Interrelations of Physical Fitness and Cognitive Functions in German Schoolchildren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Fitness Tests
2.4. Cognitive Assessment
2.5. Additional Predictors
2.5.1. Physical Activity
2.5.2. Body Mass Index
2.6. Statistical Analyses
3. Results
3.1. Participants
3.2. Physical Fitness
3.3. Fitness Skills and Cognitive Functions
3.4. Cognitive Functions and Additional Predictors
4. Discussion
4.1. Physical Fitness and Cognitive Functions
4.2. Additional Predictors
4.3. National Context
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillman, C.; Erickson, K.I.; Hatfield, B.D. Run for your life! Childhood physical activity effects on brain and cognition. Kinesiol. Rev. 2017, 6, 12–21. [Google Scholar] [CrossRef]
- Howie, E.K.; Pate, R.R. Physical activity and academic achievement in children: A historical perspective. J. Sport Health Sci. 2012, 1, 160–169. [Google Scholar] [CrossRef] [Green Version]
- López, M.S.; Cavero-Redondo, I.; Alvarez-Bueno, C.; Ruiz-Hermosa, A.; Pozuelo-Carrascosa, D.P.; Díez-Fernández, A.; Del Campo, D.G.-D.; Pardo-Guijarro, M.J.; Martínez-Vizcaíno, V. Impact of a multicomponent physical activity intervention on cognitive performance: The MOVI-KIDS study. Scand. J. Med. Sci. Sports 2019, 29, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A. Physical activity, fitness, cognitive function, and academic achievement in children. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [Green Version]
- Ludyga, S.; Pühse, U.; Gerber, M.; Herrmann, C. Core executive functions are selectively related to different facets of motor competence in preadolescent children. Eur. J. Sport Sci. 2018, 19, 375–383. [Google Scholar] [CrossRef]
- Ruiz-Hermosa, A.; Mota, J.; Díez-Fernández, A.; Martínez-Vizcaíno, V.; Redondo-Tébar, A.; López, M.S. Relationship between weight status and cognition in children: A mediation analysis of physical fitness components. J. Sports Sci. 2019, 38, 13–20. [Google Scholar] [CrossRef]
- Ericsson, I.; Karlsson, M.K. Motor skills and school performance in children with daily physical education in school—A 9-year intervention study. Scand. J. Med. Sci. Sports 2014, 24, 273–278. [Google Scholar] [CrossRef]
- Abdelkarim, O.; Ammar, A.; Chtourou, H.; Wagner, M.; Knisel, E.; Hökelmann, A.; Bös, K. Relationship between motor and cognitive learning abilities among primary school-aged children. Alex. J. Med. 2017, 53, 325–331. [Google Scholar] [CrossRef]
- Nieto-López, M.; López, M.S.; Visier-Alfonso, M.E.; Martínez-Vizcaíno, V.; Jiménez-López, E.; Alvarez-Bueno, C. Relation between physical fitness and executive function variables in a preschool sample. Pediatr. Res. 2020, 88, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.; Voss, M.W.; VanPatter, M.; Pontifex, M.; Raine, L.B.; Konkel, A.; Hillman, C.; et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Páez-Maldonado, J.A.; Reigal, R.E.; Morillo-Baro, J.P.; Carrasco-Beltrán, H.; Hernández-Mendo, A.; Morales-Sánchez, V. Physical fitness, selective attention and academic performance in a pre-adolescent sample. Int. J. Environ. Res. Public Health 2020, 17, 6216. [Google Scholar] [CrossRef]
- McClelland, M.M.; Acock, A.C.; Piccinin, A.; Rhea, S.A.; Stallings, M.C. Relations between preschool attention span-persistence and age 25 educational outcomes. Early Child. Res. Q. 2013, 28, 314–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakala, J.O.; Rovio, S.P.; Pahkala, K.; Nevalainen, J.; Juonala, M.; Hutri-Kähönen, N.; Heinonen, O.J.; Hirvensalo, M.; Telama, R.; Viikari, J.S.A.; et al. Physical Activity from childhood to adulthood and cognitive performance in midlife. Med. Sci. Sports Exerc. 2019, 51, 882–890. [Google Scholar] [CrossRef]
