The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examination
2.2.1. Anthropometric Measurements
2.2.2. Isokinetic Strength Test
2.2.3. Wingate Test
2.3. Training Programs
2.3.1. High-Intensity Interval Training (HIIT)
2.3.2. Moderate Continuous Training (MCT)
2.3.3. Data Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Body Fat and Muscle Changes before and after Training
3.3. Change in Anaerobic Power
3.4. Heart Rate Change after Anaerobic Power Test
3.5. Isokinetic Muscle Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seth, B. Determination factors of badminton game performance. Int. J. Phys. Educ. Sports Health 2016, 3, 20–22. [Google Scholar]
- Zhang, Z.; Li, S.; Wan, B.; Visentin, P.; Jiang, Q.; Dyck, M.; Li, H.; Shan, G. The influence of X-factor (trunk rotation) and experience on the quality of the badminton forehand smash. J. Hum. Kinet. 2016, 53, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, D.; Nageswaran, A. Effect of game-specific strength training on selected physiological variables among badminton players. Int. J. Sci. Res. 2013, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Phomsoupha, M.; Laffaye, G. The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics. J. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef]
- Van Lieshout, K.A.; Lombard, A.J. Fitness profile of elite junior South African badminton players. Afr. J. Phys. Act. Health Sci. 2003, 9, 114–120. [Google Scholar] [CrossRef]
- Andersen, L.L.; Larsson, B.; Overgaard, H.; Aagaard, P. Torque–velocity characteristics and contractile rate of force development in elite badminton players. J. Eur. J. Sport Sci. 2007, 7, 127–134. [Google Scholar] [CrossRef]
- Cabello, D.; Padial, P.; Lees, A.; Rivas, F. Temporal and Physiological Characteristics of Elite Women’s and Men’s Singles Badminton. Int. J. Appl. Sports Sci. 2004, 16, 1–12. [Google Scholar]
- Naimo, M.; De Souza, E.; Wilson, J.; Carpenter, A.; Gilchrist, P.; Lowery, R.; Averbuch, B.; White, T.; Joy, J. High-intensity interval training has positive effects on performance in ice hockey players. Int. J. Sports Med. 2015, 36, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Fan, X.; Sun, S.; Song, L.; Shi, Q.; Nie, J. Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: A randomized controlled trial. PLoS ONE 2016, 11, 8589. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.M.; Porter, R.R.; Durstine, J.L. High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 2016, 5, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armas, C.; Kowalsky, R.J.; Hearon, C.M. Comparison of Acute Cardiometabolic Responses in a 7-Minute Body Weight Circuit to 7-Minute HIIT Training Protocol. J. Int. J. Exerc. Sci. 2020, 13, 395–409. [Google Scholar]
