, M.; Davis, P.G.; Sant’Anna, G. International survey on periextubation practices in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F428–F431. [Google Scholar] [CrossRef]
- Gillespie, L.M.; White, S.D.; Sinha, S.K.; Donn, S.M. Usefulness of the minute ventilation test in predicting successful extubation in newborn infants: A randomized controlled trial. J. Perinatol. 2003, 23, 205–207. [Google Scholar] [CrossRef]
- Wilson, B.J., Jr.; Becker, M.A.; Linton, M.E.; Donn, S.M. Spontaneous minute ventilation predicts readiness for extubation in mechanically ventilated preterm infants. J. Perinatol. 1998, 18, 436–439. [Google Scholar]
- Shalish, W.; Kanbar, L.; Kovacs, L.; Chawla, S.; Keszler, M.; Rao, S.; Latremouille, S.; Precup, D.; Brown, K.; Kearney, R.E.; et al. Assessment of Extubation Readiness Using Spontaneous Breathing Trials in Extremely Preterm Neonates. JAMA Pediatr. 2020, 174, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Robles-Rubio, C.A.; Kaczmarek, J.; Chawla, S.; Kovacs, L.; Brown, K.A.; Kearney, R.E.; Sant Anna, G.M. Automated analysis of respiratory behavior in extremely preterm infants and extubation readiness. Pediatr. Pulmonol. 2015, 50, 479–486. [Google Scholar] [CrossRef]
- Veness-Meehan, K.A.; Richter, S.; Davis, J.M. Pulmonary function testing prior to extubation in infants with respiratory distress syndrome. Pediatr. Pulmonol. 1990, 9, 2–6. [Google Scholar] [CrossRef]
- Balsan, M.J.; Jones, J.G.; Watchko, J.F.; Guthrie, R.D. Measurements of pulmonary mechanics prior to the elective extubation of neonates. Pediatr. Pulmonol. 1990, 9, 238–243. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Chawla, S.; Marchica, C.; Dwaihy, M.; Grundy, L.; Sant’Anna, G.M. Heart rate variability and extubation readiness in extremely preterm infants. Neonatology 2013, 104, 42–48. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Kamlin, C.O.; Morley, C.J.; Davis, P.G.; Sant’anna, G.M. Variability of respiratory parameters and extubation readiness in ventilated neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F70–F73. [Google Scholar] [CrossRef]
- Precup, D.; Robles-Rubio, C.A.; Brown, K.A.; Kanbar, L.; Kaczmarek, J.; Chawla, S.; Sant’Anna, G.M.; Kearney, R.E. Prediction of extubation readiness in extreme preterm infants based on measures of cardiorespiratory variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2012, 5630–5633. [Google Scholar] [CrossRef]
- Szymankiewicz, M.; Vidyasagar, D.; Gadzinowski, J. Predictors of successful extubation of preterm low-birth-weight infants with respiratory distress syndrome. Pediatr. Crit. Care Med. 2005, 6, 44–49. [Google Scholar] [CrossRef]
- De Jaegere, A.; van Veenendaal, M.B.; Michiels, A.; van Kaam, A.H. Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am. J. Respir. Crit. Care Med. 2006, 174, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Reyes, Z.C.; Claure, N.; Tauscher, M.K.; D’Ugard, C.; Vanbuskirk, S.; Bancalari, E. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants. Pediatrics 2006, 118, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Shefali-Patel, D.; Murthy, V.; Hannam, S.; Lee, S.; Rafferty, G.F.; Greenough, A. Randomised weaning trial comparing assist control to pressure support ventilation. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F429–F433. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, K.; Klingenberg, C.; McCallion, N.; Morley, C.J.; Davis, P.G. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst. Rev. 2010, 11, CD003666. [Google Scholar] [CrossRef]