- Hueston, C.; Cryan, J.F.; Nolan, Y.M. Stress and adolescent hippocampal neurogenesis: Diet and exercise as cognitive modulators. Transl. Psychiatry 2017, 7, e1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colcombe, S.; Kramer, A.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; Jerome, G.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, S.; Finger, J.D.; Lange, C.; Richter, A.; Mensink, G.B.M. Sports and dietary behaviour among children and adolescents in Germany. Results of the cross-sectional KiGGS Wave 2 study and trends. J. Health Monit. 2018, 3. [Google Scholar] [CrossRef]
- Laukkanen, A.; Bardid, F.; Lenoir, M.; Lopes, V.P.; Vasankari, T.; Husu, P.; Sääkslahti, A. Comparison of motor competence in children aged 6–9 years across northern, central, and southern European regions. Scand. J. Med. Sci. Sports 2019, 30, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brian, A.; Bardid, F.; Barnett, L.M.; Deconinck, F.J.; Lenoir, M.; Goodway, J.D. Actual and perceived motor competence levels of Belgian and United States preschool children. J. Mot. Learn. Dev. 2018, 6, S320–S336. [Google Scholar] [CrossRef] [Green Version]
- Ebardid, F.; Rudd, J.; Elenoir, M.; Epolman, R.; Barnett, L.M. Cross-cultural comparison of motor competence in children from Australia and Belgium. Front. Psychol. 2015, 6, 964. [Google Scholar] [CrossRef]
- Jansen, P.; Scheer, C.; Zayed, K. Motor ability and working memory in Omani and German primary school-aged children. PLoS ONE 2019, 14, e0209848. [Google Scholar] [CrossRef]
- Niemistö, D.; Finni, T.; Haapala, E.A.; Cantell, M.; Korhonen, E.; Sääkslahti, A. Environmental correlates of motor competence in children—The skilled kids study. Int. J. Environ. Res. Public Health 2019, 16, 1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization Regional Office for Europe. Promoting Physical Activity in the Education Sector. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/physical-activity/data-and-statistics/physical-activity-fact-sheets/promoting-physical-activity-in-the-education-sector-2018 (accessed on 21 September 2020).
- Trudeau, F.; Shephard, R.J. Physical education, school physical activity, school sports and academic performance. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsandréou, F.; Wegner, M.; Niemann, C.; Budde, H. Effects of motor versus cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 2016, 48, 1144–1152. [Google Scholar] [CrossRef]
- Jansen, P.; Lehmann, J.; Tafelmeier, C. Motor and visual-spatial cognition development in primary school-aged children in Cameroon and Germany. J. Genet. Psychol. 2018, 179, 30–39. [Google Scholar] [CrossRef]
- Drozdowska, A.; Falkenstein, M.; Jendrusch, G.; Platen, P.; Luecke, T.; Kersting, M.; Jansen, K. Water consumption during a school day and children’s short-term cognitive performance: The CogniDROP randomized intervention trial. Nutrients 2020, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Bös, K.; Schlenker, L. Deutscher Motorik-Test 6–18 (DMT 6–18). In Bildung im Sport: Beiträge zu einer zeitgemäßen Bild-Ungsdebatte, Aufl.; Krüger, M., Neuber, N., Eds.; Springer: Wiesbaden, Germany, 2011; pp. 337–355. ISBN 9783531180328. [Google Scholar]
- European Commission: Education, Audiovisual and Culture Executive Agency. Physical Education and Sport at School in Europe: Eurydice Report. Available online: https://eacea.ec.europa.eu/national-policies/eurydice/content/physical-education-and-sport-school-europe_en (accessed on 22 November 2020).
- Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen. Lehrpläne: Schulsport-NRW: Kernlehrplan für die Gesamtschule—Sekundarstufe I in Nordrhein-Westfalen. Available online: https://www.schulsport-nrw.de/index.php?id=107 (accessed on 22 November 2020).