- Jakovljevic, B.; Turnic, T.N.; Jeremic, N.; Jeremic, J.; Bradic, J.; Ravic, M.; Jakovljevic, V.L.; Jelic, D.; Radovanovic, D.; Pechanova, O. The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: Focus on redox changes. J. Mol. Cell. Biochem. 2019, 454, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Holloway, K.; Roche, D.; Angell, P. Evaluating the progressive cardiovascular health benefits of short-term high-intensity interval training. Eur. J. Appl. Physiol. 2018, 118, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Klonizakis, M.; Moss, J.; Gilbert, S.; Broom, D.; Foster, J.; Tew, G.A. Low-volume high-intensity interval training rapidly improves cardiopulmonary function in postmenopausal women. J. Menopause 2014, 21, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. J. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [Green Version]
- Reljic, D.; Lampe, D.; Wolf, F.; Zopf, Y.; Herrmann, H.J.; Fischer, J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 1288–1304. [Google Scholar] [CrossRef]
- Mueller, S.; Winzer, E.B.; Duvinage, A.; Gevaert, A.B.; Edelmann, F.; Haller, B.; Pieske-Kraigher, E.; Beckers, P.; Bobenko, A.; Hommel, J. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. J. Am. Med. Assoc. 2021, 325, 542–551. [Google Scholar] [CrossRef]
- Cornish, B. Bioimpedance analysis: Scientific background. J. Lymphat. Res. Biol. 2006, 4, 47–50. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Jakovljević, D.K.; Eric, M.; Jovanovic, G.; Dimitric, G.; Cupic, M.B.; Ponorac, N. Explosive muscle power assessment in elite athletes using wingate anaerobic test. Revista Brasileira de Medicina do Esporte 2018, 24, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Peveler, W.W.; Pounders, J.D.; Bishop, P.A. Effects of saddle height on anaerobic power production in cycling. J. Strength Cond. Res. 2007, 21, 1023. [Google Scholar] [PubMed]
- Moura, B.M.d.; Moro, V.L.; Rossato, M.; Lucas, R.D.d.; Diefenthaeler, F. Effects of saddle height on performance and muscular activity during the Wingate test. J. Phys. Educ. 2017, 28. [Google Scholar] [CrossRef] [Green Version]
- Liguori, G. ACSM’s Guidelines for Exercise Testing and Prescription; American College of Sports Medicine: Indianapolis, IN, USA, 2020. [Google Scholar]
- Takei, N.; Kakinoki, K.; Girard, O.; Hatta, H. Short-Term Repeated Wingate Training in Hypoxia and Normoxia in Sprinters. Front Sports Act. Living 2020, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, M.J.; Chan, C.K.; Clarke, N.D.; Cox, M.; Smith, M. The effect of badminton-specific exercise on badminton short-serve performance in competition and practice climates. Eur. J. Sport Sci. 2017, 17, 119–126. [Google Scholar] [CrossRef]
- Wee, E.H.; Low, J.Y.; Chan, K.Q.; Ler, H.Y. Effects of High Intensity Intermittent Badminton Multi-Shuttle Feeding Training on Aerobic and Anaerobic Capacity, Leg Strength Qualities and Agility. In Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2017), Madeira, Portugal, 30–31 October 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 39–47. [Google Scholar]
