Parental Education and the Association between Fruit and Vegetable Consumption and Asthma in Adolescents: The Greek Global Asthma Network (GAN) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.1.1. Setting and Sample
2.1.2. Bioethics
2.1.3. Measurements
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD DALYs Hale Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [Green Version]
- Global Asthma Network. The Global Asthma Report 2018; Global Asthma Network: Auckland, New Zealand, 2018. [Google Scholar]
- Sullivan, P.W.; Ghushchyan, V.; Navaratnam, P.; Friedman, H.S.; Kavati, A.; Ortiz, B.; Lanier, B. The national burden of poorly controlled asthma, school absence and parental work loss among school-aged children in the United States. J. Asthma 2017, 55, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Akinbami, L.J.; E Moorman, J.; Liu, X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl. Health Stat. Rep. 2011, 2011, 1–14. [Google Scholar]
- Valovirta, E. EFA Book on Respiratory Allergies—Raise Awareness, Relieve the Burden; European Federation of Allergy and Airways Diseases Patients Associations: Brussels, Belgium, 2011. [Google Scholar]
- Omenaas, E.; Fluge, Ø.; Buist, A.; Vollmer, W.; Gulsvik, A. Dietary vitamin C intake is inversely related to cough and wheeze in young smokers. Respir. Med. 2003, 97, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grievink, L.; Smit, H.A.; Ocké, M.C.; Veer, P.V.T.; Kromhout, D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: The MORGEN study. Thorax 1998, 53, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.I.; Griendling, K.K. Nox proteins in signal transduction. Free. Radic. Biol. Med. 2009, 47, 1239–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Panagiotakos, D.; Hatziagorou, E.; Antonogeorgos, G.; Matziou, V.; Tsanakas, J.; Gratziou, C.; Tsabouri, S.; Priftis, K. Antioxidant foods consumption and childhood asthma and other allergic diseases: The Greek cohorts of the ISAAC II survey. Allergologia et Immunopathologia 2015, 43, 353–360. [Google Scholar] [CrossRef]
- Gong, T.; Lundholm, C.; Rejnö, G.; Mood, C.; Långström, N.; Almqvist, C. Parental Socioeconomic Status, Childhood Asthma and Medication Use—A Population-Based Study. PLoS ONE 2014, 9, e106579. [Google Scholar] [CrossRef]
- Kozyrskyj, A.L.; Kendall, G.E.; Jacoby, P.; Sly, P.D.; Zubrick, S.R. Association Between Socioeconomic Status and the Development of Asthma: Analyses of Income Trajectories. Am. J. Public Health 2010, 100, 540–546. [Google Scholar] [CrossRef]
- Fismen, A.S.; Smith, O.R.F.; Samdal, O. A school based study of time trends in food habits and their relation to socio-economic status among Norwegian adolescents, 2001–2009. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Araújo, J.; Teixeira, J.; Gaio, A.R.; Lopes, C.; Ramos, E.; Gaio, R. Dietary patterns among 13-y-old Portuguese adolescents. Nutrition 2015, 31, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Ellwood, P.; Ellwood, E.; Rutter, C.; Perez-Fernandez, V.; Morales, E.; García-Marcos, L.; Pearce, N.; Asher, M.I.; Strachan, D.; GAN Phase I Study Group. Global Asthma Network Phase I Surveillance: Geographical Coverage and Response Rates. J. Clin. Med. 2020, 9, 3688. [Google Scholar] [CrossRef] [PubMed]
- Global Asthma Network. Validation of Instruments. Available online: http://www.globalasthmanetwork.org/surveillance/manual/validation.php (accessed on 28 February 2021).