- Jansen, K.; Tempes, J.; Drozdowska, A.; Gutmann, M.; Falkenstein, M.; Buyken, A.E.; Libuda, L.; Rudolf, H.; Lücke, T.; Kersting, M. Short-term effects of carbohydrates differing in glycemic index (GI) consumed at lunch on children’s cognitive function in a randomized crossover study. Eur. J. Clin. Nutr. 2020, 74, 757–764. [Google Scholar] [CrossRef]
- Jurado-Castro, J.M.; Gil-Campos, M.; Gonzalez-Gonzalez, H.; Llorente-Cantarero, F.J. Evaluation of physical activity and lifestyle interventions focused on school children with obesity using accelerometry: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 6031. [Google Scholar] [CrossRef]
- Graf, C.; Beneke, R.; Bloch, W.; Bucksch, J.; Dordel, S.; Eiser, S.; Ferrari, N.; Koch, B.; Krug, S.; Lawrenz, W.; et al. Recommendations for promoting physical activity for children and adolescents in Germany. A consensus statement. Obes. Facts 2014, 7, 178–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC Growth Charts: United States Advance Data from Vital and Health Statistics; National Center for Health Statistics: Hyattsville, MD, USA, 2000; pp. 1–27.
- Geertsen, S.S.; Thomas, R.; Larsen, M.N.; Dahn, I.M.; Andersen, J.N.; Krause-Jensen, M.; Korup, V.; Nielsen, C.M.; Wienecke, J.; Ritz, C.; et al. Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS ONE 2016, 11, e0161960. [Google Scholar] [CrossRef]
- Van der Fels, I.M.; Wierike, S.C.T.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latino, F.; Cataldi, S.; Fischetti, F. Effects of a coordinative ability training program on adolescents’ cognitive functioning. Front. Psychol. 2021, 12, 620440. [Google Scholar] [CrossRef] [PubMed]
- Jirout, J.; Locasale-Crouch, J.; Turnbull, K.; Gu, Y.; Cubides, M.; Garzione, S.; Evans, T.M.; Weltman, A.L.; Kranz, S. How lifestyle factors affect cognitive and executive function and the ability to learn in children. Nutrients 2019, 11, 1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front. Hum. Neurosci. 2011, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Chaddock, L.; Pontifex, M.; Hillman, C.; Kramer, A.F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 2011, 17, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Chappell, M.; Johnson, C.L.; Kienzler, C.; Knecht, A.; Drollette, E.S.; Raine, L.B.; Scudder, M.R.; Kao, S.-C.; et al. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev. Cogn. Neurosci. 2016, 20, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Román, J.V.; Cadenas-Sanchez, C.; Mora-Gonzalez, J.; Chaddock-Heyman, L.; Raine, L.B.; Stillman, C.M.; Kramer, A.; Erickson, K.I.; et al. Physical fitness, white matter volume and academic performance in children: Findings from the ActiveBrains and FITKids2 projects. Front. Psychol. 2019, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Stein, M.; Auerswald, M.; Ebersbach, M. Relationships between motor and executive functions and the effect of an acute coordinative intervention on executive functions in kindergartners. Front. Psychol. 2017, 8, 859. [Google Scholar] [CrossRef] [Green Version]