- Samsir, M.S.; Mariappan, M.; Noordin, H.; Azmi, A.M.i.B.N. The Effects of High Intensity Functional Interval Training on Selected Fitness Components Among Young Badminton Players. In Enhancing Health and Sports Performance by Design, Proceedings of the 2019 Movement, Health & Exercise (MoHE), Kuching, Malaysia, 30 September–2 October 2019 and International Sports Science Conference (ISSC), Bangkok, Thailand, 23–25 January 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 42–53. [Google Scholar]
- Singh, J.; Raza, S.; Mohammad, A. Physical characteristics and level of performance in badminton: A relationship study. J. Educ. Pract. 2011, 2, 6–10. [Google Scholar]
- Váczi, M.; Tollár, J.; Meszler, B.; Juhász, I.; Karsai, I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J. Hum. Kinet. 2013, 36, 17–26. [Google Scholar] [CrossRef]
- Pritchard, H.J.; Barnes, M.J.; Stewart, R.J.; Keogh, J.W.; McGuigan, M.R. Short-term training cessation as a method of tapering to improve maximal strength. J. Strength Cond. Res. 2018, 32, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Eddolls, W.T.; McNarry, M.A.; Stratton, G.; Winn, C.O.; Mackintosh, K.A. High-intensity interval training interventions in children and adolescents: A systematic review. J. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, L.P.; Read, P.; Waldron, M. Muscle hypertrophy: A narrative review on training principles for increasing muscle mass. J. Strength Cond. 2017, 39, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.M.; Clarke, H.E.; Seay, R.F.; Spain, K.K. Impact of 4 weeks of interval training on resting metabolic rate, fitness, and health-related outcomes. J. Appl. Physiol. Nutr. Metab. 2017, 42, 1073–1081. [Google Scholar] [CrossRef]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The effects of high intensity interval training vs steady state training on aerobic and anaerobic capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. J. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Frequency and Duration | Time | Program | Intensity | |
---|---|---|---|---|
3 times/week For 4 weeks Training | 5~10 min | Warm-up | 40~50% HRmax, 50 RPM | |
30 min/day | 30 s | 1st bout | Beyond 90% HRmax, Maximal Effort | |
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 2nd bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 3th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 4th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 5th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 6th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 7th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 8th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 9th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
30 s | 10th bout | Beyond 90% HRmax, Maximal Effort | ||
150 s | rest | Maintain 50% HRmax, 80 RPM | ||
5~10 min | Clean-up | 40~50% HRmax, 50 RPM |
Frequency and Duration | Time and Method | Program | Intensity | ||
---|---|---|---|---|---|
3 times/week For 4 weeks Training | 5~10 min | Warm-up | Cycle, 50 watt, 60~70 RPM | ||