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, E.; Olivieri, C.; Bennett, D.; Prasse, A.; Muller-Quernheim, J.; Rottoli, P. Oxidative stress in the pathogenesis of diffuse lung diseases: A review. Respir. Med. 2009, 103, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Al-Abdulla, N.O.; Al Naama, L.M.; Hassan, M.K. Antioxidant status in acute asthmatic attack in children. J. Pak. Med. Assoc. 2010, 60, 1023–1027. [Google Scholar] [PubMed]
- Fitzpatrick, A.M.; Teague, W.G.; Holguin, F.; Yeh, M.; Brown, L.A.S. Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress. J. Allergy Clin. Immunol. 2009, 123, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Misso, N.L.A.; Thompson, P.J. Oxidative stress and antioxidant deficiencies in asthma: Potential modification by diet. Redox Rep. 2005, 10, 247–255. [Google Scholar] [CrossRef]
- Nagel, G.; Weinmayr, G.; Kleiner, A.; Garcia-Marcos, L.; Strachan, D.P. ISAAC Phase Two Study Group. Effect of diet on asthma and allergic sensitisation in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two. Thorax 2010, 65, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Wall, C.R.; Stewart, A.W.; Hancox, R.J.; Murphy, R.; Braithwaite, I.; Beasley, R.; Mitchell, E.A.; ISAAC Phase Three Study Group. Association between Frequency of Consumption of Fruit, Vegetables, Nuts and Pulses and BMI: Analyses of the International Study of Asthma and Allergies in Childhood (ISAAC). Nutrients 2018, 10, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahoud, O.; Salameh, P.; Saadeh, D.; Charpin, D.; Raherison, C. Eating fish and fruits are associated with lower prevalence of allergic diseases. Respir. Med. Res. 2020, 78, 100761. [Google Scholar] [CrossRef]
- Kusunoki, T.; Takeuchi, J.; Morimoto, T.; Sakuma, M.; Yasumi, T.; Nishikomori, R.; Higashi, A.; Heike, T. Fruit intake reduces the onset of respiratory allergic symptoms in schoolchildren. Pediatr. Allergy Immunol. 2017, 28, 793–800. [Google Scholar] [CrossRef]
- Chatzi, L.; Apostolaki, G.; Bibakis, I.; Skypala, I.; Bibaki-Liakou, V.; Tzanakis, N.; Kogevinas, M.; Cullinan, P. Protective effect of fruits, vegetables and the Mediterranean diet on asthma and allergies among children in Crete. Thorax 2007, 62, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.W.K.; Ko, F.W.S.; Hui, D.S.C.; Fok, T.F.; Carr, D.; Von Mutius, E.; Zhong, N.S.; Chen, Y.Z.; Lai, C.K.W. Factors associated with difference in prevalence of asthma in children from three cities in China: Multicentre epidemiological survey. BMJ 2004, 329, 486. [Google Scholar] [CrossRef] [Green Version]
- Romieu, I.; Barraza-Villarreal, A.; Escamilla-Núñez, C.; Texcalac-Sangrador, J.L.; Hernandez-Cadena, L.; Díaz-Sánchez, D.; De Batlle, J.; Del Rio-Navarro, B.E. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir. Res. 2009, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabak, C.; Wijga, A.H.; De Meer, G.; Janssen, N.A.H.; Brunekreef, B.; Smit, H.A. Diet and asthma in Dutch school children (ISAAC-2). Thorax 2006, 61, 1048–1053. [Google Scholar] [CrossRef] [Green Version]
- De Luis, D.A.; Armentia, A.; Aller, R.; Asensio, A.; Sedano, E.; Izaola, O.; Cuellar, L. Dietary intake in patients with asthma: A case control study. Nutrition 2005, 21, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, M.M.; Katsardis, C.; Lambert, K.; Tsoukalas, D.; Koutsilieris, M.; Erbas, B.; Itsiopoulos, C. Efficacy of a Mediterranean diet supplemented with fatty fish in ameliorating inflammation in paediatric asthma: A randomised controlled trial. J. Hum. Nutr. Diet. 2018, 32, 185–197. [Google Scholar] [CrossRef]