- Dumontheil, I. Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 2014, 10, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.; Faigenbaum, A.D.; Lubans, D. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- Moradi, A.; Damirchi, E.S.; Narimani, M.; Esmaeilzadeh, S.; Dziembowska, I.; Azevedo, L.B.; Prado, W.L.D. Association between physical and motor fitness with cognition in children. Medicina 2019, 55, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijer, A.; Königs, M.; Vermeulen, G.T.; Visscher, C.; Bosker, R.J.; Hartman, E.; Oosterlaan, J. The effects of physical activity on brain structure and neurophysiological functioning in children: A systematic review and meta-analysis. Dev. Cogn. Neurosci. 2020, 45, 100828. [Google Scholar] [CrossRef] [PubMed]
- Brocki, K.C.; Bohlin, G. Executive functions in children aged 6 to 13: A dimensional and developmental study. Dev. Neuropsychol. 2004, 26, 571–593. [Google Scholar] [CrossRef] [PubMed]
- Van Tetering, M.A.J.; Jolles, J. Teacher evaluations of executive functioning in schoolchildren aged 9–12 and the influence of age, sex, level of parental education. Front. Psychol. 2017, 8, 481. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, A.; Maccagnano, G.; Pesce, V.; Tafuri, S.; Novielli, G.; Moretti, B. Visual-spatial capacity: Gender and sport differences in young volleyball and tennis athletes and non-athletes. BMC Res. Notes 2014, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
s-PE | r-PE | p-Value | |
---|---|---|---|
n | 90 | 121 | |
Grade 5 n (%) | 46 (51.1) | 54 (44.6) | |
Grade 6 n (%) | 44 (48.9) | 67 (55.4) | |
Boys n (%) | 73 (81.1) | 55 (45.5) | |
Girls n (%) | 17 (18.9) | 66 (54.5) | |
Age in years (month) | 10.8 ± 0.7 (135) | 11.1 ± 0.8 (138) | 0.020 (0.058) |
BMI | 18.0 ± 2.4 | 21.3 ± 4.7 | <0.001 |
DMT 6–18 Total Z-score † | 109 ± 4.4 | 97 ± 7.3 | <0.001 |
Speed | 111 ± 6.7 | 100 ± 11.4 | <0.001 |
Endurance | 101 ± 7.8 | 86 ± 8.2 | <0.001 |
Flexibility | 101 ± 9.6 | 97 ± 11.0 | 0.003 |
Coordination | 115 ± 6.1 | 103 ± 9.4 | <0.001 |
Strength | 109 ± 5.4 | 96 ± 8.1 | <0.001 |
Step Counts 24 h | 16113 ± 2996 | 15223 ± 2720 | 0.042 |
Step Counts 8 a.m.–1 p.m. | 4782 ± 744 | 4745 ± 819 | 0.739 |
Total Z-Score | Coefficients | ||
---|---|---|---|
Predictors | Unstandardized | Standardized | Std. Error |
Constant | 143.725 *** | ||
BMI | −1.193 *** | −0.601 | 0.101 |
Age | −0.129 ** | −0.142 | 0.047 |
Sex | −4.528 *** | −0.268 | 0.864 |
Step Counts 24 h | 0.0004 ** | 0.135 | 0.0002 |
Observations | 195 | ||
R2 | 0.509 | ||
Adjusted R2 | 0.499 | ||
Residual Std. Error (df = 190) | 34.729 | ||
F-Statistic (df = 4; 190) | 49.254 *** |
Cognitive Tasks | Total Z-Score | Speed | Endurance | Flexibility | Coordination | Strength |
---|---|---|---|---|---|---|
Switch | ||||||
Switch costs | ns | ns | ns | ns | ns | ns |
RT Visual search letters | ns | ns | ns | ns | −0.179 (0.011) | ns |
RT Visual search numbers | −0.173 (0.014) | −0.154 (0.029) | ns | ns | −0.241 (0.001) | ns |
RT Switch | ns | ns | ns | ns | −0.205 (0.004) | ns |
Corsi block-tapping | ||||||
Longest Path | 0.191 (0.005) | 0.154(0.025) | 0.152 (0.027) | ns | 0.171 (0.013) | 0.153 (0.026) |
Correct immediate block span | 0.227 (0.001) | 0.234 (0.001) | 0.146 (0.033) | ns | 0.259 (<0.001) | 0.187 (0.006) |
Score | 0.230 (0.001) | 0.225 (0.001) | 0.157 (0.022) | ns | 0.253 (<0.001) | 0.189 (0.006) |