30 min | Upper Extremity, 6 bouts, Lower Extremity, 6 bouts Total: 12 bouts 10 repetitions × 3 sets (for strength), 25 repetition × 3 sets (for endurance) Rest per set: 30 s Rest per bout: 60 s | Lower Extremity | Leg Extension | 10 repetitions × 3 sets (for strength), 1 RM 80%~85%, 25 repetition × 3 sets (for endurance) 1 RM 50%~60% 1st, 3rd weeks: Strength training 2nd, 4th weeks: Endurance training | |
Leg Curl | |||||
Leg Press | |||||
Inner Thigh | |||||
Outer Thigh | |||||
Total Hip Extension | |||||
Upper Extremity | Abdominal | ||||
Rotary Torso | |||||
Shoulder Press | |||||
Chest Press | |||||
Lat-Pulldown | |||||
Back Extension | |||||
5~10 min | Clean-up | Cycle, 50 watt, 60~70 RPM |
Variables | HIIT | MCT | p |
---|---|---|---|
Age, years | 16.3 ± 1.2 | 16.5 ± 1.0 | 0.213 |
Height, cm | 174.9 ± 3.5 | 175.7 ± 3.1 | 0.512 |
Weight, kg | 65.1 ± 6.8 | 66.0 ± 5.4 | 0.631 |
BMI, kg/m2 | 21.5 ± 1.8 | 21.7 ± 1.5 | 0.418 |
Variables | Group | Pre | Post | Diff (%) | Pre–Post, p | Time * Group, p |
---|---|---|---|---|---|---|
Fat, kg | HIIT | 7.2 ± 2.2 | 6.6 ± 2.2 | −9.1 | 0.016* | 0.019 * |
MCT | 7.4 ± 1.9 | 6.9 ± 1.7 | −7.2 | 0.221 | ||
p | 0.125 | 0.021 * | ||||
Fat, % | HIIT | 11.1 ± 2.6 | 10.2 ± 2.6 | −7.8 | 0.022 * | 0.028 * |
MCT | 11.2 ± 2.7 | 10.5 ± 2.4 | −6.8 | 0.191 | ||
p | 0.214 | 0.043 * | ||||
Muscle, kg | HIIT | 30.8 ± 3.2 | 31.4 ± 3.4 | 1.9 | 0.121 | 0.415 |
MCT | 31.2 ± 2.8 | 31.6 ± 2.7 | 1.3 | 0.164 | ||
p | 0.119 | 0.213 | ||||
Muscle, % | HIIT | 47.3 ± 1.4 | 48.8 ± 2.0 | 3.1 | 0.144 | 0.612 |
MCT | 47.2 ± 1.5 | 48.1 ± 1.4 | 1.7 | 0.109 | ||
p | 0.258 | 0.121 |
Variables | Group | Pre | Post | Diff (%) | Pre–Post, p | Time * Group, p |
---|---|---|---|---|---|---|
Peak Power (P.P./BW) | ||||||
1 | HIIT | 11.3 ± 1.4 | 12.9 ± 1.8 | 12.4 | 0.003 * | 0.314 |
MCT | 11.6 ± 1.4 | 12.4 ± 1.2 | 6.5 | 0.004 * | ||
p | 0.524 | 0.129 | ||||
2 | HIIT | 11.2 ± 1.5 | 12.3 ± 1.5 | 8.9 | 0.007 * | 0.546 |
MCT | 11.4 ± 2.3 | 12.1 ± 1.1 | 5.8 | 0.019 * | ||
p | 0.268 | 0.211 | ||||
3 | HIIT | 10.9 ± 1.7 | 11.8 ± 1.4 | 6.8 | 0.029 * | 0.019 * |
MCT | 10.8 ± 1.6 | 11.4 ± 1.0 | 5.3 | 0.121 | ||
p | 0.645 | 0.014 * | ||||
4 | HIIT | 10.1 ± 1.2 | 11.0 ± 1.9 | 7.3 | 0.012 * | 0.021 * |
MCT | 10.2 ± 1.4 | 10.5 ± 2.1 | 2.9 | 0.062 | ||
p | 0.341 | 0.011 * | ||||
5 | HIIT | 9.3 ± 1.8 | 9.5 ± 1.7 | 2.1 | 0.445 | 0.129 |
MCT | 9.1 ± 1.6 | 9.3 ± 4.8 | 2.2 | 0.741 | ||
p | 0.412 | 0.064 | ||||
Fatigue Index (F.I.) | ||||||
1 | HIIT | 32.4 ± 9.9 | 26.8 ± 10.6 | −20.9 | <0.001 * | 0.841 |
MCT | 35.2 ± 10.9 | 28.5 ± 12.5 | −23.5 | 0.003 * | ||
p | 0.512 | 0.721 | ||||
2 | HIIT | 40.3 ± 9.6 | 31.3 ± 10.1 | −28.8 | 0.003 * | 0.743 |
MCT | 42.7 ± 10.5 | 34.3 ± 14.9 | −24.5 | 0.014 * | ||
p | 0.218 | 0.119 | ||||
3 | HIIT | 45.5 ± 9.2 | 39.0 ± 10.8 | −16.7 | 0.029 * | 0.032 * |
MCT | 47.5 ± 11.3 | 45.0 ± 13.4 | −5.6 | 0.121 | ||
p | 0.347 | 0.024 * | ||||
4 | HIIT | 49.4 ± 14.2 | 42.7 ± 12.5 | −15.7 | 0.012 * | 0.017 * |
MCT | 50.0 ± 9.3 | 47.4 ± 13.9 | −5.5 | 0.062 | ||
p | 0.419 | 0.022 * | ||||
5 | HIIT | 54.0 ± 15.0 | 51.0 ± 11.8 | −5.9 | 0.045 * | 0.003 * |