- Barros, R.; Moreira, A.; Fonseca, J.; Delgado, L.; Castel-Branco, M.G.; Haahtela, T.; Lopes, C.; Moreira, P. Dietary intake of α-linolenic acid and low ratio of n-6:n-3 PUFA are associated with decreased exhaled NO and improved asthma control. Br. J. Nutr. 2011, 106, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkeheim, E.; Mowinckel, P.; Carlsen, K.H.; Burney, P.; Carlsen, K.C.L. Altered oxidative state in schoolchildren with asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2010, 22, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Matthews, K.A.; Boyce, W.T. Socioeconomic differences in children’s health: How and why do these relationships change with age? Psychol. Bull. 2002, 128, 295–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreier, H.M.C.; Chen, E. Socioeconomic status and the health of youth: A multilevel, multidomain approach to conceptualizing pathways. Psychol. Bull. 2013, 139, 606–654. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Forno, E.; Alvarez, M.; Colón-Semidey, A.; Acosta-Perez, E.; Canino, G.; Celedón, J.C. Diet, Lung Function, and Asthma Exacerbations in Puerto Rican Children. Pediatr. Allergy Immunol. Pulmonol. 2017, 30, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.D.; Chen, E. Socioeconomic Status and Health Behaviors in Adolescence: A Review of the Literature. J. Behav. Med. 2007, 30, 263–285. [Google Scholar] [CrossRef] [PubMed]
- Sdona, E.; Hallberg, J.; Andersson, N.; Ekström, S.; Rautiainen, S.; Håkansson, N.; Wolk, A.; Kull, I.; Melén, E.; Bergström, A. Dietary antioxidant intake in school age and lung function development up to adolescence. Eur. Respir. J. 2019, 55, 1900990. [Google Scholar] [CrossRef] [PubMed]
Current Asthma * | |||
---|---|---|---|
Yes (n = 120) | No (n = 1814) | p | |
Children’s age (years), mean (SD **) | 12.7 (0.59) | 12.7 (0.65) | 0.51 |
Children’s BMI (kg/m2), mean (SD) | 21.7 (4.4) | 20.9 (3.5) | 0.017 |
Pet ownership (Yes, n, %) | 39 (32.5) | 524 (28.9) | 0.407 |
Having an older sibling (Yes, n, %) | 56 (46.7) | 773 (42.6) | 0.388 |
Parental atopic history (Yes, n, %) | 63 (52.5) | 795 (43.7) | 0.061 |
Parental ever smoking (Yes, n, %) | 78 (65.0) | 1004 (55.3) | 0.038 |
Parental education level (Tertiary, n, %) | 75 (62.5) | 1207 (66.5) | 0.374 |
Cooking with fuels (Yes, n, %) | 58 (48.3) | 935 (51.6) | 0.484 |
Current exposure to dampness and/or mold (Yes, n, %) | 40 (33.3) | 420 (23.1) | 0.011 |
Fruit consumption frequency (n, %) | |||
Most or all days in the past 12 months | 69 (57.5) | 1219 (67.2) | 0.029 |
Cooked vegetables consumption frequency (n, %) | |||
Most or all days in the past 12 months | 22 (18.3) | 274 (15.1) | 0.321 |
Raw vegetables consumption frequency (n, %) | |||
Most or all days in the past 12 months | 39 (32.5) | 732 (40.4) | 0.089 |
All vegetables (cooked and raw) consumption frequency (n, %) | |||
Most or all days in the past 12 months | 22 (18.3) | 261 (14.4) | 0.232 |
Fruits and all vegetables (cooked and raw) consumption frequency (n, %) | |||
Most or all days in the past 12 months | 9 (7.5) | 251 (13.8) | 0.030 |
Fruits Frequency Consumption | p-Value | Cooked Vegetables Consumption | p-Value | Raw Vegetables Consumption | p-Value | All Vegetables Frequency Consumption | p-Value | Fruits and All Vegetables Frequency Consumption | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High * | Low ** | High | Low | High | Low | High | Low | High | Low | ||||||
Children’s age (years), mean (SD) | 12.7 (0.6) | 12.8 (0.6) | 0.02 | 12.7 (0.6) | 12.7 (0.6) | 0.912 | 12.7 (0.6) | 12.7 (0.6) | 0.431 | 12.7 (0.6) | 12.8 (0.7) | 0.312 | 12.8 (0.6) | 12.8 (0.7) | 0.734 |
