Epidemiology and Management of Acute Hematogenous Osteomyelitis, Neonatal Osteomyelitis and Spondylodiscitis in a Third Level Paediatric Center
Abstract
:1. Introduction
- − clindamycin if the prevalence of MRSA is >10% and clindamycin resistance is< 10%;
- − vancomycin if the prevalence of MRSA > 10% and clindamycin resistance > 10%.
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dartnell, J.; Ramachandran, M.; Katchburian, M. Haematogenous acute and subacute paediatric osteomyelitis. J. Bone Jt. Surgery. Br. Vol. 2012, 94, 584–595. [Google Scholar] [CrossRef]
- Blyth, M.J.G.; Kincaid, R.; Craigen, M.A.C.; Bennet, G.C. The changing epidemiology of acute and subacute haematogenous osteomyelitis in children. J. Bone Jt. Surgery. Br. Vol. 2001, 83, 99–102. [Google Scholar] [CrossRef]
- Calvo, C.; Núñez, E.; Camacho, M.; Clemente, D.; Fernández-Cooke, E.; Alcobendas, R.; Mayol, L.; Soler-Palacin, P.; Oscoz, M.; Saavedra-Lozano, J. Epidemiology and Management of Acute, Uncomplicated Septic Arthritis and Osteomyelitis. Pediatr. Infect. Dis. J. 2016, 35, 1288–1293. [Google Scholar] [CrossRef]
- Kaplan, S.L. Acute hematogenous osteomyelitis in children: Differences in clinical manifestations and management. Pediatr. Infect. Dis. J. 2010, 29, 1128–1129. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Mastrangelo, G.; Lazzeri, S. A Case of Acute Osteomyelitis: An Update on Diagnosis and Treatment. Int. J. Environ. Res. Public Health 2016, 13, 539. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Lozano, J.; Falup-Pecurariu, O.; Faust, S.; Girschick, H.; Hartwig, N.; Kaplan, S.; Lorrot, M.; Mantadakis, E.; Peltola, H.; Rojo, P.; et al. Bone and Joint Infections. Pediatr. Infect. Dis. J. 2017, 36, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.D.; MacNicol, M.F. Haematogenous osteomyelitis in children: Epidemiology, classification, aetiology and treatment. Paediatr. Child Health 2008, 18, 75–84. [Google Scholar] [CrossRef]
- Ceroni, D.; Kampouroglou, G.; Valaikaite, R.; Della Llana, R.A.; Salvo, D. Osteoarticular infections in young children: What has changed over the last years? Swiss Med. Wkly. 2014, 144, 1–13. [Google Scholar] [CrossRef]
- Gafur, O.A.; Copley, L.A.B.; Hollmig, S.T.; Browne, R.H.; Thornton, L.A.; Crawford, S.E. The Impact of the Current Epidemiology of Pediatric Musculoskeletal Infection on Evaluation and Treatment Guidelines. J. Pediatr. Orthop. 2008, 28, 777–785. [Google Scholar] [CrossRef]
- Russell, C.D.; Ramaesh, R.; Kalima, P.; Murray, A.; Gaston, M.S. Microbiological characteristics of acute osteoarticular infections in children. J. Med. Microbiol. 2015, 64, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Pääkkönen, M. Acute Osteomyelitis in Children. N. Engl. J. Med. 2014, 370, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Faust, S.N.; Clark, J.; Pallett, A.; Clarke, N.M.P. Managing bone and joint infection in children. Arch. Dis. Child. 2012, 97, 545–553. [Google Scholar] [CrossRef]
- Howard-Jones, A.R.; Isaacs, D. Systematic review of duration and choice of systemic antibiotic therapy for acute haematogenous bacterial osteomyelitis in children. J. Paediatr. Child Health 2013, 49, 760–768. [Google Scholar] [CrossRef]