MCT | 55.9 ± 12.9 | 54.4 ± 16.8 | −2.8 | 0.741 | ||
p | 0.612 | 0.019 * |
Set | Group | Pre | Post | Diff (%) | Pre–Post, p | Time * Group, p |
---|---|---|---|---|---|---|
1 | HIIT | 39.3 ± 4.5 | 42.0 ± 3.1 | 6.4 | 0.412 | 0.211 |
MCT | 41.0 ± 3.6 | 43.4 ± 4.1 | 5.5 | 0.319 | ||
p | 0.514 | 0.748 | ||||
2 | HIIT | 35.3 ± 6.7 | 38.2 ± 4.5 | 7.6 | 0.424 | 0.342 |
MCT | 37.5 ± 2.5 | 41.8 ± 5.8 | 10.3 | 0.511 | ||
p | 0.126 | 0.419 | ||||
3 | HIIT | 30.2 ± 5.1 | 33.0 ± 7.4 | 8.5 | 0.671 | 0.417 |
MCT | 32.5 ± 4.8 | 31.2 ± 4.7 | −4.2 | 0.546 | ||
p | 0.513 | 0.641 | ||||
4 | HIIT | 20.2 ± 6.6 | 24.2 ± 4.3 | 16.5 | 0.541 | 0.784 |
MCT | 19.9 ± 6.9 | 23.4 ± 5.9 | 15.0 | 0.097 | ||
p | 0.663 | 0.518 | ||||
5 | HIIT | 19.3 ± 7.2 | 19.6 ± 5.8 | 1.5 | 0.417 | 0.646 |
MCT | 18.6 ± 8.5 | 21.6 ± 6.9 | 13.9 | 0.211 | ||
p | 0.248 | 0.820 |
Variables | Group | Pre | Post | Diff (%) | Pre–Post, p | Time * Group, p |
---|---|---|---|---|---|---|
60°/s, Ext, Nm | HIIT | 194.9 ± 30.4 | 223.4 ± 31.6 | 12.8 | 0.010 * | 0.122 |
MCT | 201.9 ± 33.7 | 212.5 ± 28.3 | 5.0 | 0.015 * | ||
p | 0.121 | 0.221 | ||||
60°/s, Ext, Nm/kg | HIIT | 2.99 ± 0.31 | 3.43 ± 0.31 | 13.1 | 0.011 * | 0.746 |
MCT | 3.05 ± 0.42 | 3.22 ± 0.36 | 5.0 | 0.003 * | ||
p | 0.515 | 0.153 | ||||
60°/s, Flx, Nm | HIIT | 117.8 ± 17.2 | 132.2 ± 13.9 | 10.9 | 0.002 * | 0.879 |
MCT | 122.6 ± 24.5 | 129.2 ± 17.7 | 5.1 | 0.004 * | ||
p | 0.247 | 0.412 | ||||
60°/s, Flx, Nm/kg | HIIT | 1.81 ± 0.26 | 2.03 ± 0.26 | 11.3 | 0.045 * | 0.412 |
MCT | 1.86 ± 0.31 | 1.96 ± 0.21 | 5.1 | 0.014 * | ||
p | 0.416 | 0.163 | ||||
240°/s, Ext, total joule | HIIT | 2690.4 ± 540.9 | 2900.9 ± 561.7 | 7.2 | 0.003 * | 0.035 * |
MCT | 2609.4 ± 447.1 | 2763.9 ± 456.5 | 5.6 | 0.015 * | ||
p | 0.258 | 0.011 * | ||||
240°/s, Ext, Total Joule/kg | HIIT | 41.32 ± 6.04 | 44.56 ± 5.81 | 7.3 | 0.005 * | 0.002 * |
MCT | 39.53 ± 6.60 | 41.86 ± 7.12 | 5.5 | 0.129 | ||
p | 0.426 | 0.035 * | ||||
240°/s, Flx, total Joule | HIIT | 1576.7 ± 281.5 | 1899.8 ± 318.4 | 17.0 | 0.006 * | 0.004 * |
MCT | 1608.8 ± 336.2 | 1767.8 ± 309.7 | 9.0 | 0.217 | ||
p | 0.416 | 0.003 * | ||||
240°/s, Flx, total Joule/kg | HIIT | 24.21 ± 3.94 | 29.17 ± 3.33 | 17.0 | 0.002 * | 0.005 * |
MCT | 24.37 ± 5.19 | 26.82 ± 4.34 | 9.1 | 0.059 | ||
p | 0.641 | 0.012 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, D.-H.; Choi, Y.-C.; Lee, D.-S. The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children 2021, 8, 458. https://doi.org/10.3390/children8060458
Ko D-H, Choi Y-C, Lee D-S. The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children. 2021; 8(6):458. https://doi.org/10.3390/children8060458
Chicago/Turabian StyleKo, Duk-Han, Yong-Chul Choi, and Dong-Soo Lee. 2021. "The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players" Children 8, no. 6: 458. https://doi.org/10.3390/children8060458
APA StyleKo, D. -H., Choi, Y. -C., & Lee, D. -S. (2021). The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children, 8(6), 458. https://doi.org/10.3390/children8060458