Children’s BMI (kg/m2), mean (SD) | 20.8 (3.4) | 21.5 (3.7) | <0.001 | 20.7 (3.6) | 21.0 (3.6) | 0.158 | 20.7 (3.4) | 21.2 (3.7) | 0.005 | 20.5 (3.3) | 21.2 (3.6) | 0.015 | 20.7 (3.4) | 21.6 (4.0) | 0.015 |
Pet ownership (Yes, n, %) | 361 (28.0) | 202 (31.3) | 0.133 | 85 (29.1) | 478 (29.2) | 0.978 | 214 (27.8) | 349 (62.0) | 0.294 | 57 (25.4) | 328 (29.3) | 0.249 | 42 (23.0) | 63 (32.5) | 0.039 |
Current asthma *** (Yes, n, %) | 69 (5.4) | 51 (7.9) | 0.029 | 22 (7.4) | 97 (5.9) | 0.321 | 39 (8.1) | 81 (7.0) | 0.089 | 22 (7.8) | 98 (5.9) | 0.232 | 9 (3.5) | 104 (6.5) | 0.030 |
Having an older sibling (Yes, n, %) | 546 (65.9) | 283 (43.8) | 0.562 | 127 (43.8) | 701 (42.7) | 0.727 | 325 (42.2) | 504 (43.4) | 0.595 | 101 (45.1) | 492 (43.9) | 0.733 | 84 (45.9) | 85 (43.6) | 0.651 |
Parental atopic history (Yes, n, %) | 100 (7.8) | 55 (8.5) | 0.560 | 25 (16.1) | 130 (7.9) | 0.699 | 68 (8.8) | 87 (7.5) | 0.291 | 18 (8.0) | 91 (8.1) | 0.973 | 16 (8.7) | 18 (9.2) | 0.868 |
Parental ever smoking (Yes, n, %) | 528 (41.0) | 296 (46.0) | 0.037 | 99 (34.0) | 725 (44.2) | 0.001 | 317 (41.1) | 507 (43.7) | 0.266 | 78 (34.8) | 501 (44.7) | 0.007 | 57 (31.1) | 93 (47.7) | 0.001 |
Parental educational level (Tertiary, n, %) | 895 (69.9) | 392 (60.1) | <0.001 | 193 (66.6) | 1087 (66.2) | 0.918 | 550 (71.4) | 730 (62.8) | <0.001 | 132 (59.2) | 681 (60.6) | 0.686 | 122 (67.0) | 116 (59.5) | 0.129 |
Cooking with fuels (Yes, n, %) | 1195 (93.0) | 590 (91.9) | 0.385 | 265 (91.1) | 1519 (92.9) | 0.268 | 702 (91.4) | 1083 (93.4) | 0.094 | 206 (92.4) | 1045 (93.4) | 0.584 | 169 (92.3) | 173 (89.2) | 0.288 |
Current exposure to dampness and/or mold (Yes, n, %) | 299 (23.2) | 160 (24.8) | 0.438 | 69 (23.7) | 390 (23.8) | 0.984 | 198 (25.7) | 261 (22.5) | 0.103 | 55 (24.6) | 252 (22.4) | 0.491 | 41 (22.4) | 53 (27.2) | 0.283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonogeorgos, G.; Priftis, K.N.; Panagiotakos, D.B.; Ellwood, P.; García-Marcos, L.; Liakou, E.; Koutsokera, A.; Drakontaeidis, P.; Thanasia, M.; Mandrapylia, M.; et al. Parental Education and the Association between Fruit and Vegetable Consumption and Asthma in Adolescents: The Greek Global Asthma Network (GAN) Study. Children 2021, 8, 304. https://doi.org/10.3390/children8040304
Antonogeorgos G, Priftis KN, Panagiotakos DB, Ellwood P, García-Marcos L, Liakou E, Koutsokera A, Drakontaeidis P, Thanasia M, Mandrapylia M, et al. Parental Education and the Association between Fruit and Vegetable Consumption and Asthma in Adolescents: The Greek Global Asthma Network (GAN) Study. Children. 2021; 8(4):304. https://doi.org/10.3390/children8040304
Chicago/Turabian StyleAntonogeorgos, George, Kostas N. Priftis, Demosthenes B. Panagiotakos, Philippa Ellwood, Luis García-Marcos, Evangelia Liakou, Alexandra Koutsokera, Pavlos Drakontaeidis, Marina Thanasia, Maria Mandrapylia, and et al. 2021. "Parental Education and the Association between Fruit and Vegetable Consumption and Asthma in Adolescents: The Greek Global Asthma Network (GAN) Study" Children 8, no. 4: 304. https://doi.org/10.3390/children8040304
APA StyleAntonogeorgos, G., Priftis, K. N., Panagiotakos, D. B., Ellwood, P., García-Marcos, L., Liakou, E., Koutsokera, A., Drakontaeidis, P., Thanasia, M., Mandrapylia, M., & Douros, K. (2021). Parental Education and the Association between Fruit and Vegetable Consumption and Asthma in Adolescents: The Greek Global Asthma Network (GAN) Study. Children, 8(4), 304. https://doi.org/10.3390/children8040304