- DeRonde, K.; Girotto, J.E.; Nicolau, D.P. Management of Pediatric Acute Hematogenous Osteomyelitis, Part I: Antimicrobial Stewardship Approach and Review of Therapies for Methicillin-SusceptibleStaphylococcus aureus, Streptococcus pyogenes, andKingella kingae. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 947–966. [Google Scholar] [CrossRef] [PubMed]
- Deronde, K.J.; Girotto, J.E.; Nicolau, D.P. Management of Pediatric Acute Hematogenous Osteomyelitis, Part II: A Focus on Methicillin-Resistant Staphylococcus aureus, Current and Emerging Therapies. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 1021–1037. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, L.; Mantero, M.; Esposito, S. Update on the Management of Pediatric Acute Osteomyelitis and Septic Arthritis. Int. J. Mol. Sci. 2016, 17, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, B.; Tsz-Yin, S. Transitioning antimicrobials from intravenous to oral in pediatric acute uncomplicated osteomyelitis. World J. Clin. Pediatr. 2016, 5, 244–250. [Google Scholar] [CrossRef]
- Jagodzinski, N.A.; Kanwar, R.; Graham, K.; Bache, C.E. Prospective Evaluation of a Shortened Regimen of Treatment for Acute Osteomyelitis and Septic Arthritis in Children. J. Pediatr. Orthop. 2009, 29, 518–525. [Google Scholar] [CrossRef]
- Peltola, H.; Pääkkönen, M.; Kallio, P.; Kallio, M.J.T. Short- Versus Long-term Antimicrobial Treatment for Acute Hematogenous Osteomyelitis of Childhood. Pediatr. Infect. Dis. J. 2010, 29, 1123–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodwell, E.R. Osteomyelitis and septic arthritis in children. Curr. Opin. Pediatr. 2013, 25, 58–63. [Google Scholar] [CrossRef]
- Peltola, H.; Unkila-Kallio, L.; Kallio, M.J. the Finnish Study Group‖Simplified Treatment of Acute Staphylococcal Osteomyelitis of Childhood. Pediatrics 1997, 99, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lee, B.H.; Chen, C. Gram-Negative Neonatal Osteomyelitis: Two Case Reports. Neonatal Netw. 2011, 30, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kiechl-Kohlendorfer, U.; Griesmaier, E. Neonatal Osteomyelitis. Neonatal Bact. Infect. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Gruppo di Studio di Infettivologia Neonatale. Manuale di Infettivologia Neonatale; Biomedia: Milan, Italy, 2016; Volume 1. [Google Scholar]
- Fox, L.; Sprunt, K. Neonatal osteomyelitis. Pediatrics 1978, 62, 535–542. Available online: http://www.ncbi.nlm.nih.gov/pubmed/714584 (accessed on 20 March 2021).
- Chiappini, E.; Krzysztofiak, A.; Bozzola, E.; Gabiano, C.; Esposito, S.; Vecchio, A.L.; Govoni, M.R.; Vallongo, C.; Dodi, I.; Castagnola, E.; et al. Risk factors associated with complications/sequelae of acute and subacute haematogenous osteomyelitis: An Italian multicenter study. Expert Rev. Anti-Infective Ther. 2018, 16, 351–358. [Google Scholar] [CrossRef]
- Brunner, R.; Freuler, F.; Hasler, C.; Jundt, G. Pediatric Orthopedics in Practice; Springer: Berlin, Germany, 2007. [Google Scholar]
- Fucs, P.M.D.M.B.; Meves, R.; Yamada, H.H. Spinal infections in children: A review. Int. Orthop. 2011, 36, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.; Carrol, C.L.; Baker, C.J. Discitis and Vertebral Osteomyelitis in Children: An 18-Year Review. Pediatrics 2000, 105, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Pääkkönen, M.; Kallio, M.J.T.; Kallio, P.E.; Peltola, H. Sensitivity of Erythrocyte Sedimentation Rate and C-reactive Protein in Childhood Bone and Joint Infections. Clin. Orthop. Relat. Res. 2010, 468, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Perlman, M.H.; Patzakis, M.J.; Kumar, P.J.; Holtom, P. The Incidence of Joint Involvement with Adjacent Osteomyelitis in Pediatric Patients. J. Pediatr. Orthop. 2000, 20, 40–43. [Google Scholar] [CrossRef]