2-back | ||||||
Ratio of false alarms | −0.188 (0.006) | ns | −0.174 (0.012) | −0.175 (0.011) | −0.181 (0.009) | −0.161 (0.019) |
RT | −0.182 (0.008) | −0.172 (0.013) | ns | ns | −0.232 (0.001) | ns |
Count of correct events | 0.186 (0.007) | ns | 0.169 (0.014) | 0.204 (0.003) | 0.185 (0.007) | 0.157 (0.023) |
Flanker | ||||||
RT True-komp | −0.232 (0.001) | −0.242 (<0.001) | ns | ns | −0.272 (<0.001) | −0.203 (0.003) |
RT True-Ikomp | −0.189 (0.006) | −0.208 (0.002) | ns | ns | −0.239 (<0.001) | −0.146 (0.034) |
Ratio False Komp | ns | ns | ns | ns | ns | ns |
Ratio False IK | ns | ns | ns | ns | ns | ns |
Count of false alarms | ns | ns | ns | ns | ns | ns |
Task | p-Value | Adjusted R2 | Descending Order of the Predictors Based on the Standardized Coefficients (β coefficient) |
---|---|---|---|
Switch | |||
Switch costs | ns | ||
RT Visual search letters | 0.007 | 0.055 | total Z-score (−952.8 *), strength (632.5), steps 8–13 (−3.985 *), sex (−4303.6) |
RT Visual search numbers | <0.001 | 0.081 | coordination (−341.6 **), age (−261.6 *), PE class (−4008.6), sex (4073.3) |
RT Switch | <0.001 | 0.093 | coordination (−810.7 ***), age (−514.1 *), steps 8–13 (−5.7 *), sex (−9172.2 *) |
Corsi block-tapping | |||
Longest Path | <0.001 | 0.107 | BMI (0.064 *), total Z-score (0.028), PE class (−0.4), steps 8–13 (0.0002 *) |
Correct immediate block span | <0.001 | 0.085 | total Z-score (0.070 **), BMI (0.120 *), sex (−0.838 *) |
Score | <0.001 | 0.094 | total Z-score (0.183 **), BMI (0.313 *), sex (−2.319 **) |
2-back | |||
Ratio of false alarms | 0.005 | 0.055 | sex (−8.5 *), PE class (7.4 *), steps 8–13 (−0.004 *), flexibility (−0.2) |
RT | 0.009 | 0.038 | steps 8–13 (−0.02 *), total Z-score −1.7) |
Count of correct events | 0.002 | 0.067 | sex (8.059 **), PE class (−6.901 *), steps 8–13 (0.004 *), flexibility (0.229*) |
Flanker | |||
RT Cong | <0.001 | 0.154 | sex (55.9 ***), coordination (−2.3 **), PE class (−37.3 *) |
RT ICong | <0.001 | 0.186 | sex (99.5 ***), PE class (−41.2 *), coordination (−1.7), age (1.6), steps 24 h (0.005) |
Ratio False Cong | 0.006 | 0.042 | age (−0.3 *), sex (−5.1 *) |
Ratio False ICong | <0.001 | 0.116 | sex (−8.1 ***), age (−0.4 **), PE class (7.2 *), steps 24 h (−0.001 **), total Z-score (0.3) |
Count of false alarms | <0.001 | 0.168 | sex (−8.0 ***), age (−0.2 ***), steps 8–13 (−0.002 *), PE class (3.1 *) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdowska, A.; Falkenstein, M.; Jendrusch, G.; Platen, P.; Lücke, T.; Kersting, M.; Sinningen, K. Interrelations of Physical Fitness and Cognitive Functions in German Schoolchildren. Children 2021, 8, 669. https://doi.org/10.3390/children8080669
Drozdowska A, Falkenstein M, Jendrusch G, Platen P, Lücke T, Kersting M, Sinningen K. Interrelations of Physical Fitness and Cognitive Functions in German Schoolchildren. Children. 2021; 8(8):669. https://doi.org/10.3390/children8080669
Chicago/Turabian StyleDrozdowska, Alina, Michael Falkenstein, Gernot Jendrusch, Petra Platen, Thomas Lücke, Mathilde Kersting, and Kathrin Sinningen. 2021. "Interrelations of Physical Fitness and Cognitive Functions in German Schoolchildren" Children 8, no. 8: 669. https://doi.org/10.3390/children8080669