- Sant’Anna, G.M.; Keszler, M. Weaning infants from mechanical ventilation. Clin. Perinatol. 2012, 39, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Greenberg, R.G.; Sharma, A.; Natarajan, G.; Cotten, M.; Thomas, R.; Chawla, S. A predictive model for extubation readiness in extremely preterm infants. J. Perinatol. 2019, 39, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Rhein, L.M.; Dobson, N.R.; Darnall, R.A.; Corwin, M.J.; Heeren, T.C.; Poets, C.F.; McEntire, B.L.; Hunt, C.E.; The Caffeine Pilot Study Group. Effects of caffeine on intermittent hypoxia in infants born prematurely: A randomized clinical trial. JAMA Pediatr. 2014, 168, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Poets, C.F.; Roberts, R.S.; Schmidt, B.; Whyte, R.K.; Asztalos, E.V.; Bader, D.; Bairam, A.; Moddemann, D.; Peliowski, A.; Rabi, Y.; et al. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA 2015, 314, 595–603. [Google Scholar] [CrossRef]
- Walsh, M.C.; Di Fiore, J.M.; Martin, R.J.; Gantz, M.; Carlo, W.A.; Finer, N. Association of Oxygen Target and Growth Status with Increased Mortality in Small for Gestational Age Infants: Further Analysis of the Surfactant, Positive Pressure and Pulse Oximetry Randomized Trial. JAMA Pediatr. 2016, 170, 292–294. [Google Scholar] [CrossRef]
- Martin, R.J.; Di Fiore, J.M.; Walsh, M.C. Hypoxic Episodes in Bronchopulmonary Dysplasia. Clin. Perinatol. 2015, 42, 825–838. [Google Scholar] [CrossRef]
- Ibonia, K.T.; Bada, H.S.; Westgate, P.M.; Gomez-Pomar, E.; Bhandary, P.; Patwardhan, A.; Abu Jawdeh, E.G. Blood transfusions in preterm infants: Changes on perfusion index and intermittent hypoxemia. Transfusion 2018, 58, 2538–2544. [Google Scholar] [CrossRef]
- Abu Jawdeh, E.G.; Martin, R.J.; Dick, T.E.; Walsh, M.C.; Di Fiore, J.M. The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants. J. Perinatol. 2014, 34, 921–925. [Google Scholar] [CrossRef]
- Abu Jawdeh, E.G. Intermittent Hypoxemia in Preterm Infants. Ph.D. Dissertation, University of Kentucky, Lexington, KY, USA, 2018. [Google Scholar] [CrossRef]
- Abu Jawdeh, E.G.; Westgate, P.M.; Pant, A.; Stacy, A.L.; Mamilla, D.; Gabrani, A.; Patwardhan, A.; Bada, H.S.; Giannone, P. Prenatal Opioid Exposure and Intermittent Hypoxemia in Preterm Infants: A Retrospective Assessment. Front. Pediatr. 2017, 5, 253. [Google Scholar] [CrossRef]
- Bancalari, E.; Claure, N. Respiratory Instability and Hypoxemia Episodes in Preterm Infants. Am. J. Perinatol. 2018, 35, 534–536. [Google Scholar] [CrossRef]
Baseline Characteristics | Success | Failure |
---|---|---|
n = 49 | n = 19 | |
Gestational age (weeks) | 26.6 (25.3–27.6) | 25.5 (25.1–26.1) |
Birth weight (grams) | 890 (730–1040) | 730 (650–905) |
Weight at time of extubation (grams) | 1140 (960–1253) | 970 (830–1150) |
Age at time of extubation (days) | 18 (5–37) | 21 (9–33) |
Baseline Ventilator Setting | ||
• Set respiratory rate (breaths/min) | 15 (15–20) | 20 (15–20) |
• FiO2 (%) | 25 (21–30) | 29 (25–32) |
• PEEP (cmH2O) | 6 (5–6) | 6 (6–7) |
• PIP (cmH2O) | 15 (13–21) | 16 (13–18) |
• TV (mL/kg) | 5 (5–6) | 5 (4–6) |
Post-extubation non-invasive support | ||
• CPAP | 10/49 (20%) | 0/19 (0%) |
• NIPPV | 39/49 (79%) | 19/19 (100%) |
• FiO2 (%) | 32 (25–38) | 40 (30–44) |
• PEEP (cmH2O) | 7 (6–8) | 8 (7–9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Jawdeh, E.G.; Pant, A.; Gabrani, A.; Cunningham, M.D.; Raffay, T.M.; Westgate, P.M. Extubation Readiness in Preterm Infants: Evaluating the Role of Monitoring Intermittent Hypoxemia. Children 2021, 8, 237. https://doi.org/10.3390/children8030237
Abu Jawdeh EG, Pant A, Gabrani A, Cunningham MD, Raffay TM, Westgate PM. Extubation Readiness in Preterm Infants: Evaluating the Role of Monitoring Intermittent Hypoxemia. Children. 2021; 8(3):237. https://doi.org/10.3390/children8030237
Chicago/Turabian StyleAbu Jawdeh, Elie G., Amrita Pant, Aayush Gabrani, M. Douglas Cunningham, Thomas M. Raffay, and Philip M. Westgate. 2021. "Extubation Readiness in Preterm Infants: Evaluating the Role of Monitoring Intermittent Hypoxemia" Children 8, no. 3: 237. https://doi.org/10.3390/children8030237
APA StyleAbu Jawdeh, E. G., Pant, A., Gabrani, A., Cunningham, M. D., Raffay, T. M., & Westgate, P. M. (2021). Extubation Readiness in Preterm Infants: Evaluating the Role of Monitoring Intermittent Hypoxemia. Children, 8(3), 237. https://doi.org/10.3390/children8030237