- Pineda, C.; Espinosa, R.; Pena, A. Radiographic Imaging in Osteomyelitis: The Role of Plain Radiography, Computed Tomography, Ultrasonography, Magnetic Resonance Imaging, and Scintigraphy. Semin. Plast. Surg. 2009, 23, 080–089. [Google Scholar] [CrossRef] [Green Version]
- Berberian, G.; Firpo, V.; Soto, A.; Mañan, J.L.; Torroija, C.; Castro, G.; Polanuer, P.; Espinola, C.; Piñeiro, J.L.; Rosanova, M.T. Osteoarthritis in the neonate: Risk factors and outcome. Braz. J. Infect. Dis. 2010, 14, 413–418. [Google Scholar] [CrossRef] [Green Version]
Total (n = 216) | Other Type Osteomyelitis (n = 182) | Neonatal Osteomyelitis (n = 12) | Spondylodiscitis (n = 22) | Chi-Square | p Value | |
---|---|---|---|---|---|---|
Median patient age (years/days; IQR) | 5 years (1–10) | 35 days (24–50) | 5 years (2–11) | |||
Sex (n, %) | ||||||
M | 128 (59.26%) | 109 (59.89%) | 7 (58.33%) | 12 (54.55%) | 0.2367 | 0.888 |
F | 88 (40.74%) | 73 (40.11%) | 5 (41.67%) | 10 (45.45%) | ||
Fever at admission (n, %) | ||||||
Absent | 98 (45.79%) | 76 (42.22%) | 7 (58.33%) | 15 (68.18%) | 6.1273 | 0.047 |
Present | 116 (54.21%) | 104 (57.78%) | 5 (41.67%) | 7 (31.82%) | ||
Swelling at admission (n, %) | ||||||
Absent | 94 (44.13%) | 70 (39.11%) | 3 (25.00%) | 21 (95.45%) | 27.1183 | <0.001 |
Present | 119 (55.87%) | 109 (60.89%) | 9 (75.00%) | 1 (4.55%) | ||
Redness at admission (n, %) | ||||||
Absent | 141 (66.20%) | 114 (63.69%) | 6 (50.00%) | 21 (95.45%) | 10.3268 | 0.006 |
Present | 72 (33.80%) | 65 (36.31%) | 6 (50.00%) | 1 (4.55%) | ||
Warm at admission (n, %) | ||||||
Absent | 110 (51.64%) | 82 (45.81%) | 6 (50.00%) | 22 (100%) | 23.0518 | <0.001 |
Present | 103 (48.36%) | 97 (54.19%) | 6 (50.00%) | 0 (0%) | ||
Pain at admission (n, %) | ||||||
Absent | 28 (13.08%) | 17 (9.44%) | 5 (41.67%) | 6 (27.27%) | 14.6120 | <0.001 |
Present | 186 (86.92%) | 163 (90.56%) | 7 (58.33%) | 16 (72.73%) | ||
Movement limitation at admission (n, %) | ||||||
Absent | 53 (24.88%) | 43 (24.02%) | 4 (33.33%) | 6 (27,27) | 0.5966 | 0.742 |
Present | 160 (75.12%) | 136 (75.98%) | 8 (66.67%) | 16 (72.73%) | ||
Time interval between onset of symptoms and antibiotic therapy days (IQR) | 7 (3–13) | 7 (3–13) | 2 (2–7) | 12 (7–27) | 0.001 |
Total (n = 216) | Other Type Osteomyelitis (n = 184) | Neonatal Osteomyelitis (n = 12) | Spondylodis Citis (n = 22) | Chi-Square | p Value | |
---|---|---|---|---|---|---|
Osteomyelitis (n, %) | ||||||
Complicated | 115 (53.24%) | 102 (56.04%) | 8 (66.67%) | 5 (22.73%) | 9.6714 | 0.008 |
Sepsis (n, %) | 18 (8.37%) | 15 (8.29%) | 2 (16.67%) | 1 (4.55%) | 1.4979 | 0.473 |
Septic shock (n, %) | 6 (2.80%) | 6 (3.33%) | 0 | 0 | 1.1660 | 0.558 |
Arthritis (n, %) | 59 (27.31%) | 54 (29.67%) | 4 (33.33%) | 1 (4.55%) | 6.4724 | 0.039 |
Cellulitis (n, %) | 30 (13.89%) | 27 (14.84%) | 3 (25.00%) | 0 | 4.9234 | 0.085 |
Subperiosteal abscess (n, %) | 35 (16.20%) | 29 (15.93%) | 5 (41.67%) | 1 (4.55%) | 7.9420 | 0.019 |
Muscular abscess (n, %) | 26 (12.04%) | 22 (12.09%) | 2 (16.67%) | 2 (9.09%) | 0.4237 | 0.809 |
Deep vein thrombosis (n, %) | 4 (1.85%) | 3 (1.65%) | 1 (8.33%) | 0 | 3.2301 | 0.199 |
Fracture (n, %) | 10 (4.63%) | 7 (3.85%) | 2 (16.67%) | 1 (4.55%) | 4.1912 | 0.123 |
Septic emboli (n, %) | 2 (0.93%) | 2 (1.10%) | 0 | 0 | 0.3771 | 0.828 |
ICU admission (n, %) | 10 (4.63%) | 6 (3.30%) | 3 (25.00%) | 1 (4.55%) | 12.0104 | 0.002 |
Total (n = 205) | Other Type Osteomyelitis (n = 172) | Neonatal Osteomyelitis (n = 12) | Spondylodiscitis (n = 21) | Chi-Square | p Value | |
---|---|---|---|---|---|---|
WBC at diagnosis (n, %) | ||||||
Not elevated | 132 (64.39) | 111 (64.53) | 4 (33.33) | 17 (77.27) | 7.5617 | 0.023 |
Elevated | 73 (35.61) | 61 (35.47) | 8 (66.67) | 4 (19.05) | ||
Median value/mm3 (n, IQR) | 10.000 (8.808–14.000) | 10.125 (8.173–14.018) | 12.835 (9.002–17.485) | 8.220 (6.470–9.670) | 0.0318 | |
CRP at diagnosis (n, %) | ||||||
Negative | 46 (22.12) | 39 (22.29) | 3 (25.00) | 4 (22.12) | 1.2970 | 0.862 |
Moderately elevated | 86 (41.35) | 70 (40.00) | 5 (41.67) | 11 (52.38) | ||
Markedly elevated | 76 (36.54) | 66 (37.71) | 4 (33.33) | 6 (28.57) | ||
Median value mg/dL (n,IQR) | 2.62 (0.70–7.18) | 2.63 (0.70–7.38) | 4.48 (1.78–6.23) | 1.94 (0.71–7.14) | 0.884 | |
ESR at diagnosis (n, %) | ||||||
Negative | 23 (13.45) | 20 (13.70) | 3 (42.86) | 0 | 8.5600 | 0.073 |
Moderately elevated | 32 (18.71) | 26 (17.81) | 1 (14.29) | 5 (27.78) | ||
Markedly elevated | 116 (67.84) | 100 (68.49) | 3 (42.86) | 13 (72.22) | ||
Median value mm/h (n, IQR) | 45 (21.5–62) | 44 (21–60) | 13 (6–60) | 53 (30–65) | 0.318 |
Total (n = 216) | Other Type Osteomyelitis (n = 182) | Neonatal Osteomyelitis (n = 12) | Spondilodyscitis (n = 22) | p Value | |
---|---|---|---|---|---|
Intravenous therapy Days (IQR) | 21 (15.5–28.5) | 21 (15–27) | 33 (27–44) | 25.5 (19–32) | <0.001 |
Oral therapy Days (IQR) | 15 (13–30) | 15 (13–29) | 15 (12–35) | 20 (13–52) | 0.198 |
Total Days (IQR) | 37.5 (29–48) | 37 (28–46) | 48 (41–70) | 48 (34–70) | <0.001 |
Total (n = 216) | Other Type Osteomyelitis (n = 182) | Neonatal Osteomyelitis (n = 12) | Spondilodyscitis (n = 22) | Chi Square | p Value | |
---|---|---|---|---|---|---|
antistaphylococcal penicillin + third generation cephalosporin | 129 61.72% | 112 63.64% | 4 36.36% | 13 59.09% | 63.3552 | <0.001 |
ampicillin + aminoglycoside | 5 2.39% | 1 0.57% | 4 36.36% | 0 | ||
Clindamycin + third generation cephalosporin | 9 4.31% | 8 4.55% | 0 | 1 4.55% | ||
glycopeptide + third generation cephalosporin | 13 6.22% | 12 6.82% | 0 | 1 4.55% | ||
oxacillin monottherapy | 11 5.26% | 9 5.11% | 0 | 2 9.09% | ||
cephalosporin monotherapy | 6 2.87% | 6 3.41% | 0 | 0 | ||
clindamycin monotherapy | 4 1.91% | 3 1.70% | 0 | 1 4.55% | ||
Other | 32 15.31% | 25 14.20% | 3 27.27% | 4 18.18% |
Total (n = 216) | Other Type Osteomyelitis (n = 182) | Neonatal Osteomyelitis (n = 12) | Spondilodyscitis (n = 22) | Chi Square | p Value | |
---|---|---|---|---|---|---|
Switch to oral therapy (n, %) | ||||||
Yes | 176 (85.44%) | 146 (84.39%) | 10 (90.91%) | 20 (90.91%) | 0.9457 | 0.623 |
No | 30 (14.56%) | 27 (15.61%) | 1 (9.09%) | 2 (9.09%) | ||
Amoxicillin + clavulanate | 95 (53.98%) | 79 (54.11%) | 9 (90.00%) | 7 (35.00%) | ||
Flucloxacillin | 8 (4.55%) | 8 (5.48%) | 0 | 0 | ||
Clindamycin | 11 (6.25%) | 9 (6.16%) | 0 | 2 (10.00%) | ||
trimethoprim/sulfamethoxazole + rifampicin | 20 (11.36%) | 5 (10.27%) | 0 | 4 (25.00%) | ||
Amoxicillin + rifampicin | 9 (5.11%) | 5 (3.42%) | 0 | 4 (20.00%) | ||
Linezolid | 12 (6.82%) | 10 (6.85%) | 1 (10.00%) | 1 (5.00%) | ||
Clidamycin + rifampicin | 2 (1.14%) | 2 (1.37%) | 0 | 0 | ||
Cephalosporin | 7 (3.98%) | 7 (4.79%) | 0 | 0 | ||
Other | 12 (6.81%) | 11 (6.25%) | 0 | 1 (50.00%) |
Other Type Osteomyelitis | Neonatal Osteomyelitis | Spondylodiscitis | |
---|---|---|---|
Epidemiology | Among the different groups analysed, it is confirmed the higher incidence of multifocal osteomyelitis in neonatal group | ||
Symptomatology | Local symptoms prevail over systemic symptoms like fever: swelling is a prevalent sign of local inflammation | Pain and movement limitation prevail over other symptoms | |
Interval between onset of symptoms and start of antibiotic therapy | Longer latency time (12 days IQR 2–27) between onset of symptoms and start of antibiotic therapy, due to the lower expression of systemic symptom like fever | ||
Inflammation markers at diagnosis | In most patients there is no leukocytosis at the time of diagnosis | In all patients, ESR was elevated at the time of diagnosis | |
Complicated osteomyelitis | Greater presence of osteoarthritis and subperiosteal abscesses and higher rate for intensive care admission than in the other groups. | ||
Instrumental examinations | MRI is confirmed as the gold standard test for the diagnosis of AHOM | US is able to provide information about the presence of subperiosteal abscesses and can be used in the diagnostic process. MRI remains the gold standard for diagnostic confirmation | |
Therapy | Longer duration of intravenous antibiotic therapy than indicated in the ESPID guidelines | Longer duration of intravenous antibiotic therapy in neonatal and spondylodiscitis groups compared to the group of other types of osteomyelitis and in respect of what is indicated in the ESPID guidelines | |
Pathogens | S. aureus is confirmed the first pathogen isolated in all three groups analysed, followed by Streptococcus and gram-bacteria as P. aeruginosa and E.coli | ||
Outcome and sequelae | Outcome without sequelae was confirmed in 93% of cases of treated patients. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musso, P.; Parigi, S.; Bossi, G.; Marseglia, G.L.; Galli, L.; Chiappini, E. Epidemiology and Management of Acute Hematogenous Osteomyelitis, Neonatal Osteomyelitis and Spondylodiscitis in a Third Level Paediatric Center. Children 2021, 8, 616. https://doi.org/10.3390/children8080616
Musso P, Parigi S, Bossi G, Marseglia GL, Galli L, Chiappini E. Epidemiology and Management of Acute Hematogenous Osteomyelitis, Neonatal Osteomyelitis and Spondylodiscitis in a Third Level Paediatric Center. Children. 2021; 8(8):616. https://doi.org/10.3390/children8080616
Chicago/Turabian StyleMusso, Paola, Sara Parigi, Grazia Bossi, Gian Luigi Marseglia, Luisa Galli, and Elena Chiappini. 2021. "Epidemiology and Management of Acute Hematogenous Osteomyelitis, Neonatal Osteomyelitis and Spondylodiscitis in a Third Level Paediatric Center" Children 8, no. 8: 616. https://doi.org/10.3390/children8080616
APA StyleMusso, P., Parigi, S., Bossi, G., Marseglia, G. L., Galli, L., & Chiappini, E. (2021). Epidemiology and Management of Acute Hematogenous Osteomyelitis, Neonatal Osteomyelitis and Spondylodiscitis in a Third Level Paediatric Center. Children, 8(8), 616. https://doi.org/10.3390/children8080616